المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2020

 ON MODULAR INCIDENCE G-ALGEBRAS

 الحارثي، عهود عمرو


//uquui/handle/20.500.12248/117294
0 التحميل
809 المشاهدات

ON MODULAR INCIDENCE G-ALGEBRAS

رقم الطلب : 23849
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2020 - 1441 هـ
الوصف : 63 paper.
نوع الوعاء : ماجستير
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

This dissertation is about G-algebra theory and incidence algebras and composed of four parts. The first part depends on study of the algebra over a field and G-algebra over a field means a finite group acts on certain algebra. This concept is due to A. J. Green. We learn about the concept of an interior G-algebra, introduced by L.Puig and Brou´e and developed by Ku¨lshammer. The second part is devoted to deal with particular algebra, namely incidence algebra over a field. We study some fundamental properties of an incidence algebra. We then construct a modular incidence algebra. We study the action of a finite group G on a modular incidence algebra. The third part is based on a joint work with Ahmed Alghamdi. The content of this part is based on a prepublication in which we try to understand in the case of uncountable locally partial order sets. We study tensor product of two incidence algebras. We show that the tensor product of two incidence algebras is an incidence algebra. The fourth part depends on study of the decomposition of the modular incidence algebra into a block algebra. We study defect groups of incidence algebra, pointed groups and nilpotent blocks. We present some examples of nilpotent blocks.

العنوان: ON MODULAR INCIDENCE G-ALGEBRAS
المؤلفون: الغامدي، أحمد محمد
الحارثي، عهود عمرو
الموضوعات :: mathematical sciences
Algebra
تاريخ النشر :: 2020
الناشر :: جامعة أم القرى
الملخص: This dissertation is about G-algebra theory and incidence algebras and composed of four parts. The first part depends on study of the algebra over a field and G-algebra over a field means a finite group acts on certain algebra. This concept is due to A. J. Green. We learn about the concept of an interior G-algebra, introduced by L.Puig and Brou´e and developed by Ku¨lshammer. The second part is devoted to deal with particular algebra, namely incidence algebra over a field. We study some fundamental properties of an incidence algebra. We then construct a modular incidence algebra. We study the action of a finite group G on a modular incidence algebra. The third part is based on a joint work with Ahmed Alghamdi. The content of this part is based on a prepublication in which we try to understand in the case of uncountable locally partial order sets. We study tensor product of two incidence algebras. We show that the tensor product of two incidence algebras is an incidence algebra. The fourth part depends on study of the decomposition of the modular incidence algebra into a block algebra. We study defect groups of incidence algebra, pointed groups and nilpotent blocks. We present some examples of nilpotent blocks.
الوصف :: 63 paper.
الرابط: https://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117294
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
23849.pdfالرسالة الكاملة726.97 kBAdobe PDFعرض/ فتح
indu23849.pdfالمقدمة119.97 kBAdobe PDFعرض/ فتح
cont23849.pdfفهرس الموضوعات44.98 kBAdobe PDFعرض/ فتح
abse23849.pdfملخص الرسالة بالإنجليزي69.21 kBAdobe PDFعرض/ فتح
absa23849.pdfملخص الرسالة بالعربي290.58 kBAdobe PDFعرض/ فتح
title23849.pdfغلاف106.21 kBAdobe PDFعرض/ فتح
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك