المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2020

 On maps preserving the spectrum of the skew Lie product of operators

 الزيداني، إيمان شايع محمد


//uquui/handle/20.500.12248/117158
0 التحميل
927 المشاهدات

On maps preserving the spectrum of the skew Lie product of operators

عناوين أخرى : الدوال التي تحافظ على ضرب لي للمؤثرات الخطية على فضاء هيلبرت المركب
رقم الطلب : 23777
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2020 - 1441 هـ
الوصف : 38 ورقة.
نوع الوعاء : ماجستير
الموضوعات : Mathematics ؛
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

problem of describing maps on operators and matrices that preserve certain functions, subsets and relations has been widely studied in the literature, see [7], [9], [10], [11], [14], [15], [16], [17], [23], [29], [30], [32], [33] and their references therein. One of the classical problems in this area of research is to characterize maps preserving the spectra of the product of operators. Moln´ar in [29] studied maps preserving the spectrum of operator and matrix products. His results have been extended in several directions [8], [1], [2], [12], [13], [19], [21], [22], [24] and [25]. In [2], the problem of characterizing maps between matrix algebras preserving the spectrum of polynomial products of matrices is considered. In particular, the results obtained therein extend and unify several results obtained in [11] and [13]. Let H and K be two complex infinite dimensional Hilbert spaces. Let B(H) (resp. B(K)) denote the algebra of all bounded linear operators on H (resp. on K ). We say that a map ϕ : B(H) →B(K) preserves the skew Lie product of operators if [ϕ(T),ϕ(S)] ∗ = [T,S] ∗ where [T,S] ∗ = TS −ST∗ for any operators S,T ∈B(H). Latter in [1], the form of all maps preserving the spectrum and the local spectrum of skew Lie product of matrices are determined. In this thesis we will examine the form of surjective maps preserving the spectrum of skew Lie product of operators

العنوان: On maps preserving the spectrum of the skew Lie product of operators
عناوين أخرى: الدوال التي تحافظ على ضرب لي للمؤثرات الخطية على فضاء هيلبرت المركب
المؤلفون: المبروك، محمد صالح
الزيداني، إيمان شايع محمد
الموضوعات :: Mathematics
تاريخ النشر :: 2020
الناشر :: جامعة أم القرى
الملخص: problem of describing maps on operators and matrices that preserve certain functions, subsets and relations has been widely studied in the literature, see [7], [9], [10], [11], [14], [15], [16], [17], [23], [29], [30], [32], [33] and their references therein. One of the classical problems in this area of research is to characterize maps preserving the spectra of the product of operators. Moln´ar in [29] studied maps preserving the spectrum of operator and matrix products. His results have been extended in several directions [8], [1], [2], [12], [13], [19], [21], [22], [24] and [25]. In [2], the problem of characterizing maps between matrix algebras preserving the spectrum of polynomial products of matrices is considered. In particular, the results obtained therein extend and unify several results obtained in [11] and [13]. Let H and K be two complex infinite dimensional Hilbert spaces. Let B(H) (resp. B(K)) denote the algebra of all bounded linear operators on H (resp. on K ). We say that a map ϕ : B(H) →B(K) preserves the skew Lie product of operators if [ϕ(T),ϕ(S)] ∗ = [T,S] ∗ where [T,S] ∗ = TS −ST∗ for any operators S,T ∈B(H). Latter in [1], the form of all maps preserving the spectrum and the local spectrum of skew Lie product of matrices are determined. In this thesis we will examine the form of surjective maps preserving the spectrum of skew Lie product of operators
الوصف :: 38 ورقة.
الرابط: https://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117158
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
23777.pdfالرسالة الكاملة883.3 kBAdobe PDFعرض/ فتح
title23777.pdfغلاف215.8 kBAdobe PDFعرض/ فتح
indu23777.pdfالمقدمة692.08 kBAdobe PDFعرض/ فتح
cont23777.pdfفهرس الموضوعات200.31 kBAdobe PDFعرض/ فتح
absa23777.pdfملخص الرسالة بالعربي439.04 kBAdobe PDFعرض/ فتح
abse23777.pdfملخص الرسالة بالإنجليزي359.41 kBAdobe PDFعرض/ فتح
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك