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Some Frequently Used
Notations

p prime number

G finite group
e identity element of G

X set

StabG(x) stabilizer of x belongs X in G

O(x) orbit of x belongs X

FixX(g) fixed point of g in X

|G| order of G

|X/G| number of orbits

H subgroup of G

F field of characteristic p

FG group algebra of G over F

EndF (M) endomorphism algebra of some module M over F

Mat(n, F ) matrix algebra of some positive degree n over F

A algebra over F

1A identity element of A

J(A) Jacobson radical of A

U(A) group of units of A

Aut(A) automorphism group of A

Z(FG) center of FG

1Z(FG) identity element of Z(FG)

AH set of H-fixed points of A

ResGH : AG −→ AH restriction map from AG to AH

ii



iii

tGH : AH −→ AG relative trace map from H-fixed points to G-fixed
points in A

[G : H] index of H in G

AGH = tGH(AH) image of a relative trace map

A(G) = AG/
∑

H<GA
G
H Brauer quotient

BrH : AH −→ A(H) Brauer homomorphism on A

(P,≤) partially ordered set with a binary relation ≤
[x, y] interval from x to y

l[x, y] length of [x, y]

I(P, F ) incidence algebra of P over F

δ(x, y) kronecker delta function

ζ(x, y) zeta function

λ(x, y) lambda function

η(x, y) chain function

κ(x, y) cover function

µ(x, y) möbius function

ρ(x, y) length function

Z(I(P, F )) center of an incidence algebra

1Z(I(P,F ) identity element of a center of an incidence algebra

P (A) set of points of A

Hβ = (H, β) pointed group

Kα ≤ Hβ Kα is a pointed subgroup of Hβ

Brβ : AH −→ A(Hβ) quotient map

HβprKα Hβ is projective relative to Kα

V vector space

V × U direct product of two vector spaces V and U

dimV dimension of V

V ⊗F U tensor product of V and U

A⊗F B tensor product of two algebras A and B

G1 ×G2 direct product of two groups G1 and G2

P1 × P2 direct product of two posets P1 and P2

C category

FC category algebra



Abstract

This dissertation is about G-algebra theory and incidence algebras and
composed of four parts.

The first part depends on study of the algebra over a field and G-algebra
over a field means a finite group acts on certain algebra. This concept is
due to A. J. Green. We learn about the concept of an interior G-algebra,
introduced by L.Puig and Broué and developed by Külshammer.

The second part is devoted to deal with particular algebra, namely in-
cidence algebra over a field. We study some fundamental properties of an
incidence algebra. We then construct a modular incidence algebra. We study
the action of a finite group G on a modular incidence algebra.

The third part is based on a joint work with Ahmed Alghamdi. The con-
tent of this part is based on a prepublication in which we try to understand
in the case of uncountable locally partial order sets. We study tensor product
of two incidence algebras. We show that the tensor product of two incidence
algebras is an incidence algebra.

The fourth part depends on study of the decomposition of the modular
incidence algebra into a block algebra. We study defect groups of incidence
algebra, pointed groups and nilpotent blocks. We present some examples of
nilpotent blocks.

Keywords: Partially ordered set, Incidence algebras, Incidence functions,
Modular incidence algebras, G-poset, Incidence G-algebras, Tensor product,
Block incidence algebras, Nilpotent blocks.
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Introduction

Let p be a prime number. A p-modular system is a triple (K,O, F ) where
K is a field of characteristic zero, O is a complete discrete valuation ring and
F = O/J(O) is an algebraically field of characteristic p, where J(O) means
a jacobson radical of O. In this dissertation we will depend on the field F .

In Chapter 1, the first section we present the concept of group action.
First we shall define a group action G on a set X. We shall define the fol-
lowing notions: stabilizer, orbit and fixed point of a set. We show that the
stabilizer is a subgroup of G. We then recast the proof of Orbit-Stabilizer
Theorem. We shall recast the proof of Burnside’s Counting Theorem. In the
second section, we present the concept of algebra A over the field F , which
is very important. We will mention some important examples of algebra.
Then we shall define G-algebra over the field F . In the third section, after
we have presented G-algebra. Assume that G is a finite group and H is a
subgroup of G. We will define G-fixed points AG of algebra A. We will define
the restriction map ResGH and the relative trace map tGH . We will explain
the relative trace map is linear and independent of co-set representative. We
will prove the image of the relative trace map is an ideal in the subalgebra
of G-fixed points of A. After that we will define the Brauer quotient and
Brauer homomorphism. We will give some examples.

In mathematics, especially order theory, there is a very useful concept
is partially ordered set. It is defined as a set which follows partial order
relation. Let P be a set. The relation ≤ defined on a set P is known as par-
tially ordered relation and the set P is called a partially ordered set under
certain conditions. This is what we study in Chapter 2, Section 2.1. Also in
this section we will study an incidence algebra I(P, F ) of the locally finite
partially ordered set P over the field F . The idea of the incidence algebra
of a locally finite partially ordered set was proposed by G.-C.Rota [11] as
the basis for a unified study of combinatorial theory. The study of incidence
algebras was continued by Smith. We mean by the concept of the incidence

vi



vii

algebra I(P, F ) as the set of functions mapping intervals of P to F . We will
define the addition, the scalar multiplication and another operation which
is called convolution product on I(P, F ). We will define incidence functions
of the incidence algebra I(P, F ) and of which the kronecker delta function,
the zeta function and the möbius function. Then we explain properties this
functions in terms of their reversibility. The most important question, do
all functions in the incidence algebra I(P, F ) have an inverse?. Are there
conditions for this property?. After that we will discuss when I(P, F ) and
I(Q,F ) are isomorphic, does P and Q isomorphic?. This question has been
answered by Stanley [4, 13]. We then recast the proof of the Möbius Inver-
sion Formula which can be seen in [11] or [12]. In Section 2.2, defining the
field in this section will be more important to us as the type of representa-
tion will be determined by the characteristic of the field and its relationship
to the order of G. We consider G as a finite group and P is a locally finite
poset of subgroups of G ordered by inclusion. We have two cases for the
characteristic p, the first if the characteristic p divides the order |G| and in
this case the representation is called a modular representation. In the other
case if the characteristic p does not divide the order |G| then the modular
representation is completely reducible, as with ordinary representations. We
study in this section a new concept which is a modular incidence algebra by
present some examples. In Section 2.3, we elucidate that a finite group G
acts on a poset P. Then we generalize some results to the notion modular
incidence G-algebra. Of these results, a finite group G action on a modular
incidence algebra. We explain that the modular incidence G-algebra form an
interior G-algebra.

In Chapter 3, the concept of tensor products are presented in this chap-
ter. In Section 3.1, if V and U are vector spaces over the same field F, we can
define the product of V and U and denoted by V ×U . The product V ×U as a
vector space over F. We then mention a theorem to depend a tensor product
on it and how to construct a tensor product. In Section 3.2, if A and B are al-
gebras over F, we define a tensor product of A and B and denoted by A⊗F B
which we will explain it is an algebra over F. If we have two finite groups
G1 and G2. Consider A and B as G1-algebra and G2-algebra respectively
we conclude that the tensor product A ⊗F B is a G1 × G2-algebra and we
prove that the tensor product A⊗F B considered an interior G1×G2-algebra.
In Section 3.3, if (P1,≤1) and (P2,≤2) are two posets. We present notion
of cartesian product of (P1,≤1) and (P2,≤2) and denoted by (P1 × P2,≤)
which is considered a poset. A poset P may be countable or uncountable.
We will deal with an uncountable poset. We will mention that if the posets
(P1,≤1) and (P2,≤2) are uncountable then also the cartesian product is un-
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countable. We can define an incidence algebra of (P1 × P2,≤) over F and
we will learn how to form its elements. If we have two incidence algebras
I(P1, F ) and I(P2, F ) then the tensor product I(P1, F ) ⊗F I(P2, F ) is an
incidence algebra. We then prove that the incidence algebra I(P1 × P2, F )
is isomorphic to the tensor product of incidence algebra I(P1, F )⊗F I(P2, F ).

In Chapter 4, Section 4.1, since the modular incidence algebra I(P, F )
is finite dimensional then we can decomposed it into eiI(P, F ), where ei is
a central primitive idempotent of I(P, F ). An algebra eiI(P, F ) is called a
block incidence algebra which is an ideal and we prove that. We can decom-
posed a block incidence algebra into indecomposable I(P, F )-module. We
define a defect group of a block incidence algebra. In Section 4.2 we will
define a concept of a pointed group of the modular incidence algebra and a
subgroup of a pointed group. We study some concepts such as a projective
relative, a local pointed group, a defect pointed group and a nilpotent block
algebra of the modular incidence algebra. We give some examples. In section
4.3 we present a notion of a category C and give some examples. We define
a category algebra FC of C over F. Then we connect the two concepts of
algebra and incidence algebra together.

We have already written a paper which contains this work in the title:
on modular incidence G-algebras. We have already submitted that paper for
suitable publication.

Historical Survey

• Gian-Carlo Rota was the first mathematician to study the incidence
algebra of locally finite partially ordered sets. In the paper which has
the title on the foundations of combinatorial theory I. Theory of Möbius
functions published in (1964).

• Richard P.Stanley discussed some results in the incidence algebra. In
the paper which has the title structure of incidence algebras and their
automorphism groups published in (1970).

• Peter Doubilet, Gian-Carlo Rota and Richard Stanley discussed the
main facts on the structure of the incidence algebra of a partially or-
dered set. In the paper which has the title on the foundations of com-
binatorial theory (VI): The idea of generating function published in
(1972).

• Eugene Spiegel and Christopher J. O’Donnell (1997) studied the inci-
dence algebra and the main topics covered were the maximal and prime
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ideals of the incidence algebra, its derivations and isomorphisms, its
radicals.

• Ancykutty Joseph studied the incidence algebras and directed graphs.
In the paper which has the title on incidence algebras and directed
graphs published in (2002).

• Ahmad M. Alghamdi studied the tensor product of incidence algebras.
In the paper which has the title tensor product of incidence algebras
published in (2014).



Chapter 1

Group action and algebra

In this chapter, we present some basic definitions. We have split this chapter
into three sections. In Section 1.1, we present a finite group G acting on a
non-empty set X. We develop the main concepts and their properties: stabi-
lizers, orbits, and fixed points. We then recast the proof of Orbit-Stabilizer
Theorem and recast the proof of Burnside’s Counting Theorem. In Section
1.2, we present the concept of algebra A over a field F. We define a local alge-
bra. We define a group algebra and how to form their elements. We present
a finite group G acting on an algebra A which is called G-algebra. We define
an interior G-algebra and a block algebra. In Section 1.3, we define a relative
trace map and we study its properties. We define a Brauar homomorphism
and Brauar construction. We give some examples.

1.1 Group action on a set

In this section, we shall define the most important concepts in algebra, which
is a group action on a set. We will define some concepts like stabilizer, orbit
and fixed point of a set. We recast the proof of Orbit-Stabilizer Theorem and
recast the proof of Burnside’s Counting Theorem. We give some examples.
For further details and background see [7].

Definition 1.1.1. Let G be a finite group. Let X be a non-empty set. The
group G acts on X if there is a function G×X −→ X defined by (g, x) 7→ gx
such that ex = x and g(hx) = (gh)x for all x ∈ X, g, h ∈ G. We say that X
is a G-set.

Definition 1.1.2. Let X be a non-empty set. Let G be a finite group which
acts on X. The stabilizer of x ∈ X StabG(x) = {g ∈ G, gx = x} is a subset
of G. The orbit of x is the set O(x) = {y ∈ X, ∃g ∈ G; gx = y}.

1



CHAPTER 1. GROUP ACTION AND ALGEBRA 2

Remarks.
• We say that an action is a free action if all stabilizer groups are trivial.

• The orbits O(x) are subsets of X

• If O(x) = X for all x ∈ X, then an action is called a transitive action.

It is very easy to show that the stabilizer of x is a subgroup of G as in
the following lemma.

Lemma 1.1.3. Let X be a non-empty set. Let G be a finite group which
acts on X. If x ∈ X then the stabilizer of x is a subgroup of G.

Proof. Note that StabG(x) is non-empty since e ∈ StabG(x). Now we want
to prove that

• If f, g ∈ StabG(x) then fg ∈ StabG(x).

• If g ∈ StabG(x) then g−1 ∈ StabG(x).

If f, g ∈ StabG(x) then fx = x and gx = x so (fg)x = f(gx) = fx = x hence
fg ∈ StabG(x). Finally if g ∈ StabG(x) then g−1x = g−1(gx) = (g−1g)x =
ex = x hence g−1 ∈ StabG(x). Therefore StabG(x) is a subgroup of G. �

In the following theorem we prove that the number of elements in the orbit
O(x) is equal to [G : StabG(x)], in another meaning |O(x)| · |StabG(x)| = |G|.

Theorem 1.1.4. (Orbit-Stabilizer Theorem)
Let G be a finite group acting on a set X and let x ∈ X then

|O(x)| · |StabG(x)| = |G|.

Proof. We want prove that |O(x)| · |StabG(x)| = |G|. They can be written
following way

|O(x)| = |G|
|StabG(x)|

.

By Lagrange’s Theorem, if H is a subgroup of G then |G| = |H|[G : H]. Since
StabG(x) is a subgroup of G, so |G| = |StabG(x)|[G : StabG(x)]. Rearranging
the terms, we get

|G|
|StabG(x)|

= [G : StabG(x)]. (1.1)



CHAPTER 1. GROUP ACTION AND ALGEBRA 3

Therefore, we will prove that |O(x)| = [G : StabG(x)]. Let

φ : O(x) −→ G

StabG(x)

be a map. We will define a map φ(y) = gStabG(x) for all y ∈ O(x). Let
y ∈ O(x) then ∃g ∈ G such that gx = y.
To show that φ is injective, suppose that φ(y1) = φ(y2). So g1StabG(x) =
g2StabG(x). Since y1, y2 ∈ O(x) then g1x = y1 and g2x = y2. Since g1StabG(x) =
g2StabG(x) then ∃g ∈ G such that g2 = g1g. Hence y2 = g2x = g1gx = g1x =
y1. Therefore, φ is injective.
To show that φ is surjective, Let gStabG(x) be a left coset. If gx = y then
φ(y) = gStabG(x). Therefore, φ is surjective. Hence φ is a bijective function
and

|O(x)| = [G : StabG(x)]. (1.2)

From (1.1) and (1.2) we get

|O(x)| = |G|
|StabG(x)|

, |O(x)| · |StabG(x)| = |G|.

�

Definition 1.1.5. Let G be a finite group acts on a set X. For any element
g ∈ G the fixed point of X is FixX(g) = {x ∈ X, gx = x}.

The Burnside’s Counting Theorem asserts the calculate the number of
orbits as follows

Theorem 1.1.6. (Burnside’s Counting Theorem)
Let X be a finite set. Let G be a finite group that acts on the set X. Then

|X/G| = 1

|G|
∑
g∈G

|FixX(g)|,

where |X/G| stands for the number of orbits.

Proof. The first step, this can be changed the sum over the group elements
g ∈ G as equivalent sum over the set of element x ∈ X∑

g∈G

|FixX(g)| =
∑
g∈G

|{x ∈ X : gx = x}|

= |{(g, x) : g ∈ G, x ∈ X, gx = x}|

=
∑
x∈X

|{g ∈ G : gx = x}|

=
∑
x∈X

|StabG(x)|.
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Now, use the Orbit-Stabilizer Theorem

|StabG(x)| = |G|
|O(x)|

.

So we get ∑
x∈X

|StabG(x)| =
∑
x∈X

|G|
|O(x)|

= |G|
∑
x∈X

1

|O(x)|
.

Finally, notice that X is the disjoint union of all its orbits in X/G, which
means the sum over X may be broken up into separate sums over each
individual orbit∑

x∈X

1

|O(x)|
=
∑

Y ∈X/G

∑
x∈Y

1

|Y |
=
∑

Y ∈X/G

1 = |X/G|.

So the sum becomes ∑
x∈X

|StabG(x)| = |G| · |X/G|.

Hence ∑
g∈G

|FixX(g)| = |G| · |X/G|

|X/G| = 1

|G|
·
∑
g∈G

|FixX(g).

�



CHAPTER 1. GROUP ACTION AND ALGEBRA 5

1.2 Algebra and group algebra

In this section, we shall define an algebra A over the field F . We define a
group algebra FG over F. We will study a group G acts on an algebra A. We
will define an interior G-algebra and a block algebra of group algebra. Most
of the result here is in [7, 9, 14] and [15].

Definition 1.2.1. Let p a prime number, let (K,O, F ) be a p-modular sys-
tem. Let R be a ring, R ∈ (K,O, F ). An algebra (A,+, ·) over the ring R is
a set A with sum, product and scalar multiplication such that:

1. (A,+, ·) is a ring.

2. (A,+, ·) is a vector space over R.

3. α(ab) = (αa)b = a(αb) for all α ∈ R and a, b ∈ A.

More than that, the algebra A is free as a R-module. The important
examples of algebra are group ring RG of some finite group G over R, the
Endomorphism algebra EndR(M) of some module M over R, the matrix
algebraMat(n,R) of some positive degree n overR and the incidence algebra.

An algebra A contains three types of elements are unit, nilpotent and
idempotent element. We will explain them in the following definitions.

In the following, let F be an algebraically closed field which has charac-
teristic prime number p and A be an algebra over F.

Definition 1.2.2. A unit element in A over F is an element x ∈ A such
that xy = 1A for some element y ∈ A.

Definition 1.2.3. An element b ∈ A is called nilpotent element if there
exist positive integer n such that bn = 0.

Definition 1.2.4. An idempotent element in an algebra A over F is an
element a such that a2 = a.

Definition 1.2.5. The set of elements which is commute with every element
of A is called center of A and denoted by Z(A). We can write

Z(A) = {a ∈ A : ab = ba ∀b ∈ A}.

Definition 1.2.6. Two idempotents a and b in A are called orthogonal if
ab = ba = 0.

Definition 1.2.7. A non-zero idempotent in A is called primitive in A if it
cannot be written as the sum of two orthogonal non-zero idempotent in A.
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Definition 1.2.8. An idempotent a in A is called a central idempotent
if a ∈ Z(A).

Definition 1.2.9. The Jacobson radical of A is an unique maximal nilpo-
tent ideal and denote by J(A).

Remarks.
• Certainly the elements 0A and 1A are idempotents in A.

• The unit element of A form a group and called the unit group of A and
denote by U(A).

• If a is any idempotent in A then so is b = 1− a moreover a and b are
orthogonal.

Definition 1.2.10. An algebra A is a local algebra if it has any one of the
following equivalent properties:

• A has an unique maximal ideal.

• A has only 0A and 1A as idempotents.

• Every element of A is either unit or nilpotent.

• A/J(A) ∼= F .

• A = J(A)
·
∪ U(A).

Definition 1.2.11. Let G be a finite group and F be the field. The algebra
FG is called group algebra over F and its elements are written as follows

FG = {
∑

g∈G αgg; αg ∈ F, ∀g ∈ G}.

The basis of FG is the set of elements of G.

Example 1.2.12. Consider G = S3 be the symmetric group and F = Z2 is
the field which has characteristic two. The group algebra

Z2S3 = {
∑
g∈S3

αgg; αg ∈ Z2, g ∈ S3}.

The number of elements in Z2S3 is 64. We have
U(Z2S3) = {(1), (123), (132), (12), (13), (23), (1) + (123) + (132) + (12) +

(13), (1) + (123) + (132) + (12) + (23), (1) + (123) + (132) + (13) + (23), (1) +
(123) + (12) + (13) + (23), (1) + (132) + (12) + (13) + (23), (123) + (132) +
(12) + (13) + (23)}.
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The idempotents are I(Z2S3) = {0, (1), (123) + (132), (1) + (123) + (132),
(132) + (12) + (23), (132) + (12) + (13), (132) + (13) + (23), (123) + (13) +
(23), (123) + (12) + (13), (123) + (12) + (23), (1) + (123) + (12) + (13), (1) +
(132) + (12) + (13), (1) + (123) + (12) + (23), (1) + (132) + (12) + (23), (1) +
(123) + (13) + (23), (1) + (132) + (13) + (23)}.

The nilpotents are N(Z2S3) = {0, (1)+(12), (1)+(13), (1)+(23), (123)+
(132)+(12)+(13), (123)+(132)+(12)+(23), (123)+(132)+(13)+(23), (1)+
(123) + (132) + (12) + (13) + (23)}.

The central idempotents are {0, (1), (123) + (132), (1) + (123) + (132)}.
The primitive idempotents are {(1) + (123) + (132), (132) + (12) + (23),

(132) + (13) + (23), (132) + (12) + (13), (123) + (13) + (23), (123) + (12) +
(13), (123)+(12)+(23), (1)+(123)+(12)+(13), (1)+(132)+(12)+(13), (1)+
(123) + (12) + (23), (1) + (132) + (12) + (23), (1) + (123) + (13) + (23), (1) +
(132) + (13) + (23)}.

The central primitive idempotent {(123) + (132), (1) + (123) + (132)}.

Example 1.2.13. The group algebra A = Z2V4 where it is the group algebra
of the group V4 over the field Z2 which has characteristic two, the number of
elements in Z2V4 is 16.
Z2V4 = {0, 1, a, b, c, 1 + a, 1 + b, 1 + c, a+ b, a+ c, b+ c, 1 + a+ b, 1 + a+ c, 1 +
b+ c, a+ b+ c, 1 + a+ b+ c}.
The group algebra Z2V4 contains only two idempotents 0, 1.
U(Z2V4) = {1, a, b, c, 1 + a+ b, 1 + a+ c, 1 + b+ c, a+ b+ c}.
N(Z2V4) = {0, 1 + a, 1 + b, 1 + c, a+ b, a+ c, b+ c, 1 + a+ b+ c}.
J(Z2V4) = {0, 1 + a, 1 + b, 1 + c, a+ b, a+ c, b+ c, 1 + a+ b+ c}.
Note that Z2V4/J(Z2V4) is isomorphic to Z2 and Z2V4 is the disjoint union
of J(Z2V4) and U(Z2V4). Thus the group algebra Z2V4 is the local algebra.

In the following definition, we define an important concept in algebra
theory, which is a G-algebra, which A.J.Green discovered

Definition 1.2.14. Let G be a finite group and A be an algebra over F .
A G-algebra over F is a pair (A, φ) where φ : G −→ Aut(A) is a group
homomorphism and Aut(A) is the group of F -algebra automorphism of A.
The action of G on A is given by ag = φ(g)(a) where g ∈ G and a ∈ A. So
for g, h ∈ G, a, b ∈ A and α ∈ F we have

ae = a
(ah)g = ahg

(a+ b)g = ag + bg

(ab)g = (ag)(bg)
(αa)g = α(ag),
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Theorem 1.2.15. Let G be a finite group. Let A be an algebra over F.
Then a function φ : G −→ Aut(A) is a group action on A if and only if
the function h : G −→ U(A) is a group homomorphism, h(g) = ρg where
ρg : A −→ A is a bijective function and ρg(a) = φ(g)(a) = ag.

Proof. Suppose that φ : G −→ Aut(A) is a group action on A. We will
prove that h is a homomorphism. For f, g ∈ G by definition h(fg) = ρfg
also h(f)h(g) = ρfρg. Since φ is a group action it follows that for all a ∈ A,
ρfg(a) = afg = (af )g = (ρf (a))g = ρf (a

g) = ρfρg(a). So ρfg = ρfρg. Hence
h(fg) = h(f)h(g). Therefore h is a group homomorphism.
Conversely, suppose that h is a homomorphism. We will prove that φ is a
group action. Since h is a group homomorphism then h(fg) = h(f)h(g) it
follows that ρfg = ρfρg. For a, b ∈ A, f, g ∈ G and α ∈ F we have

• ae = ρe(a) = a

• (af )g = (ρf (a))g = ρf (a
g) = ρfρg(a) = ρfg(a) = afg

• (a+ b)g = ρg(a+ b) = ρg(a) + ρg(b) = ag + bg

• (ab)g = ρg(ab) = ρg(a)ρg(b) = agbg

• (αa)g = ρg(αa) = αρg(a) = αag.

�

Example 1.2.16. Let G be a finite group. Let A be a G-algebra over F .
Consider the set of all idempotents of A and denoted by X. We define an
action of G on X by conjugation.

In the following lemma, we show that G acts on X.

Lemma 1.2.17. Let G be a finite group. Let X be a set of all idempotents
of A, where A is a G-Algebra over F. Then G acts on X by conjugation.

Proof. If g ∈ G and x ∈ X then x ∗ g = g−1xg.
So (g−1xg)2 = g−1xgg−1xg = g−1x2g = g−1xg hence g−1xg ∈ X. Now we
check of the conditions of the action. Firstly if x ∈ X then x∗e = e−1xe = x.
Secondly if g, h ∈ G and x ∈ X then x∗(g∗h) = (gh)−1x(gh) = g−1h−1xgh =
h−1g−1xgh = h−1(x ∗ g)h = (x ∗ g) ∗ h. Furthermore G acts on X by
conjugation. �
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The stabilizer of x ∈ X is a subgroup of G where

StabG(x) = {g ∈ G, x ∗ g = x}
= {g ∈ G, g−1xg = x}
= {g ∈ G, xg = gx}.

The orbit of x ∈ X is a subset of X where

O(x) = {f ∈ X, ∃g ∈ G; x ∗ g = f}
= {f ∈ X, ∃g ∈ G; g−1xg = f}.

The fixed point of g ∈ G is a subset of X as a notation

FixX(g) = {x ∈ X, x ∗ g = x}
= {x ∈ X, g−1xg = x}.

Remark. The unit group U(A) of an algebra A acts on the set of all idem-
potents of A.

Definition 1.2.18. Let G be a finite group and A be an algebra over F. The
algebra A is called interior G-algebra over F if there is a pair (A,ψ) where
ψ : G −→ U(A) is a homomorphism of group.

Theorem 1.2.19. Every interior G-algebra is a G-algebra.

Proof. Let G be a finite group. Let A be an interior G- algebra. Then
there is a group homomorphism ψ : G −→ U(A). From Theorem 1.2.15,
produces that there exist a group action on A. Hence A is a G-algebra. �

Example 1.2.20. Let A = FG be a group algebra over F. Then FG is an
interior G-algebra since there is a group homomorphism ρ : G −→ U(A) such
that ρ(x) = x via inclusion map sending x ∈ G to x ∈ G ⊂ U(A).

Definition 1.2.21. Let G be a finite group. Let M be a FG-module. The
endomorphism of M is a homomorphism f : M −→M.

Example 1.2.22. Let G be a finite group. Let M be a FG-module. The en-
domorphism algebra (EndF (M),+, ◦) is an interiorG-algebra since EndF (M)
is an F -algebra then there is a group homomorphism ρ : G −→ GL(M).

Definition 1.2.23. Let G be a finite group. Let M be a FG-module and
N be a submodule of M . We say that N is a direct summand of M if there
exist other submodule N

′
of M such that M = N ⊕N ′ .
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Definition 1.2.24. Let G be a finite group and let A = FG be a group
algebra of G over F . Consider the central primitive idempotent ei. This
means that e2i = ei. So, arises a structure eiFG = eiFGei = FGei and
denote by B = FGei, 1 ≤ i ≤ t . The algebra B over F is called a block
algebra of FG and ei is called a block idempotent of FG.
Since ei ∈ Z(FG). Then we have

1Z(FG) = e1 + e2 + ...+ et

and we have
FG = B1 ⊕B2 ⊕ ...⊕Bt.

We note that the block algebra Bi as a direct summand of FG.

Example 1.2.25. Consider A = Z2S3 be the group algebra over Z2. The
central primitive idempotents of A are e1 = (123) + (132) and e2 = (1) +
(123) + (132). Thus we have two blocks in A, B1 = e1A and B2 = e2A.

B1 = {0, (123)+(132), (1)+(132), (1)+(123), (23)+(13), (12)+(23), (12)+
(13), (123) + (132) + (13) + (23), (123) + (132) + (12) + (23), (123) + (132) +
(12)+(13), (1)+(132)+(13)+(23), (1)+(132)+(12)+(23), (1)+(132)+(12)+
(13), (1)+(123)+(13)+(23), (1)+(123)+(12)+(23), (1)+(123)+(12)+(13)}

B2 = {0, (1)+(123)+(132), (12)+(13)+(23), (1)+(123)+(132)+(12)+
(13) + (23)}.
We note that 1Z(A) = e1 + e2 and A = B1 ⊕B2.
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1.3 Relative trace map

In this section, we shall define on fixed points of algebra A over a field which
has characteristic p > 0, where p is a fixed prime number. We will define a
relative trace map and a Brauer homomorphism. We will prove the image of
a trace map is an ideal of a fixed point. Most of the result here is in [9, 10, 14]
and [15].

Definition 1.3.1. Let G be a finite group. Let A be a G-algebra over F.
Let H be a subgroup of G. The set of H-fixed points of A is written

AH = {a ∈ A, ah = a, for all h ∈ H}.

The set of G-fixed points of A can be written as

AG = {a ∈ A, ag = a, for all g ∈ G}.

We define a map ResGH : AG −→ AH by ResGH(x) = x for all x ∈ AG. Here
AG ⊆ AH . The map ResGH is called the inclusion or restriction map from AG

to AH .
Now we define the reverse direction map for the restriction map. The map
tGH : AH −→ AG defined by

tGH(a) =
∑
g∈T

ag,

for all a ∈ AH . Where T to be a co-set representative of H in G. The map
tGH is called the relative trace map from H-fixed points to G-fixed points in
A.

Remark. For any g ∈ G we have (AH)g = Ag
−1Hg while if g ∈ NG(H) then

we have (AH)g = AH hence we can consider AH as an NG(H)-algebra over
F.

Example 1.3.2. Let G be a finite group. Let FG be a group algebra over
F . Let H be a subgroup of G. The fixed point of the conjugation action of
G on FG is equal the center of group algebra FG, and the fixed point of the
conjugation action of H on FG is equal the centralizer of H of group algebra
FG. Then the relative trace map is defined to be

tGH : CFG(H) −→ Z(FG).

Example 1.3.3. Let G be a finite group. Let H be a subgroup of G. Let M
be a FG-module. Let EndF (M) be an endomorphism algebra over F . The
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group G acts on EndF (M) by f g(m) = gf(g−1m) for all f ∈ EndF (M) and
g ∈ G. We have AG = EndFG(M) and AH = EndFH(M). Then the relative
trace map is defined to be

tGH : EndFH(M) −→ EndFG(M),

tGH(f) =
∑
t∈T

f t, f ∈ EndFH(M).

Theorem 1.3.4. Let G be a finite group and H be a subgroup of G. Let
A be a G-algebra over F. Let tGH : AH −→ AG be a relative trace map from
H-fixed points to G-fixed points in A. Then

1. tGH(a) ∈ AG for all a ∈ AH .

2. tGH is linear.

3. tGH is independent of co-set representative.

Proof. If G is a finite group. If A is a G-algebra over F and H is a subgroup
of G. If tGH : AH −→ AG is a relative trace map and defined by

tGH(a) =
∑
g∈T

ag, ∀a ∈ AH ,

where T to be a co-set representative of H in G.

1. If H has finite index in G denoted by |G : H| = n. Thus the left cosets
of H in G are eH, g2H, g3H, ..., gnH. So T = {e, t1, t2, ..., tn}. we have
Tg = {tg : t ∈ T} is a co-set representative.

(tGH(a))g = (
∑
t∈T

at)g

=
∑
t∈T

atg

= tGH(a).

So, tGH(a) ∈ AG for all a ∈ AH .
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2. Let a, b ∈ AH

tGH(a+ b) =
∑
t∈T

(a+ b)t

=
∑
t∈T

(at + bt)

=
∑
t∈T

at +
∑
t∈T

bt

= tGH(a) + tGH(b).

Let a ∈ AH and α ∈ F

tGH(αa) =
∑
t∈T

(αa)t

=
∑
t∈T

α(a)t

= α
∑
t∈T

(a)t

= αtGH(a).

Hence tGH(a) is a linear map.

3. Let T and M be two co-set representatives. Where T = {t1, t2, ..., tn},
M = {m1,m2, ...,mn}. Then for any ti ∈ T,∃ mj ∈ M such that
ti ∈MH. So ti = mjh, h ∈ H

tGH(a) =
∑
ti∈T

(a)ti

=
∑
mjh∈T

(a)mjh

=
∑
mjh∈T

(ah)mj

=
∑
mj∈M

(a)mj .

Hence tGH(a) is independent of co-set representative of H in G. �

Theorem 1.3.5. Let G be a finite group and A be a G-algebra over F. The
image of the relative trace map is an ideal in the subalgebra of G-fixed points
of A.
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Proof. Suppose H is a subgroup of G. The image of tGH can be written as
Image(tGH) = {a ∈ AG : ∃b ∈ AH such that tGH(b) = a}. Clearly Image(tGH) ⊆
AG.
We need prove that Image(tGH) is both a left ideal and a right ideal. First we
prove that Image(tGH) is a subring of AG. Since 0 ∈ AG and 0 ∈ AH we have
0 =

∑
t∈T 0t = tGH(0) ∈ Image(tGH). Hence Image(tGH) 6= φ.

Let a1, a2 ∈ Image(tGH) so there are b1, b2 ∈ AH . Thus

a1 − a2 = tGH(b1)− tGH(b2)

=
∑
t∈T

bt1 −
∑
t∈T

bt2

=
∑
t∈T

(bt1 − bt2)

=
∑
t∈T

(b1 − b2)t

= tGH(b1 − b2).

Where b1 − b2 ∈ AH . Therefore a1 − a2 ∈ Image(tGH). Hence Image(tGH) is a
subring of AG.
Second, we prove that xa, ax belong to Image(tGH). Let a ∈ Image(tGH), x ∈
AG. So, there is b ∈ AH such that tGH(b) = a

x · a = x · tGH(b)

= x ·
∑
t∈T

bt

=
∑
t∈T

xbt

=
∑
t∈T

xtbt

=
∑
t∈T

(xb)t

= tGH(xb).
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Where x ∈ AG ⊆ AH so xb ∈ AH . Therefore xa ∈ Image(tGH) and

a · x = tGH(b) · x

=
∑
t∈T

bt · x

=
∑
t∈T

btxt

=
∑
t∈T

(bx)t

= tGH(bx), bx ∈ AH .

Therefore ax ∈ Image(tGH). Hence Image(tGH) is an ideal in AG. �

Now we set AGH = tGH(AH) and we proved AGH ia an ideal of AG. We de-
fine the Brauer quotient

A(G) = AG/
∑
H<G

AGH .

Definition 1.3.6. Let G be a finite group. Let A be a G-algebra over
F . Let H be a subgroup of G. Let A(H) be a Brauer quotient. The
map BrH : AH −→ A(H) defined by a −→ a + AH<H is called the Brauer
homomorphism on A with respect to H.

Remark. In our case when F has prime characteristic p. For any subgroup
H of G and any subgroup K of H, such that [H : K] is not divisible by p,
thus AHK = AH and A(H) = 0 unless H is a p-group.

Example 1.3.7. The group algebra A = Z2V4 over the field Z2. We choose
a subgroup H of the group G = V4, H = 〈a〉 = {e, a} the index of H in V4 is
equal to 2.
e ·H = {e, a}, b ·H = {b, c}. The coset representative of H in V4 is T = {e, b}.
AG = Z(Z2V4) = Z2V4 and AH = CZ2V4(H) = Z2V4.
Thus AG = Z2V4 = AH . The relative trace map is

tGH : AH −→ AG,

tGH : Z2V4 −→ Z2V4,

tGH(a) =
∑
t∈T

at, a ∈ AH .
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We get AGH = Image(tGH) = {0}. The Brauer quotient A(G) = AG and the
Brauer homomorphism is

BrG : AG −→ A(G),

BrG : Z2V4 −→ Z2V4,

a −→ a+
∑
H<G

AGH , a −→ a.

Example 1.3.8. Let S3 be the symmetric group and Z2 be the field which
has characteristic two. We take H = 〈12〉 to be a subgroup of S3, the index
of H in G is equal to 3. The left cosets of H in S3 are
(1) ·H = H = {(1), (12)}
(123) ·H = {(123), (13)}
(132) ·H = {(132), (23)}.
The coset representative of H in S3 is T = {(1), (123), (132)}. We have
A = Z2S3 is the group algebra over the field Z2. We know that its elements
are written like this

A = {
∑
g∈G

αgg; αg ∈ Z2, g ∈ S3}.

The number of elements in A is 64 = 26.
AG = Z(Z2S3) = {0, (1), (123) + (132), (12) + (13) + (23), (1) + (123) +
(132), (1) + (12) + (13) + (23), (123) + (132) + (12) + (13) + (23), (1) + (123) +
(132) + (12) + (13) + (23)}.
AH = CZ2S3(H) = {0, (1), (12), (1) + (12), (123) + (132), (13) + (23), (1) +
(123) + (132), (1) + (13) + (23), (123) + (132) + (12), (12) + (13) + (23), (1) +
(123) + (132) + (12), (123) + (132) + (13) + (23), (1) + (12) + (13) + (23), (1) +
(123) + (132) + (13) + (23), (123) + (132) + (12) + (13) + (23), (1) + (123) +
(132) + (12) + (13) + (23)}.
The relative trace map is

tGH : CZ2S3(H) −→ Z(Z2S3)

tGH(a) =
∑
t∈T

at, a ∈ CZ2S3(H).

Image(tGH) = {0, (1), (123)+(132), (12)+(13)+(23), (1)+(123)+(132), (1)+
(12) + (13) + (23), (123) + (132) + (12) + (13) + (23), (1) + (123) + (132) +
(12) + (13) + (23)}.
Note that Image(tGH) = AG and [S3 : H] = 3 is not divisible by 2. Thus
A(G) = 0.



Chapter 2

Incidence algebras

Our aim in this chapter is to study a new type of algebra which is called
incidence algebra which is denoted by I(P, F ). In Section 2.1, we define a
partially ordered set P and we present some examples of a partially ordered
set. If F is a field of characteristic p > 0, we can define an incidence algebra
I(P, F ) of P over F which consists of functions from the cartesian product
P ×P = P 2 to the field F. We call it the incidence functions. We then study
Stanley’s Theorem. We define some incidence functions. We then recast the
proof of Möbius Inversion Formula. In Section 2.2, we consider G as a finite
group. We study the incidence algebra of P over F, where P is a locally
finite partially ordered set ordered by inclusion, its elements are subgroups
of G. We have two cases: the first case that p divides the order of G and
the second that p does not divide the order of G. Through the examples, we
will see that either of these two cases the representation will be modular.
We then say that an incidence algebra is a modular incidence algebra. In
Section 2.3, we define a finite group G acting on a poset P. The show that
some posets are receive the action, not all. Then we define a group action
on a modular incidence algebra. We define a modular incidence algebra as
an interior G-algebra.

2.1 Incidence algebra and incidence functions

In this section, we shall define a partially ordered set P. We study an inci-
dence algebra I(P, F ) of P over F. We will study the Stanley’s Theorem. We
will define incidence functions of the incidence algebra I(P, F ). We recast the
proof of the Möbius Inversion Formula. All facts and results in this section
can be found in [1, 4, 8, 11, 12] and [13].

17
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Definition 2.1.1. A set P with a binary relation ≤ is a partially ordered
set, often called a poset for short; if it satisfies the following three properties:

• Reflexive: x ≤ x, for all x ∈ P .

• Anti-symmetric: if x ≤ y and y ≤ x then x = y, for all x, y ∈ P .

• Transitive: if x ≤ y and y ≤ z then x ≤ z, for all x, y, z ∈ P .

We denote a partially ordered set by (P,≤).

Example 2.1.2. The set of natural numbers with the usual order relation
(N,≤) form a poset. To see that this is a poset

• For all x ∈ N then x ≤ x. Hence the relation ≤ is reflexive.

• If x ≤ y and y ≤ x then x = y, for all x, y ∈ N. Hence the relation ≤
is antisymmetric.

• If x ≤ y and y ≤ z then x ≤ z, for all x, y, z ∈ N. Hence the relation ≤
is transitive.

Example 2.1.3. The set of natural numbers N under divisibility mean that
a ≤ b if a divides b. We take P = {2, 4, 8, 16, ...}. Then (P, |) is the poset,
where | means divides, to check that

• For all a ∈ P then a|a. Hence the relation | is reflexive.

• If a|b and b|a then a = b, for all a, b ∈ P. Hence the relation | is
antisymmetric.

• If a|b and b|c then a|c, for all a, b, c ∈ P.Hence the relation | is transitive.

Example 2.1.4. Take P =
{
{1}, {1, 3}, {1, 3, 5}, {1, 3, 5, 9}

}
to be a set of

subsets of the power set of {1, 3, 5, 9}. Then (P,⊆) the set P with a binary
relation ⊆ is the poset. To verify this is the poset

• For A ∈ P then A ⊆ A. Hence the relation ⊆ is reflexive.

• If A ⊆ B then B * A, for A,B ∈ P. Hence the relation ⊆ is antisym-
metric.

• If A ⊆ B and B ⊆ C then A ⊆ C, for all A,B,C ∈ P. Hence the
relation ⊆ is transitive.
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Example 2.1.5. Consider set of all real-valued functions on the interval
[0, 1]. Define f ≤ g if f(t) ≤ g(t) for all t ∈ [0, 1]. The partially ordered set

is P = {f, g, h, i} where f(x) = 2x, g(x) = ex, h(x) =
1

x
, i(x) =

1

x2
where

x 6= 0. To verify this is the poset

• For f ∈ P and t ∈ [0, 1], then f(t) ≤ f(t). Similarly for g, h, i ∈ P.
Hence the relation ≤ is reflexive.

• If f(t) ≤ g(t) and g(t) ≤ f(t) then f(t) = g(t), for all f, g ∈ P and
t ∈ [0, 1]. Hence the relation ≤ is antisymmetric.

• If f(t) ≤ g(t) and g(t) ≤ h(t) then f(t) ≤ h(t), for all f, g, h ∈ P and
t ∈ [0, 1]. Hence the relation ≤ is transitive.

Example 2.1.6. The set of normal subgroups of some group with a binary
/. Consider G = S4 be the symmetric group and P = {{1}, V4, A4, S4} is the
set of normal subgroups of S4. Then (P,E) is the poset. To check that

• For V4 ∈ P then V4 / V4. Hence the relation / is reflexive.

• The relation / is antisymmetric, since if V4 / A4 then A4 6 V4 for
V4, A4 ∈ P.

• The relation / is transitive, since if V4 / A4 and A4 / S4 then V4 / S4,
for V4, A4, S4 ∈ P.

Example 2.1.7. The most popular example of partially ordered set is Hasse
diagram. Hasse diagrams were introduced by a German mathematician Hel-
mut Hasse. He showed a three-element set {x, y, z} whose poset diagram is
shown below:

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

φ
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Definition 2.1.8. Let (P,≤) be a partially ordered set. For any x, y ∈ P
the interval from x to y is [x, y] = {z ∈ P : x ≤ z ≤ y}. The length of [x, y]
is the length of the longest chain in [x, y] and denoted by l[x, y]. A poset
(P,≤) is locally finite if every interval of P is finite and it is bounded if there
is an integer n such that l[x, y] ≤ n for all [x, y] in (P,≤), otherwise (P,≤)
is unbounded.

Definition 2.1.9. Let (P,≤) be a locally finite poset. Let F be a field of
characteristic p. We define a set

I(P, F ) = {f : P × P −→ F : f(x, y) = 0 if x � y}.

Now we can define the addition operation on I(P, F ) as follows:

(f + g)(x, y) = f(x, y) + g(x, y);

for all f, g ∈ I(P, F ) and x, y ∈ P.
We define the scalar multiplication on I(P, F ) as follows:

(λf)(x, y) = λf(x, y);

for all f, g ∈ I(P, F ), x, y ∈ P and λ ∈ F.
The set I(P, F ) is called the incidence algebra of P over F and its elements
are called incidence functions. Ii is clear that I(P, F ) 6= φ.

In fact, we want to define a third operation on I(P, F ). This operation is
called convolution product. Consider the following definition:

Definition 2.1.10. Let (P,≤) be a locally finite poset. Let I(P, F ) be the
incidence algebra of P over F . Take any f, g ∈ I(P, F ). The convolution
product of f and g can be defined as:

(f ∗ g)(x, y) =

{∑
x≤z≤y f(x, z) · g(z, y), if x ≤ y;

0F , Otherwise.

Remarks. Now let us ask the following questions:

• Is the convolution product commutative?

• Is the convolution product associative?

• Does it distributive over addition operation?
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The answer of these questions are: this operation is not commutative
unless any two elements of P are incomparable. Obviously (f ∗ g)(x, y) 6=
(g ∗ f)(x, y) if x ≤ y.
Let us just verify the distributive law as follows:
For f, g, h ∈ I(P, F ) we have(

f ∗ (g + h)
)

(x, y) =
∑
x≤z≤y

f(x, z) ·
(
g + h

)
(z, y)

=
∑
x≤z≤y

f(x, z)
(
g(z, y) + h(z, y)

)
=
∑
x≤z≤y

f(x, z) · g(z, y) +
∑
x≤z≤y

f(x, z)h(z, y)

=
(
f ∗ g

)
(x, y) +

(
f ∗ h

)
(x, y).

In the following lemma we show the convolution product is an associative.

Proposition 2.1.11. The incidence algebra I(P, F ) is an associative F -
algebra with identity.

Proof. For f, g, h ∈ I(P, F ) we have(
f ∗ (g ∗ h)

)
(x, y) =

∑
x≤z≤y

f(x, z)
(
g ∗ h

)
(z, y)

=
∑
x≤z≤y

f(x, z)
( ∑
z≤w≤y

g(z, w)h(w, y)
)

=
∑

x≤w≤y

( ∑
x≤z≤w

f(x, z)g(z, w)
)
h(w, y)

=
∑

x≤w≤y

(
f ∗ g

)
(x,w)h(w, y)

=
(

(f ∗ g) ∗ h
)

(x, y).

�
Let us define incidence functions of the incidence algebra I(P, F ).

Definition 2.1.12. Let (P,≤) be a locally finite poset. Let I(P, F ) be the
incidence algebra of P over F. Then we say that

(a) The zero map 0(x, y) = 0, which is in every incidence algebras.
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(b) The kronecker delta function of I(P, F ) is defined by

δ(x, y) :=

{
1 if x = y

0 otherwise.

This function simply detects when two elements are the same. More
than that it is considered two sided identity of the incidence algebra
under convolution f ∗ δ = δ ∗ f = f, for any f ∈ I(P, F ).

(c) The zeta function of I(P, F ) is defined by

ζ(x, y) :=

{
1 if x ≤ y

0 otherwise.

(d) The lambda function of I(P, F ) is defined by

λ(x, y) :=

{
1 if x ≤ y

0 otherwise.

(e) The chain function of I(P, F ).

η := ζ − δ.

(f) The cover function of I(P, F ).

κ := λ− δ.

(g) The möbius function of I(P, F ).

µ := ζ−1.

We will explain the definition of the möbius function in detail later.

(h) The length function of I(P, F ).

ρ(x, y) := l[x, y].

Remark. We want to ask: for any f ∈ I(P, F ), is there a function f−1 ∈
I(P, F ) such that f−1 ∗ f = δ ? we mean that, is the function f invertible?
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The answer is no. Because there is the zero function has no inverse as
0∗f = 0 for any f ∈ I(P, F ). In particular there is no f such that 0∗f = δ. In
general, for any x ∈ P there is a function f ∈ I(P, F ) such that f(x, x) = 0,
we note that f has no inverse as follows:
For any g ∈ I(P, F )

(f ∗ g)(x, x) =
∑
x≤z≤x

f(x, z)g(z.x) = f(x, x)g(x, x) = 0 6= δ(x, x) = 1.

So, it is impossible for f to have an inverse if f(x, x) = 0.
We conclude that f has an inverse in case f(x, x) 6= 0 for all x ∈ P. In fact
f is invertible. We prove this in the following theorem.

Theorem 2.1.13. Suppose that P is a finite poset and I(P, F ) is the inci-
dence algebra of P over F . An element f ∈ I(P, F ) is invertible if and only
if f(x, x) 6= 0 for all x ∈ P.

Proof. If f is an invertible, this mean there is f−1 ∈ I(P, F ) such that
f ∗ f−1 = f−1 ∗ f = δ. Then for all x ∈ P

δ(x, x) = 1 = (f ∗ f−1)(x, x) = f(x, x)f−1(x, x).

Thus f(x, x) 6= 0.
Conversely, for all x ∈ P suppose that f(x, x) 6= 0. We construct f−1 induc-
tively.
First we will define it on all of the pairs (x, x) with x ∈ P , and after that we
will extend it to pairs (x, y) with x < y ∈ P.
For any x ∈ P , we define f−1(x, x) =

1

f(x, x)
. Then by definition we have

(f ∗ f−1)(x, x) =
∑
x≤z≤x

f(x, z)f−1(z, x) = f(x, x)
1

f(x, x)
= 1 = δ(x, x).

Similarly (f−1 ∗ f)(x, x) = 1 = δ(x, x). Thus f is an invertible element in
I(P, F ).
For any x < y ∈ P , we define the left inverse as follows:

f−1(x, y) = − 1

f(y, y)

( ∑
x≤z<y

f−1(x, z)f(z, y)
)
.
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We want to verify that we have made an inverse. It must be (f−1∗f)(x, y) = 0
for x < y then we have

(f−1 ∗ f)(x, y) =
∑
x≤z≤y

f−1(x, z)f(z, y)

=
( ∑
x≤z<y

f−1(x, z)f(z, y)
)

+ f−1(x, y)f(y, y)

=
( ∑
x≤z<y

f−1(x, z)f(z, y)
)
− 1

f(y, y)

( ∑
x≤z<y

f−1(x, z)f(z, y)
)
f(y, y)

=
( ∑
x≤z<y

f−1(x, z)f(z, y)
)
−
( ∑
x≤z<y

f−1(x, z)f(z, y)
)

= 0 = δ(x, y).

The right inverse we can define it as follows

f−1(x, y) = − 1

f(x, x)

( ∑
x<z≤y

f(x, z)f−1(z, y)
)
.

We check that (f ∗ f−1)(x, y) = 0 then we have

(f ∗ f−1)(x, y) =
∑
x≤z≤y

f(x, z)f−1(z, y)

= f(x, x)f−1(x, y) +
( ∑
x<z≤y

f(x, z)f−1(z, y)
)

= f(x, x)
1

f(x, x)

(
−
∑
x<z≤y

f(x, z)f−1(z, y)
)

+
( ∑
x<z≤y

f(x, z)f−1(z, y)
)

=
(
−
∑
x<z≤y

f(x, z)f−1(z, y)
)

+
( ∑
x<z≤y

f(x, z)f−1(z, y)
)

= 0 = δ(x, y).

We get that f has a left inverse and a right inverse. Thus f is an invertible
element in the incidence algebra I(P, F ). �

Theorem 2.1.14. Let P be a locally finite poset. Let I(P, F ) be the inci-
dence algebra of P over F. Then Jx(P ) = {f ∈ I(P, F ) : f(x, x) = 0} is a
maximal two-sided ideal in I(P, F ), for all x ∈ P.

Proof. First to prove that Jx(P ) is an ideal of I(P, F ). Let f ∈ Jx(P ) and
g ∈ I(P, F ) we have

(g ∗ f)(x, x) = g(x, x)f(x, x) = g(x, x)0 = 0

(f ∗ g)(x, x) = f(x, x)g(x, x) = 0g(x, x) = 0.
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So, g ∗ f, f ∗ g ∈ Jx(P ). Therefore Jx(P ) is an ideal of I(P, F ).
Secondly to prove that Jx(P ) is a maximal ideal of I(P, F ). Suppose that I is
an ideal of I(P, F ) such that Jx(P ) < I ≤ I(P, F ) then there is g ∈ I(P, F )
with g ∈ I and g 6∈ Jx(P ), hence g(x, x) 6= 0. But by Theorem 2.1.13 g
is unit, but since g ∈ I then I = I(P, F ). So, Jx(P ) is a maximal ideal in
I(P, F ). �

Corollary 2.1.15. Let P be a locally finite poset. Let I(P, F ) be the inci-
dence algebra of P over F. Then I(P, F )/Jx(P ) ∼= F.

Theorem 2.1.16. (Stanley)[4, 13] Let P and Q be locally finite posets.
Let I(P, F ) and I(Q,F ) be two incidence algebras over F . Then

I(P, F ) ∼= I(Q,F )⇒ P ∼= Q.

In other words If I(P, F ) and I(Q,F ) are isomorphic as F -algebra then P
and Q are isomorphic as posets.

Proof. We shall show how the order set P can be uniquely recovered from
the ring I(P, F )
Firstly, we will define the element ex, ex,y for each x, y ∈ P with

ex(u, v) =

{
1, if u = v = x;

0, Otherwise.

ex,y(u, v) =

{
1, if x = u, y = v;

0, Otherwise.

Note that {ex : x ∈ P} is a system of orthogonal idempotent in I(P, F ).
Since

• ex ∈ I(P, F ) for each x ∈ P because for all
u � v ⇒ u 6= v ⇒ ex(u, v) = 0

• ex ∗ ex = ex hence ex is an idempotent

• ex ∗ ey = ey ∗ ex = 0 if x 6= y hence ex, ey are orthogonal.

Secondly, since ex ∗ ex = ex then the element ex ia an idempotent whose
image in I(P, F )/Jx(P ) is the identity element in F.
Thirdly, we define an order relation P ′ on the ex as follows ex ≤P ′ ey if and
only if ex ∗ I(P, F ) ∗ ey 6= {0}.
We want to prove that P ′ ∼= P , it enough to show that ex ≤P ′ ey ⇔ x ≤P y,
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to show that ex ∗ I(P, F ) ∗ ey 6= {0} ⇔ x ≤P y.
Now let f ∈ I(P, F ) then ex ∗ f ∗ ey ∈ ex ∗ I(P, F ) ∗ ey and note that

ex ∗ f ∗ ey = f(x, y)ex,y. (2.1)

Since (
ex ∗ f ∗ ey

)
(u, v) =

((
ex ∗ f

)
(u, v)

)
∗ ey(u, v)

=

({
0, if u 6= x;

f(x, v), if u = x.

)
∗ ey(u, v)

=

{
0, if u 6= x, v 6= y;

f(x, y), if u = x, v = y.

= f(x, y)

{
0, if u 6= x, v 6= y;

1, if u = x, v = y.

= f(x, y)ex,y(u, v).

Now suppose that

ex ≤P ′ ey ⇐⇒ ex ∗ I(X,P ) ∗ ey 6= {0}
⇐⇒ ex ∗ f ∗ ey 6= 0 f ∈ I(X,P )

⇐⇒ f(x, y)ex,y 6= 0 from(2.1)

⇐⇒ f(x, y) 6= 0

⇐⇒ x ≤P y.

So, for each ex ≤P ′ ey ⇔ x ≤P y. Hence

P ∼= P ′. (2.2)

Fourthly, in the same way since ex, ey ∈ I(Q,F ) also.
Then ex ∗ I(Q,F ) ∗ ey 6= {0} ⇔ x ≤Q y.
But since I(P, F ) ∼= I(Q,F ) then
ex ∗ I(Q,F ) ∗ ey 6= {0} ⇔ ex ∗ I(P, F ) ∗ ey 6= {0}.
So,

ex ∗ I(P, F ) ∗ ey 6= {0} ⇔ x ≤Q y

ex ≤P ′ ey ⇔ x ≤Q y.

This mean

P ′ ∼= Q. (2.3)



CHAPTER 2. INCIDENCE ALGEBRAS 27

Hence by (2.2) and (2.3) P ∼= Q.
Now, the proof will be complete if we show that given any orthogonal idem-
potent set such that {fx, x ∈ P} then it isomorphic to {ex, x ∈ P}, it enough
to find isomorphism φ of I(P, F ) where φ(ex) = fx for all x ∈ P . Define the
map

φ : I(P, F ) −→ I(P, F )

with φ(g) = hgh−1 where h =
∑

t∈P ftet, φ is inner automorphism, just we
prove that φ(ex) = fx. Now

hex =
(∑
t∈P

ftet
)
ex

=
∑
t∈P

ftetex

= fxexex.

So, we get

hex = fxex. (2.4)

Also

fxh = fx
(∑
t∈P

ftet
)

=
∑
t∈P

fxftet

= fxfxex.

We get

fxh = fxex. (2.5)

Hence by (2.4) and (2.5)

hex = fxh

hexh
−1 = fx

φ(ex) = fx.

�

Definition 2.1.17. Take the zeta function ζ . The möbius function µ is an
inverse to the zeta function. We can present a new definition of the möbius
function as follows:

µ(x, x) =
1

ζ(x, x)
= 1
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µ(x, y) = −
∑
x≤z<y

µ(x, z) = −
∑
x<z≤y

µ(z, y) if x < y,

for any x, y, z ∈ P and if x � y implies µ(x, y) = 0.

Theorem 2.1.18. (Möbius Inversion Formula)
Take any poset P . Suppose that P has unique minimal element m. Let φ
and ψ be functions from P to F. If φ satisfies

φ(x) =
∑
y≤x

ψ(y) for all x ∈ P.

Then
ψ(x) =

∑
y≤x

φ(y)µ(y, x) for all x ∈ P.

Proof. Suppose that ψ : P −→ F and defined φ : P −→ F as follows:

φ(x) =
∑
y≤x

ψ(y) for all x ∈ P.

Let m be an unique minimal element of P. In other words m ≤ y for all
y ∈ P. Now we define the functions f, g ∈ I(P, F ) as follows:

• f(m,x) = ψ(x) for all x, and f(y, z) = 0 for all other undefined values.

• g(m,x) = φ(x) for all x, and g(y, z) = 0 for all other undefined values.

Now we have for any x ∈ P

g(m,x) = φ(x)

=
∑
y≤x

ψ(y)

=
∑

m≤y≤x

f(m, y)

=
∑

m≤y≤x

f(m, y)ζ(y, x)

= (f ∗ ζ)(m,x).

Now for any y, z ∈ P with y 6= m and g(y, z) = 0 we have

(f ∗ ζ)(y, z) =
∑
y≤t≤z

f(y, t) · ζ(t, z) =
∑
y≤t≤z

0 · ζ(t, z) = 0.
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So, we have proved that g = f ∗ ζ. Also we know that g ∗ µ = f. Now we
prove the required

ψ(x) = f(m,x)

= (g ∗ µ)(m,x)

=
∑

m≤y≤x

g(m, y)µ(y, x)

=
∑
y≤x

φ(y)µ(y, x).

It is required to prove it. �

Corollary 2.1.19. Given any poset P . Suppose that P has unique maximal
element n. Let s and r be functions from P to F. If s satisfies

s(x) =
∑
y≥x

r(y) for all x ∈ P.

Then
r(x) =

∑
y≥x

µ(x, y)s(y) for all x ∈ P.

Proof. Suppose that r : P −→ F and defined s : P −→ F as follows:

s(x) =
∑
y≥x

r(y) for all x ∈ P.

Let n be an unique maximal element of P. This mean m ≥ y for all y ∈ P.
Now we define the functions h, l ∈ I(P, F ) as follows:

• h(x,m) = r(x) for all x, and h(y, z) = 0 for all other undefined values.

• l(x,m) = s(x) for all x, and l(y, z) = 0 for all other undefined values.

Now we have for any x ∈ P

l(x,m) = s(x)

=
∑
y≥x

r(y)

=
∑

m≥y≥x

h(y,m)

=
∑

m≥y≥x

ζ(x, y)h(y,m)

= (ζ ∗ h)(x,m).
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Now for any y, z ∈ P with y 6= m and l(y, z) = 0 we have

(ζ ∗ h)(y, z) =
∑
z≥t≥y

ζ(y, t) · h(t, z) =
∑
z≥t≥y

ζ(y, t) · 0 = 0.

So, we have proved that l = ζ ∗h. Also we know that µ∗ l = h. Now we prove
the required

r(x) = h(x,m)

= (µ ∗ l)(x,m)

=
∑

m≥y≥x

µ(x, y)l(y,m)

=
∑
y≥x

µ(x, y)s(y).

It is required to prove it. �
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2.2 Modular incidence algebras

The incidence algebra was defined over a commutative ring. This ring can be
a field. This field has a characteristic zero or has characteristic p > 0, where
p is a prime number. Some authors studied an incidence algebra over a field
which has a characteristic zero. In this case, the study is called ordinary.
Now, we will study incidence algebra over a field which has characteristic
p > 0. For the prime number p, either divides the order of G or not divides
it. We will consider the following two questions, is there a difference between
the two cases and what kind of representation in each case?. This is what
we study in this section.

Example 2.2.1. We have the dihedral group D8 is 2-group of order 8

D8 = 〈a, x : a4 = e, x2 = e, (ax)2 = e〉
D8 = {e, a, a2, a3, x, ax, a2x, a3x}.

The subgroups lattice of D8 is

D8

〈a2, x〉 〈a〉 〈a2, ax〉

〈x〉 〈a2x〉 〈a2〉 〈ax〉 〈a3x〉

{e}

We take P1 =
{
{e}, 〈x〉, 〈a2, x〉, D8

}
to be a locally finite poset, ordered by

inclusion where H1 ≤ H2 if H1 ⊆ H2, H1, H2 ∈ P1. Consider F = Z2 is the
field which has characteristic two (p = 2). The incidence algebra of P1 over
Z2 is

I(P1,Z2) = {f : P1 × P1 −→ Z2 : f(H1, H2) = 0 if H1 � H2}.
In this case we can write the möbius function as the following

µG(H1, H2) =


(−1)kp(

k
2), if H1is a normal subgroup of H2 and H2/H1

∼= (Z/pZ)k;
where k ∈ N.

0, Otherwise.
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We will calculate the möbius function

• {e}C 〈x〉 and 〈x〉/{e} ∼= Z/2Z,
µ({e}, 〈x〉) = (−1)121(1−1)/2 = 1.

• {e}C 〈a2, x〉 and 〈a2, x〉/{e} ∼= (Z/2Z)2,

µ({e}, 〈a2, x〉) = (−1)22(2
2) = 0.

• {e}CD8 and D8/{e} ∼= (Z/2Z)3,

µ({e}, D8) = (−1)32(3
2) = (−1)23 = 0.

• 〈x〉C 〈a2, x〉 and 〈a2, x〉/〈x〉 ∼= Z/2Z,
µ(〈x〉, 〈a2, x〉) = 1.

• 〈x〉 is not normal in D8, so µ(〈x〉, D8) = 0.

• 〈a2, x〉CD8 and D8/〈a2, x〉 ∼= Z/2Z,
µ(〈a2, x〉, D8) = 1.

Now, we study the same example with change the field to be F = Z3 which
has characteristic three (p = 3). The incidence algebra of P1 over Z3 is

I(P1,Z3) = {f : P1 × P1 −→ Z3 : f(H1, H2) = 0 if H1 � H2}.

So, the möbius function in this case is

• µ({e}, 〈x〉) = 2

• µ({e}, 〈a2, x〉) = 2

• µ({e}, D8) = 1

• µ(〈x〉, 〈a2, x〉) = 2

• µ(〈x〉, D8) = 0

• µ(〈a2, x〉, D8) = 2.

We compare the result in both cases F = Z2 and F = Z3 in the following
table.

The möbius function F = Z2 F = Z3

µ({e}, 〈x〉) 1 2
µ({e}, 〈a2, x〉) 0 2
µ({e}, D8) 0 1

µ(〈x〉, 〈a2, x〉) 1 2
µ(〈x〉, D8) 0 0

µ(〈a2, x〉, D8) 1 2
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In case F = Z2 we note that

• If H1 is a maximal normal subgroup of H2 then µ(H1, H2) = 1

• Otherwise the möbius function is equal to zero.

In case F = Z3 we note that

• µ({e}, D8) = 1

• If H1 is a normal subgroup of H2 then µ(H1, H2) = 2

• Otherwise the möbius function is equal to zero.

The representation in the first case we call a modular incidence algebra and
the second case we call an ordinary incidence algebra since the characteristic
3 of Z3 does not divide the order |G| .
Now we take another a locally finite poset, let P2 =

{
{e}, 〈a2〉, 〈a〉, D8

}
ordered by inclusion. If F = Z2. The incidence algebra

I(P2,Z2) = {f : P2 × P2 −→ Z2 : f(H1, H2) = 0 if H1 � H2}.

We will calculate the möbius function

• µ({e}, 〈a2〉) = 1

• µ({e}, 〈a〉) = 0

• µ({e}, D8) = 0

• µ(〈a2〉, 〈a〉) = 1

• µ(〈a2〉, D8) = 0

• µ(〈a〉, D8) = 1.

Example 2.2.2. The extra special 3-group has the presentation:

E = 〈x, y, z| x3 = y3 = z3 = e, [x, y] = z, [x, z] = [z, y] = e〉
E = {e, x, x2, y, y2, z, z2, xy, xy2, xz, xz2, x2y, x2y2, x2z, x2z2, yz,
yz2, y2z, y2z2, xyz, xyz2, xy2z, xy2z2, x2yz, x2yz2, x2y2z, x2y2z2}.

The order of the group E is equal to 27. The group E has 13 subgroups of
order 3 and 4 maximal subgroups of order 9. The subgroups lattice of E is
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E

〈z, xy2〉 〈x, z〉 〈z, y〉 〈z, xy〉

〈xy2z〉〈x2y〉 〈xy2〉 〈xz2〉 〈xz〉 〈x〉 〈z〉 〈y〉 〈yz〉 〈yz2〉 〈xy〉 〈x2y2〉〈xyz2〉

{e}

We take P =
{
{e}, 〈x〉, 〈x, z〉, E

}
to be a locally finite poset, ordered by

inclusion. Take a field of characteristic 2, let F = Z2. The incidence algebra
of P over Z2 is

I(P,Z2) = {f : P × P −→ Z2 : f(H1, H2) = 0 if H1 � H2}.

We can write the möbius function as the following

µG(H1, H2) =


(−1)kp(

k
2), if H1is a normal subgroup of H2 and H2/H1

∼= (Z/pZ)k;
where k ∈ N.

0, Otherwise.

We will calculate the möbius function

• {e}C 〈x〉 and 〈x〉/{e} ∼= Z/3Z,
µ({e}, 〈x〉) = (−1)131(1−1)/2 = 1.

• {e}C 〈x, z〉 and 〈x, z〉/{e} ∼= (Z/3Z)2,

µ({e}, 〈x, z〉) = (−1)23(2
2) = 1.

• {e}C E and E/{e} ∼= (Z/3Z)3,

µ({e}, E) = (−1)33(3
2) = (−1)33 = 1.

• 〈x〉C 〈x, z〉 and 〈x, z〉/〈x〉 ∼= Z/3Z,
µ(〈x〉, 〈x, z〉) = 1.
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• 〈x〉 is not normal in E, so µ(〈x〉, E) = 0.

• 〈x, z〉C E and E/〈x, z〉 ∼= Z/3Z.
µ(〈x, z〉, E) = 1.

Now, we study the same example with change the field to be F = Z3. The
incidence algebra of P over Z3 is

I(P,Z3) = {f : P × P −→ Z3 : f(H1, H2) = 0 if H1 � H2}.

So, the möbius function in this case is

• µ({e}, 〈x〉) = 2

• µ({e}, 〈x, z〉) = 0

• µ({e}, E) = 0

• µ(〈x〉, 〈x, z〉) = 2

• µ(〈x〉, E) = 0

• µ(〈x, z〉, E) = 2.

We compare the result in both cases F = Z2 and F = Z3 in the following
table.

The möbius function F = Z2 F = Z3

µ({e}, 〈x〉) 1 2
µ({e}, 〈x, z〉) 1 0
µ({e}, E) 1 0

µ(〈x〉, 〈x, z〉) 1 2
µ(〈x〉, E) 0 0
µ(〈x, z〉, E) 1 2

In case F = Z2 we note that

• µ({e}, E) = 1

• If H1 is a normal subgroup of H2 then µ(H1, H2) = 1

• Otherwise the möbius function is equal to zero.

In case F = Z3 we note that

• If H1 is a maximal normal subgroup of H2 then µ(H1, H2) = 2
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• Otherwise the möbius function is equal to zero.

The representation in the first case is an ordinary incidence algebra and in
the second case, the representation is a modular incidence algebra.

Remark. We deduce from Example 2.2.1 and Example 2.2.2 that.
If p is a prime number and F = Zp. If G is a finite p-group and P is a set of
subgroups of G ordered by inclusion. The incidence algebra is

I(P,Zp) = {f : P × P −→ Zp : f(H1, H2) = 0 if H1 � H2}.

The möbius function is

µG(H1, H2) =

{
−1, if H1is a maximal normal subgroup of H2;

0F , Otherwise.

Here the type of representation is modular representation of incidence alge-
bra.

Example 2.2.3. Take M = {2, 2, 2, 2, 3, 3, 5} to be a multiset. We take a
finite sub-multisets of multiset M form a locally finite poset, as follows

P =
{
{2, 2, 3}, {2, 2, 3, 5}, {2, 2, 3, 3, 5}, {2, 2, 2, 3, 3, 5}, {2, 2, 2, 2, 3, 3, 5}

}
.

This poset ordered by inclusion where S ≤ T if S ⊆ T, S, T ∈ P. Let F = Z2

be the field has characteristic 2. The incidence algebra of P over Z2 as follows

I(P,Z2) = {f : P × P −→ Z2 : f(S, T ) = 0 if S � T}.

We can write the möbius function as the following

µ(S, T ) =

{
0, if T \ S is a propper multiset (has repeated elements) ;

(−1)|T\S|, if T \ S is a set (has no repeated elements).

We will calculate the möbius function over the field Z2.
µ({2, 2, 3}, {2, 2, 3, 5}) = 1
µ({2, 2, 3}, {2, 2, 3, 3, 5}) = (−1)2 = 1
µ({2, 2, 3}, {2, 2, 2, 3, 3, 5}) = (−1)3 = 1
µ({2, 2, 3}, {2, 2, 2, 2, 3, 3, 5}) = 0
µ({2, 2, 3, 5}, {2, 2, 3, 3, 5}) = 1
µ({2, 2, 3, 5}, {2, 2, 2, 3, 3, 5}) = 1
µ({2, 2, 3, 5}, {2, 2, 2, 2, 3, 3, 5}) = 0
µ({2, 2, 3, 3, 5}, {2, 2, 2, 3, 3, 5}) = 1
µ({2, 2, 3, 3, 5}, {2, 2, 2, 2, 3, 3, 5}) = 0
µ({2, 2, 2, 3, 3, 5}, {2, 2, 2, 2, 3, 3, 5}) = 1.
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2.3 Group action on modular incidence alge-

bras

In this section, we will explain the definition of the group action on a poset
and give some examples. We will apply the definition of a group action to a
modular incidence algebra. We will explain how to make a modular incidence
G-algebra as an interior G-algebra.

Definition 2.3.1. Let G be a finite group. Let P be a poset. The action
of the group G on the poset P is a function G × P −→ P. It is defined by
(g, x) = xg = gx such that xe = x and (xg)h = x(gh) for all x ∈ P and
g, h ∈ G. We say that P is a G-poset.

Example 2.3.2. If G = Z is the group and P is the set of even numbers
of Z. Then G acts on P by left multiplication, we define the function by
(g, x) 7−→ gx for all x ∈ P and g, h ∈ Z.

Example 2.3.3. If D8 = 〈a, x : a4 = e, x2 = e, (ax)2 = e〉 is dihedral group
of order 8 and take P =

{
{e}, 〈a2〉, 〈a2, x〉, D8

}
to be a poset, ordered by

inclusion. The group D8 acts on P by xg = gxg−1 for all x ∈ P and g ∈ G.
To check that this is an action, we see that 〈a2〉e = e〈a2〉e−1 = 〈a2〉 and

(〈a2〉a)x = x(〈a2〉a)x−1

= x(a{e, a2}a−1)x
= x(a{e, a2}a3)x
= x({a, a3}a3)x
= x{e, a2}x
= {x, a2x}x
= {e, a2}
= 〈a2〉.

And

〈a2〉(ax) = (ax)〈a2〉(ax)−1

= (ax){e, a2}(ax)

= {ax, a3x}(ax)

= {e, a2}
= 〈a2〉.

Hence (〈a2〉a)x = 〈a2〉(ax).
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Remark. In Example 2.3.3, we have more choice to choose P. The first
choice is mentioned in the example P1 =

{
{e}, 〈a2〉, 〈a2, x〉, D8

}
. The action

xg = gxg−1 is well defined. The poset P1 receives this action. This kind
serves us. While the second choice is P2 =

{
{e}, 〈x〉, 〈a2, x〉, D8

}
. It does

not receive and does undefined this action, because

(〈x〉a)x = x(〈x〉a)x−1

= x(a{e, x}a−1)x
= x(a{e, x}a3)x
= x({a, ax}a3)x
= x{e, a2x}x
= {x, a2}x
= {e, a2x} /∈ P2.

The following lemma says that the conjugation action preserves the order
relation.

Lemma 2.3.4. Let G be a finite group. Let P a poset. If P is a G-poset
then x ≤ y ⇔ xg ≤ yg where x, y ∈ P and g ∈ G.

Proof. Suppose that P is a G-poset. Then there is a function G×P −→ P
which is defined by (g, x) = xg = gx for all x ∈ P and g ∈ G. Let x, y ∈ P
then (g, x) = xg = gx and (g, y) = yg = gy where g ∈ G. Now if x ≤ y
clearly that gx ≤ gy so xg ≤ yg. Hence

x ≤ y ⇒ xg ≤ yg (2.6)

Conversely, if xg ≤ yg for all x, y ∈ P and g ∈ G then

xg ≤ yg

gx ≤ gy

g−1gx ≤ g−1gy

x ≤ y.

Hence

xg ≤ yg ⇒ x ≤ y (2.7)

From (2.6) and (2.7) we get

x ≤ y ⇔ xg ≤ yg.

�
In the following definition we define the action of a finite group on a modular
incidence algebra.
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Definition 2.3.5. Let G be a finite group. Let P be a locally finite poset
which is aG-poset. The modular incidence algebra I(P, F ) of P over F can be
made in a G-algebra structure by fa(x, y) = f(xa, ya) where a ∈ G, x, y ∈ P
and f ∈ I(P, F ). We will check the conditions listed in Definition 1.2.14 as
follows:

f e(x, y) = f(xe, ye) = f(x, y).

(f b(x, y))a =
(
f(xb, yb)

)a
= f

(
(xb)a, (yb)a

)
= f

(
xba, yba

)
= f ba(x, y).(

(f + g)a(x, y)
)

= (f + g)(xa, ya)

= f(xa, ya) + g(xa, ya)

= fa(x, y) + ga(x, y).(
(f ∗ g)a(x, y)

)
= (f ∗ g)(xa, ya)

=
∑
x≤z≤y

f(xa, za) · g(za, ya)

=
∑
x≤z≤y

fa(x, z) · ga(z, y).(
αf
)a

(x, y) =
(
αf
)
(xa, ya)

= αf(xa, ya)

= αfa(x, y).

Lemma 2.3.6. If P is a G-poset then I(P, F ) is a G-algebra over F.

Proof. If G is a finite group. Suppose that P is a G-poset. From Lemma
2.3.4, for any x, y ∈ P and a ∈ G, we have x ≤ y ⇔ xa ≤ ya. For any
f(x, y) ∈ I(P, F ) there is f(xa, ya) ∈ I(P, F ). By definition fa(x, y) =
f(xa, ya). Hence fa ∈ I(P, F ). We get I(P.F ) is a G-algebra over F. �

Example 2.3.7. If G = E is the extra special 3-group.
Take P =

{
{e}, 〈z〉, 〈x, z〉, E

}
. Let (P,⊆) be a locally finite poset. The group

E acts on P by xg = gxg−1 for all x ∈ P and g ∈ E. Let y ∈ E,

〈z〉y = y〈z〉y−1 = 〈z〉

〈x, z〉y = y〈x, z〉y−1 = 〈x, z〉.



CHAPTER 2. INCIDENCE ALGEBRAS 40

Where 〈z〉 ⊆ 〈x, z〉 ordered by inclusion then so is 〈z〉y ⊆ 〈x, z〉y.
Furthermore, the group E acts on the modular incidence algebra I(P,Z2) of
P over Z2.

In general by Definition 2.3.5. Take G to be a finite group and H to
be a subgroup of G. Let P a locally finite poset which is a G-poset. Let
A = I(P, F ) be the modular incidence algebra which is a G-algebra over F.
The set of H-fixed points of A is

AH = {f ∈ A, fh(x, y) = f(x, y), for all h ∈ H, x, y ∈ P}
AH = {f ∈ A, f(xh, yh) = f(x, y), for all h ∈ H, x, y ∈ P}.

The set of G-fixed points of A is

AG = {f ∈ A, f g(x, y) = f(x, y), for all g ∈ G, x, y ∈ P}
AG = {f ∈ A, f(xg, yg) = f(x, y), for all g ∈ G, x, y ∈ P}.

Then the relative trace map

tGH : AH −→ AG, tGH(f) =
∑
t∈T

f t,

for all f ∈ AH . Where T to be a co-set representative of H in G.
We know that AGH = tGH(AH) is an ideal of AG. Then the Brauer quotient is
A(G) = AG/

∑
H<GA

G
H .

So, the Brauer homomorphism on A = I(P, F ) with respect to H is

BrH : AH −→ A(H), f −→ f + AH<H wheref ∈ AH .

Theorem 2.3.8. Let G be a finite group. Let P be a locally finite poset
which is a G-poset. Let I(P, F ) be the modular incidence G-algebra over F.
Then I(P, F )G = Z

(
I(P, F )

)
.

Definition 2.3.9. Let G be a finite group. Let P be a locally finite poset
which is a G-poset. Let I(P, F ) be the modular incidence algebra of P over
F. The modular incidence algebra I(P, F ) is G-algebra over F , by the action
fa(x, y) = f(xa, ya) for all f ∈ I(P, F ) and a ∈ G. We have δ ∈ I(P, F ) as
well δa ∈ I(P, F ). We have a group homomorphism ϕ : G −→ U

(
I(P, F )

)
defined by ϕ(a) = δa for all a ∈ G. The modular incidence algebra I(P, F )
is called interior G-algebra over F.



Chapter 3

Tensor product of incidence
algebras

In this chapter, we present the notion of tensor product. In Section 3.1,
we study tensor product of vector spaces. We have compiled some basic
theorems and we summarize without proofs. In Section 3.2, we shall study
the tensor product of two algebras A and B over F. We then prove A⊗F B
is an algebra over F. If G1 and G2 are finite groups and A is a G1-algebra,
B is a G2-algebra we can prove A ⊗F B is a G1 × G2-algebra. We shall
prove A⊗F B is an interior G1 ×G2-algebra. In Section 3.3, we work on an
uncountable locally partial order set. We define the cartesian product of two
posets. We then mention the cartesian product of two uncountable posets
is also uncountable. If I(P1, F ) and I(P2, F ) are two incidence algebras we
shall prove the tensor product I(P1, F )⊗F I(P2, F ) is an incidence algebra.
We then prove that the incidence algebra I(P1 × P2, F ) is isomorphic to the
incidence algebra I(P1, F )⊗F I(P2, F ).

3.1 Tensor product of vector spaces

In this section, we will define the direct product of two vector spaces over the
same field. We will define a linear map and a bilinear map. We will define
the tensor product of two vector spaces, can be seen more in [3, 5, 7] and
[10].

Definition 3.1.1. Let F be a field. Let V and U be vector spaces over F.
The direct product V × U is defined by

V × U = {(v, u) : v ∈ V and u ∈ U}.

41
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The addition on V × U can be defined as

(v1, u1) + (v2, u2) = (v1 + v2, u1 + u2),

for all (v1, u1), (v2, u2) ∈ V × U.
The scalar multiplication on V × U can be defined as

α(v, u) = (αv, αu),

for all (v, u) ∈ V × U and α ∈ F.

Lemma 3.1.2. Let V and U be two vector spaces over F. Then the direct
product V × U is a vector space over F.

Lemma 3.1.3. Let V and U be two vector spaces over F which are fi-
nite dimensional. Then the direct product V × U is finite dimensional and
dim(V × U) = dimV + dimU.

Definition 3.1.4. Let V and U be two vector spaces over the field F. A
linear map is a function f : V −→ U such that for all v1, v2 ∈ V and α ∈ F
the following two conditions are satisfied:

f(v1 + v2) = f(v1) + f(v2)

f(αv1) = αf(v1).

Definition 3.1.5. If F is a field. Given three vector spaces V , U and W
over the field F. A function f : V × U −→ W is said to be a bilinear map if
satisfies these properties:

f(v1 + v2, u) = f(v1, u) + f(v2, u)

f(v, u1 + u2) = f(v, u1) + f(v, u2)

f(αv, u) = αf(v, u) = f(v, αu).

On other hand, a function f : V × U −→ W is a bilinear map if it is linear
in each variable, this mean f has the following properties:

• The map fu : V −→ W is a linear map such that v 7−→ f(v, u), for any
fixed element u ∈ U

• The map fv : U −→ W is a linear map such that u 7−→ f(v, u), for any
fixed element v ∈ V.

For more details of the construction of tensor product, the reader can see
the following references ([5] page 71, [7] page 207, [10] page 46)
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Theorem 3.1.6. Let V and U be two vector spaces over F.

(1) There exist a vector space W over F and a bilinear map f : V ×U −→
W which satisfy the following conditions

(a) W is generated by the image f(V × U) of f.

(b) If M is a vector space over F and g : V × U −→ M is a bilinear
map, there exists an unique linear map ψ : W −→ M such that
g = ψ ◦ f.

V × U W

M

f

g ψ

(2) If W ′ is a vector space over F and f ′ : V ×U −→ W ′ is a bilinear map
satisfy conditions (a) and (b), then there exists an unique isomorphism
j : W −→ W ′ such that j ◦ f = f ′.

Definition 3.1.7. Let V and U be vector spaces over F . A tensor product
of V and U is a pair (W, f) consisting of a vector space W over F and a
bilinear map f : V × U −→ W which is satisfy the conditions (a) and (b)
in Theorem 3.1.6. We write W = V ⊗ U and f(v, u) = v ⊗ u. The map f
is called the canonical of a tensor product W = V ⊗ U. The tensor product
W = V ⊗ U is generated by {v ⊗ u : v ∈ V, u ∈ U}.

Furthermore, for every v, v1, v2 ∈ V and u, u1, u2 ∈ U and α ∈ F we have

(v1 + v2)⊗ u = v1 ⊗ u+ v2 ⊗ u

v ⊗ (u1 + u2) = v ⊗ u1 + v ⊗ u2
(αv)⊗ u = α(v ⊗ u) = v ⊗ (αu).

The uniqueness property (2) of Theorem 3.1.6 can be restated as follows

Theorem 3.1.8. If (W1, f1) and (W2, f2) are tensor products of V and U,
then there exists an unique linear isomorphism ψ : W1 −→ W2 with ψ ◦ f1 =
f2.
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3.2 Tensor product of algebras

In this section, we shall define the tensor product of two algebras over a
field. We explain that the tensor product of algebras is an algebra. If F is
a field. Suppose that G1 and G2 are two finite groups, if A is a G1-algebra
and B is a G2-algebra, we prove that the tensor product A⊗F B is carries a
G1 ×G2-algebra structure. We will explain when the tensor product of two
algebras will be considered as interior G1 ×G2-algebra, can be seen more in
[14].

Definition 3.2.1. Let A and B be two algebras over F. The tensor product
A⊗F B is given by

A⊗F B = {
∑
i

(ai ⊗F bi) : ai ∈ A and bi ∈ B}.

The product of two elements in A⊗F B as the form(∑
i

(ai ⊗F bi)
)(∑

j

(a′j ⊗F b′j) =
∑
i,j

aia
′
j ⊗F bib′j,

where ai, a
′
j ∈ A and bi, b

′
j ∈ B.

In the following theorems, we prove it on the basis of tensor product and
thus it will be correct on all elements.

Theorem 3.2.2. The tensor product of two algebras over F is an algebra
over F.

Proof. Let A and B be algebras over F. Firstly, since A and B are vector
spaces over F hence the tensor product of A and B is a vector space over F .
Secondly, we prove that the tensor product A⊗F B is a ring

(1) (A⊗F B,+) is an abelian group.

(2) (A⊗F B, ·) is a monoid such that

• Associative property of multiplication(
(a1 ⊗F b1)(a2 ⊗F b2)

)
(a3 ⊗F b3) = (a1a2 ⊗F b1b2)(a3 ⊗F b3)

=
(
(a1a2)a3

)
⊗F

(
(b1b2)b3

)
=
(
a1(a2a3)

)
⊗F

(
b1(b2b3)

)
= (a1 ⊗F b1)(a2a3 ⊗F b2b3)
= (a1 ⊗F b1)

(
(a2 ⊗F b2)(a3 ⊗F b3)

)
,

for all a1 ⊗F b1, a2 ⊗F b2, a3 ⊗F b3 ∈ A⊗F B.
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• There is an identity element 1A ⊗F 1B in A⊗F B such that

(a⊗F b)(1A ⊗F 1B) = a1A ⊗F b1B = a⊗F b

(1A ⊗F 1B)(a⊗F b) = 1Aa⊗F 1Bb = a⊗F b,
for all a⊗F b ∈ A⊗F B.

(3) Distributive property of multiplication over addition

(a1 ⊗F b1)
(
(a2 ⊗F b2) + (a3 ⊗F b3)

)
= (a1 ⊗F b1)(a2 + a3 ⊗F b2 + b3)

= a1(a2 + a3)⊗F b1(b2 + b3)

= (a1a2 + a1a3)⊗F (b1b2 + b1b3)

= (a1a2 ⊗F b1b2) + (a1a3 ⊗F b1b3)
= (a1 ⊗F b1)(a2 ⊗F b2) + (a1 ⊗F b1)(a3 ⊗F b3)(

(a1 ⊗F b1) + (a2 ⊗F b2)
)
(a3 ⊗F b3) = (a1 + a2 ⊗F b1 + b2)(a3 ⊗F b3)

= (a1 + a2)a3 ⊗F (b1 + b2)b3

= (a1a3 + a2a3)⊗F (b1b3 + b2b3)

= (a1a3 ⊗F b1b3) + (a2a3 ⊗F b2b3)
= (a1 ⊗F b1)(a3 ⊗F b3) + (a2 ⊗F b2)(a3 ⊗F b3).

Thirdly, for all a1 ⊗F b1, a2 ⊗F b2 ∈ A⊗F B and α ∈ F

α
(
(a1 ⊗F b1)(a2 ⊗F b2)

)
= α(a1a2 ⊗F b1b2)
=
(
α(a1a2)

)
⊗F b1b2

=
(
(αa1)a2

)
⊗F b1b2

=
(
(αa1)⊗F b1

)
(a2 ⊗F b2)

=
(
α(a1 ⊗F b1)

)
(a2 ⊗F b2)

α
(
(a1 ⊗F b1)(a2 ⊗F b2)

)
= α(a1a2 ⊗F b1b2)
= a1a2 ⊗F

(
α(b1b2)

)
= a1a2 ⊗F

(
b1(αb2)

)
= (a1 ⊗F b1)

(
a2 ⊗F (αb2)

)
= (a1 ⊗F b1)

(
α(a2 ⊗F b2)

)
.

We get

α
(
(a1⊗F b1)(a2⊗F b2)

)
=
(
α(a1⊗F b1)

)
(a2⊗F b2) = (a1⊗F b1)

(
α(a2⊗F b2)

)
.

Therefore the tensor product A⊗F B is an algebra over F.
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�

Theorem 3.2.3. If G1 and G2 are finite groups. Given A and B are G1-
algebra over F and G2-algebra over F respectively. Then the tensor product
A⊗F B is a G1 ×G2-algebra over F .

Proof. Suppose that A is a G1-algebra over F and B is a G2-algebra over
F . The group G1×G2 acts on the tensor product A⊗F B by (a⊗ b)(g1,g2) =
ag1 ⊗F bg2 for all (g1, g2) ∈ G1 ×G2 and a⊗F b ∈ A⊗F B. To check that

(a⊗F b)(eG1
,eG2

) = aeG1 ⊗F beG2 = a⊗F b

(
(a⊗F b)(h1,h2)

)(g1,g2) = (ah1 ⊗F bh2)(g1,g2)

= (ah1)g1 ⊗F (bh2)g2

= ah1g1 ⊗F bh2g2

=
(
a⊗F b

)(h1g1,h2g2)
(
(a1 ⊗F b1) + (a2 ⊗F b2)

)(g1,g2) =
(
(a1 + a2)⊗F (b1 + b2)

)(g1,g2)
= (a1 + a2)

g1 ⊗F (b1 + b2)
g2

= (ag11 + ag12 )⊗F (bg21 + bg22 )

= (ag11 ⊗F b
g2
1 ) + (ag12 ⊗F b

g2
2 )

= (a1 ⊗F b1)(g1,g2) + (a2 ⊗F b2)(g1,g2)

(
(a1 ⊗F b1)(a2 ⊗F b2)

)(g1,g2) =
(
(a1a2)⊗F (b1b2)

)(g1,g2)
= (a1a2)

g1 ⊗F (b1b2)
g2

= (ag11 a
g1
2 )⊗F (bg21 b

g2
2 )

= (ag11 ⊗F b
g2
1 )(ag12 ⊗F b

g2
2 )

= (a1 ⊗F b1)(g1,g2)(a2 ⊗F b2)(g1,g2)

(
α(a⊗F b)

)(g1,g2) =
(
(αa)⊗F b)(g1,g2)

= (αa)g1 ⊗F bg2

= (α(a)g1)⊗F bg2

= α(ag1 ⊗F bg2)
= α(a⊗F b)(g1,g2).

�
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Remarks.
• The tensor product A⊗FB which is a G1×G2-algebra is called external

tensor product.

• If A and B are G-algebras then the tensor product A ⊗F B is called
internal tensor product.

Theorem 3.2.4. Let G1 and G2 be two finite groups. Let A be an interior
G1-algebra and B be an interior G2-algebra then the tensor product A⊗F B
is also an interior G1 ×G2-algebra.

Proof. Suppose A is an interior G1-algebra and B is an interior G2-algebra
then there exist two group homomorphisms
φ1 : G1 −→ U(A) is given by φ1(g1) = g1 · 1A, for all g1 ∈ G1

φ2 : G2 −→ U(B) is given by φ1(g2) = g2 · 1B, for all g2 ∈ G2.
The tensor product A⊗F B is an interior G1×G2-algebra if there is a group
homomorphism. We assume that a function φ : G1 × G2 −→ U(A ⊗F B) is
given by φ

(
(g1, g2)

)
= (g1 · 1A) ⊗F (g2 · 1B) for all (g1, g2) ∈ G1 × G2. Now,

we prove that φ is a group homomorphism as follows

φ
(
(g1, g2)(h1, h2)

)
= φ

(
(g1h1, g2h2)

)
= (g1h1) · 1A ⊗F (g2h2) · 1B
= (g1h1) · 1A1A ⊗F (g2h2) · 1B1B

= (g1 · 1A)(h1 · 1A)⊗ (g2 · 1B)(h2 · 1B)

=
(
(g1 · 1A)⊗F (g2 · 1B)

)(
(h1 · 1A)⊗F (h2 · 1B)

)
= φ

(
(g1, g2)

)
φ
(
(h1, h2)

)
.

Furthermore, the tensor product A⊗F B is an interior G1 ×G2-algebra. �
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3.3 Tensor product of incidence algebras

The tensor product of incidence algebras appeared in the paper Ahmad Al-
ghamdi [2] and deal with finite partially ordered sets. We will try to deal
with uncountable locally partially ordered sets. We prove that the tensor
product of two incidence algebras is an incidence algebra.

Definition 3.3.1. A poset P is uncountable if it is an infinite poset which
contains too many elements to be countable.

We deal with another definition of uncountable poset.

Definition 3.3.2. A poset P is uncountable if there is no injective function
from P to the natural numbers.

Definition 3.3.3. Let (P1,≤1) and (P2,≤2) be two posets. The cartesian
product of P1 and P2 is again a poset

P1 × P2 = {(x, y) : x ∈ P1 and y ∈ P2}.

With relation (x1, y1) ≤ (x2, y2) if and only if x1 ≤1 x2 and y1 ≤2 y2 where
x1, x2 ∈ P1 and y1, y2 ∈ P2.

Remark. Certainly, the cartesian product of two finite locally posets is a
locally finite poset because if every interval of P1 and P2 are finite thus every
interval of P1 × P2 is finite.

Lemma 3.3.4. Let (P1,≤1) and (P2,≤2) be uncountable locally posets.
Then the cartesian product (P1 × P2,≤) is uncountable.

Since the cartesian product P1×P2 is a locally poset then there is an incidence
algebra of P1 × P2 over F as the following proposition.

Proposition 3.3.5. Let (P1,≤1) and (P1,≤2) be uncountable locally posets.
Let (P1×P2,≤) be a cartesian product of P1 and P2 which is an uncountable
locally poset. Then there is an incidence algebra I(P1 × P2, F ) over F , its
elements has the form fP1×P2

(
(x1, x2), (y1, y2)

)
.

Proof. If fP1 : P1 × P1 −→ F is an incidence function in I(P1, F ) and
fP2 : P2 × P2 −→ F is an incidence function in I(P1, F ) we have

fP1(x1, y1) = 0F whenever x1 �1 y1, x1, y1 ∈ P1

fP2(x2, y2) = 0F whenever x2 �2 y2, x2, y2 ∈ P2.
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We take
(
(x1, x2), (y1, y2)

)
∈ (P1 × P2)

2. Hence
fP1×P2

(
(x1, x2), (y1, y2)

)
= fP1(x1, y1) · fP2(x2, y2) = 0F

whenever (x1, x2) � (y1, y2). We get the incidence algebra as following

I(P1×P2, F ) = {fP1×P2 : (P1×P2)
2 −→ F : fP1×P2

(
(x1, x2), (y1, y2)

)
= 0F if

(x1, x2) � (y1, y2)}.

It follows that the incidence function fP1×P2

(
(x1, x2), (y1, y2)

)
is an element

of the incidence algebra I(P1 × P2, F ) over F . �
In the following proposition we prove that the tensor product of two incidence
algebras is an incidence algebra.

Proposition 3.3.6. Let (P1,≤1) and (P2,≤2) be uncountable locally posets.
Let I(P1, F ) and I(P2, F ) be incidence algebras over F . Then the tensor
product I(P1, F )⊗F I(P2, F ) is an incidence algebra over F and its elements
has the form

∑
i(fPi

⊗F f ′Pi
) where fPi

∈ I(P1, F ), f ′Pi
∈ I(P2, F ).

Proof. Suppose that I(P1, F ) is an incidence algebra over F , the incidence
function fP1 ∈ I(P1, F ) where fP1(x1, y1) = 0F if x1 �1 y1, x1, y1 ∈ P1 and
suppose that I(P2, F ) is an incidence algebra over F, the incidence function
fP2 ∈ I(P2, F ) where fP2(x2, y2) = 0F if x2 �2 y2, x2, y2 ∈ P2. We need show
that I(P1, F )⊗F I(P2, F ) is an incidence algebra, we have(
fP1 ⊗F fP2

)(
(x1, x2), (y1, y2)

)
= fP1(x1, y1)⊗F fP2(x2, y2) = 0F ⊗F 0F = 0F

if (x1, x2) � (y1, y2). Therefore the tensor product of incidence algebras
I(P1, F )⊗F I(P2, F ) is an incidence algebra as following

I(P1, F )⊗F I(P2, F ) = {fP1 ⊗F fP2 : (P1 × P2)
2 −→ F :(

fP1 ⊗F fP2

)(
(x1, x2), (y1, y2)

)
= 0F if (x1, x2) � (y1, y2)}.

�

Theorem 3.3.7. Let F be algebraically closed field. Let (P1,≤1) and (P2,≤2

) be uncountable locally posets. Let I(P1, F ) and I(P2, F ) be incidence
algebras over F. Let (P1 × P2,≤) be a cartesian product of P1 and P2 which
is an uncountable locally poset. Then I(P1 × P2, F ) ∼= I(P1, F )⊗F I(P2, F ).
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Proof. Define a function φ : I(P1 × P2, F ) −→ I(P1, F )⊗F I(P2, F ) by

φ(fP1×P2) = fP1 ⊗F fP2

φ(fP1×P2(x, y)) =
(
fP1 ⊗F fP2

)
(x, y),

where x = (x1, x2) ∈ P1 × P2 and y = (y1, y2) ∈ P1 × P2.
For all fP1×P2 , f

′
P1×P2

∈ I(P1 × P2) and α ∈ F. We prove that φ is a homo-
morphism

φ(αfP1×P2) = (αfP1 ⊗F fP2)

= α(fP1 ⊗F fP2)

= αφ(fP1×P2)

φ
(
fP1×P2 + f ′P1×P2

)
=
(
fP1 + f ′P1

)
⊗F

(
fP2 + f ′P2

)
=
(
fP1 ⊗F fP2

)
+
(
f ′P1
⊗F f ′P2

)
= φ

(
fP1×P2

)
+ φ(f ′P1×P2

)
φ
(
fP1×P2 ∗ f ′P1×P2

)
=
(
fP1 ∗ f ′P1

)
⊗F

(
fP2 ∗ f ′P2

)
=
(
fP1 ⊗F fP2

)
∗
(
f ′P1
⊗F f ′P2

)
= φ

(
fP1×P2

)
∗ φ(f ′P1×P2

)
φ(δP1×P2) = δP1 ⊗F δP2 .

The function φ is injective because:

φ
(
fP1×P2(x, y)

)
= φ

(
f ′P1×P2

(x, y)
)(

fP1 ⊗F fP2

)
(x, y) =

(
f ′P1
⊗F f ′P2

)
(x, y)

fP1(x1, y1)⊗F fP2(x2, y2) = f ′P1
(x1, y1)⊗F f ′P2

(x2, y2)

fP1(x1, y1) · fP2(x2, y2) = f ′P1
(x1, y1) · f ′P2

(x2, y2)

fP1×P2(x, y) = f ′P1×P2
(x, y).

The function φ is surjective because: for all f ∈ I(P1, F )⊗F I(P2, F ), there
is fP1 ∈ I(P1, F ) and fP2 ∈ I(P2, F ) such that f = fP1 ⊗F fP2 . Hence, there
is fP1×P2 ∈ I(P1 × P2, F ) such that φ(fP1×P2) = fP1 ⊗F fP2 = f. Therefore
I(P1 × P2, F ) ∼= I(P1, F )⊗F I(P2, F ). �



Chapter 4

Blocks of incidence algebras

In this chapter, we defined into three sections. In Section 4.1, we study
the decomposition of a modular incidence algebra I(P, F ) into the algebras
eiI(P, F ) which are called block incidence algebra. As well as the block
algebra eiI(P, F ) is decomposed into indecomposable I(P, F )-modules, where
ei is a central primitive idempotent. Previously in Section 1.3 we defined a
trace map and studied it in order to define a defect group. In Section 4.2, we
will present main concepts in the theory of G-algebras, these concepts are a
pointed group, a projective relative, a local pointed group, a defect pointed
group and a nilpotent block of a modular incidence algebra. In Section 4.3,
we briefly present category theory and use it to make important connection
among group algebra and incidence algebra.

4.1 Block algebra and defect group of inci-

dence algebras

In this section, we will learn how to decomposed the modular incidence al-
gebra. We will define a block algebra of a modular incidence algebra and
define a defect group of a block of incidence algebra. We shall follow [9, 10].

Let P be a locally finite poset. Let I(P, F ) be the modular incidence
algebra of P over F which is finite dimensional. Decompose the modular
incidence algebra I(P, F ) as a direct sum

I(P, F ) = B1 ⊕B2 ⊕ ...⊕Bt

of the decomposable as the F -algebras Bi, 1 ≤ i ≤ t. In the following defini-
tion we will study the structure of an algebra Bi, 1 ≤ i ≤ t.

Definition 4.1.1. Let P be a locally finite poset. Let I(P, F ) be the modular
incidence algebra of P over F. A block idempotent of I(P, F ) is a primitive

51
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idempotent ei in Z(I(P, F )). The algebra Bi = I(P, F )ei is called a block
incidence algebra of I(P, F ).

1I(P,F ) = 1Z(I(P,F )) = e1 + e2 + ...+ et.

Proposition 4.1.2. Let P be a locally finite poset. Let I(P, F ) be the
modular incidence algebra. Then I(P, F ) can be decomposed into direct
sum of finite number of blocks, each of which is a two sided ideal of I(P, F ).

Proof. Suppose that I(P, F ) is the modular incidence algebra of a locally
finite poset P over F. We have, the modular incidence algebra I(P, F ) is a
finite dimensional. So the identity element for the modular incidence algebra
can be decomposed into direct sum of finite number of central primitive
idempotent, as follows

1Z(I,F ) = 1I(P,F ) = e1 + e2 + ...+ et.

Hence, we have

I(P, F ) · 1I(P,F ) = I(P, F )(e1 + e2 + ...+ et)

I(P, F ) = I(P, F )e1 ⊕ I(P, F )e2 ⊕ ...⊕ I(P, F )et.

Since ei is central ∀i,

I(P, F ) = e1I(P, F )⊕ e2I(P, F )⊕ ...⊕ etI(P, F ).

Therefore, I(P, F ) is decomposed into direct sum of finite number of two
sided ideals. Where the I(P, F )ei are two-sided ideals of I(P, F ). These are
called blocks of I(P, F ). �

Corollary 4.1.3. Let P be a locally finite poset. Let I(P, F ) be the mod-
ular incidence algebra of P over F . Then the incidence algebra I(P, F ) is
decomposed into Hecke-algebras ei ·I(P, F ) ·ei, where ei is a central primitive
idempotent.

Proof. Since ei is central, we have

eiI(P, F ) = I(P, F )ei

eieiI(P, F ) = eiI(P, F )ei.

Since ei is idempotent, hence

eiI(P, F ) = eiI(P, F )ei, ∀i ∈ {1, ..., t}.

We know that the incidence algebra I(P, F ) is decomposed into block inci-
dence algebras eiI(P, F ). There are two orthogonal ei and ej in I(P, F ) for
all i, j distinct, such that ei · ej = 0 and
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1. ei · I(P, F ) ∩ ej · I(P, F ) = {0}

2.
∑

i ei · I(P, F ) = I(P, F ).

We get that

I(P, F ) = e1I(P, F )e1 ⊕ e2I(P, F )e2 ⊕ ...⊕ etI(P, F )et.

As required. �

Corollary 4.1.4. Let P be a locally finite poset. Let I(P, F ) be the modular
incidence algebra. Let e be a central primitive idempotent in I(P, F ) then

I(P, F ) = (1− e)I(P, F )⊕ eI(P, F ).

Theorem 4.1.5. Let A be a finite dimensional algebra over F and f be an
idempotent in A. Then f is primitive if and only if fA is an indecomposable
A-module.

Theorem 4.1.6. Let P be a locally finite poset. Let I(P, F ) be the modular
incidence algebra. If ei is a central primitive idempotent such that ei =
f1+f2+ ...+fr where fj is a primitive idempotent which is not central. Then
the block incidence algebra eiI(P, F ) is decomposed into indecomposable
I(P, F )-module fjI(P, F ).

Proof. Suppose that ei is a central primitive idempotent and ei = f1 +
f2 + ... + fr is an idempotent decomposition, where fj is a primitive idem-
potent which is not central. The block incidence algebra eiI(P, F ) can be
decomposed as follows

eiI(P, F ) = (f1 + f2 + ...+ fr)I(P, F )

= f1I(P, F )⊕ f2I(P, F )⊕ ...⊕ frI(P, F ).

Since fj is primitive, 1 ≤ j ≤ r then fjI(P, F ) is an indecomposable I(P, F )-
module, By Theorem 4.1.5. Hence the block incidence algebra eiI(P, F ) is
decomposed into indecomposable I(P, F )-module. �

Theorem 4.1.7. Let P be a locally finite poset. Let I(P, F ) be the modular
incidence algebra. Let e ∈ Z(I(P, F )) and eI(P, F ) be a block incidence
algebra. Then Z(eI(P, F )) is a local algebra over F.

In Chapter 1, Section 1.3 we studied the trace map tGH and we mentioned
its properties. Now, we use it in definition a defect group in the following.
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Definition 4.1.8. Let G be a finite group. Let P be a locally finite poset
which is a G-poset. Let I(P, F ) be the modular incidence G-algebra of P
over F . Let e be a block idempotent of I(P, F ) and let I(P, F )e be a block
incidence algebra of I(P, F ). A defect group of the block I(P, F )e is a p-
subgroup D of G with the properties: the idempotent e belongs to the ideal
I(P, F )GD and if there exists a subgroup H such that the idempotent e belongs
to the ideal I(P, F )GH then D is a G-conjugate to a subgroup of H.

Remarks.
• Defect groups of p-blocks are p-groups.

• The defect groups of the principal p-block are the Sylow p-subgroups.

• p-block of defect zero has the trivial subgroup as a defect group.

• The intersections of two Sylow p-subgroups are defect groups.

• Each normal p-subgroup is contained in a defect group.

• Defect theory is a generalization of Sylow theory.
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4.2 Pointed group and nilpotent blocks

In this section, we shall define a pointed group on a modular incidence al-
gebra. We define a projective relative and a local pointed group. We define
a defect pointed group. We will define a nilpotent block. We present some
examples. We shall follow [9, 14].

Definition 4.2.1. Let A be an algebra over F . Let g and f be idempotents
in A. The elements g and f are called associate in A if there are elements x
and y in A such that xy = g and yx = f.

Remark:

• It is easy to prove that g · A · f and f · A · g are F -subalgebras of A.

• The algebra gAf = 0 if g and f are orthogonal and central.

• We have the elements a = gxf ∈ gAf and b = fyg ∈ fAg satisfy:

ab = gxffyg = gxfyg = gxyxyg = g4 = g
ba = fyggxf = fygxf = fyxyxf = f 4 = f .

Lemma 4.2.2. The relation associate in A is an equivalence relation. If g
and f are associate in A we say that g v f ⇔ ∃ x, y ∈ A such that xy = g
and yx = f.

Proof.

1. If f v f . There are x, y ∈ A such that xy = f and yx = f. Then there
are elements a = fxf ∈ fAf and b = fyf ∈ fAf such that ab = f
and ba = f. Hence it is reflexive.

2. If g v f , g and f are associate in A thus there are x, y ∈ A such that
xy = g and yx = f. Then there are elements a = gxf ∈ gAf and
b = fyg ∈ fAg such that ab = g and ba = f
It is clear that f v g. Hence it is symmetric.

3. If g v f and f v h, f and h are associate in A thus there are z, w ∈ A
such that zw = f and wz = h. Then there are elements c = fzh ∈ fAh
and d = hwf ∈ hAf such that cd = f and dc = h. Hence We conclude
that

acdb = afb = gxfffyg = gxfyg = ab = g
dbac = dfc = hwfffzh = hwfzh = hwzwzh = h4 = h.



CHAPTER 4. BLOCKS OF INCIDENCE ALGEBRAS 56

We have ac = gxzh ∈ gAh and db = hwyg ∈ hAg. Then there are
xz, wy ∈ A such that xzwy = g and wyxz = h. Hence g and h are
associate in A and g v h. Hence the relation is transitive.

�

Definition 4.2.3. Let A be an algebra over F. The points of A is the classes
of associate primitive idempotents in A and we denote the set of points of A
by P (A).

Definition 4.2.4. Let G be a finite group. Let P be a locally finite poset
which is a G-poset. Let I(P, F ) be the modular incidence G-algebra of P
over F. A pointed group on I(P, F ) is a pair (H, β) = Hβ where H is a
subgroup of G and β is a point of I(P, F )H .

Example 4.2.5. If G = S3, we take P = {{1}, A3, S3} to be a locally finite
poset which is a G-poset. We take F = Z2. The incidence algebra of P over
Z2 is

I(P,Z2) = {f : P × P −→ Z2, f(K,L) = 0 if K � L}.

If H = {(1), (12)} is a subgroup of G. We note that for all K ∈ P then
Kh = K for all h ∈ H. The set of H-fixed points of I(P,Z2) is(
I(P,Z2)

)H
= {f ∈ I(P,Z2), fh(K,L) = f(K,L), for all h ∈ H & K,L ∈ P}.

The pair (H,µ) = Hµ is a pointed group on I(P,Z2) where the möbius

function µ is a point of
(
I(P,Z2)

)H
since for all h ∈ H

µh({1}, S3) = µ({1}h, Sh3 ) = µ({1}, S3)

µh({1}, A3) = µ({1}h, Ah3) = µ({1}, A3)

µh(A3, S3) = µ(Ah3 , S
h
3 ) = µ(A3, S3).

So µh(K,L) = µ(K,L) for all h ∈ H and K,L ∈ P .
For µ to be idempotent, we see that:

(µ ∗ µ)(x, y) =
∑
x≤z≤y

µ(x, z)µ(z, y) = µ(x, y).

We have the maximal ideal Mβ of I(P, F )H , with simple quotient being
A(Hβ) = I(P, F )H/Mβ. Then the quotient map

Brβ : I(P, F )H −→ A(Hβ), f −→ f +Mβ

is another Brauer homomorphism.
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Remark. There are two Brauer homomorphisms:

BrH : I(P, F )H −→ A(H), f −→ f + AH<H

Brβ : I(P, F )H −→ A(Hβ), f −→ f +Mβ.

The Brauer homomorphisms BrH is identical to the Brauer homomorphisms
Brβ if there is a homomorphism φ is define by

φ : A(H) −→ A(Hβ). φ(f + AH<H) = f +Mβ,

such that Brβ = φ ◦BrH .

Definition 4.2.6. If Hβ and Kα are two pointed groups on a modular inci-
dence algebra I(P, F ) and satisfying K ⊆ H. We say that Kα is a pointed
subgroup of Hβ, (Kα ≤ Hβ) if:

• There are elements i ∈ β and j ∈ α such that jI(P, F )j ⊆ iI(P, F )i.

• For any element g ∈ β there exists an element f ∈ α such that
fI(P, F )f ⊆ gI(P, F )g.

• Brα(β) 6= 0.

Definition 4.2.7. Let G be a finite group. Let P be a locally finite poset
which is a G-poset. Let I(P, F ) be the modular incidence algebra which is
G-algebra. Let H and K be two subgroups of G and K ≤ H. We have the
relative trace map tHK : I(P, F )K −→ I(P, F )H . Given two pointed groups
Hβ and Kα on I(P, F ) we say that Hβ is projective relative to Kα if

1. K ≤ H.

2. β ⊆ tHK(I(P, F )KαI(P, F )K).

We write HβprKα.

Remark. We can say that Hβ is projective relative to Kα if satisfying
I(P, F )HβI(P, F )H ⊆ tHK(I(P, F )KαI(P, F )K).

Definition 4.2.8. A pointed group Qδ on a modular incidence G-algebra
I(P, F ) is a local pointed group if it has any one of the following equivalent
properties:

• Qδ is minimal with respect to the relation pr.

• Qδ is not projective relative to a proper subgroup of Q.
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• δ * I(P, F )QR for every proper subgroup R of Q.

• BrQ(δ) 6= 0.

• Brδ(I(P, F )QR) = 0 for every subgroup R of Q.

• Ker(BrQ) ⊆Mδ.

Definition 4.2.9. Let G be a finite group. Let P a locally finite poset. Let
I(P, F ) be the modular incidence G-algebra. Let Hβ and Kα be two pointed
groups on I(P, F ). We say that Kα is a defect pointed subgroup of Hβ if

1. Kα ≤ Hβ.

2. HβprKα.

3. Kα is a local.

Lemma 4.2.10. The local pointed subgroup Kα of Hβ is a defect pointed
subgroup of Hβ if I(P, F )HβI(P, F )H ⊆ tHK(I(P, F )KαI(P, F )K).

Definition 4.2.11. LetG be a finite group. Let P a locally finite poset which
is a G-poset. Let I(P, F ) be the modular incidence G-algebra. A block b
of I(P, F ) is said to be nilpotent if the quotient group NG(Qδ)/CG(Q) is a
p-group for any local pointed subgroup Qδ of Gα, where α is a point of G on
I(P, F ) containing b. We say that the block algebra I(P, F )b is a nilpotent
block algebra of I(P, F ).

We shall illustrate the definition by some examples.

Example 4.2.12. If p = 2. We take the field Z2 of characteristic 2. Let
G = D8 = 〈a, x : a4 = e, x2 = e, (ax)2 = e〉 be the dihedral group of
order 8. Consider the locally finite G-poset P = {{e}, 〈a2〉, 〈a2, x〉, D8}. Let
I(P,Z2) be the modular incidence algebra of P over Z2 which is the G-
algebra. We studied the modular incidence algebra of P over Z2 in section
2.2, Example 2.2.1 and we will link it to nilpotent block algebra. The pair

(G, µ) is a pointed group on I(P,Z2) where µ is a point of
(
I(P,Z2)

)G
. We

take Q = 〈a2〉 = {e, a2} to be a subgroup of D8. The pair (Q, δ) = Qδ is a

pointed group on I(P,Z2) where δ is a point of
(
I(P,Z2)

)Q
. The normalizer

of Qδ in the group D8 is equal to D8 and the centralizer of Q of G is equal to
D8. So the block µ is the nilpotent since the quotient group NG(Qδ)/CG(Q)
is the trivial group which is a p-group. The block algebra I(P,Z2)µ is the
nilpotent block algebra of I(P,Z2).
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Example 4.2.13. Given the field Z3 of characteristic 3 where p = 3. Let
E = 〈x, y, z| x3 = y3 = z3 = e, [x, y] = z, [x, z] = [z, y] = e〉 be the
extra special group of order 27. Consider the locally finite E-poset P =
{{e}, 〈z〉, 〈z, y〉, E}. Let I(P,Z3) be the modular incidence algebra of P over
Z3 which is the E-algebra. We studied the modular incidence algebra of
P over Z3 in section 2.2, Example 2.2.2 and we will link it to nilpotent
block algebra. The pair (E, µ) is a pointed group on I(P,Z3) where µ is a

point of
(
I(P,Z3)

)E
. We take Q = 〈z〉 = {e, z, z2} to be a subgroup of E.

The pair (Q, δ) = Qδ is a pointed group on I(P,Z3) where δ is a point of(
I(P,Z3)

)Q
. We note that NE(Qδ) = E and CE(Q) = E hence the quotient

group NE(Qδ)/CE(Q) is the trivial group which is a p-group. We get the
block µ is the nilpotent and the block algebra I(P,Z3)µ is the nilpotent
block algebra of I(P,Z3).

Example 4.2.14. If p = 2. we take the field Z2. Let G = S3 be the
symmetric group. Consider the locally finite G-poset P = {{1}, A3, S3}. Let
I(P,Z2) be the incidence algebra of P over Z2 which is the G-algebra. The

pair (G, ζ) is a pointed group on I(P,Z2) where ζ is a point of
(
I(P,Z2)

)G
.

We take Q =
{
{1}
}

to be the trivial subgroup of S3. The pair (Q, λ) = Qλ

is a pointed group on I(P,Z2) where λ is a point of
(
I(P,Z2)

)Q
. We note

that NG(Qλ) = G and CG(Q) = G. So the block ζ is the nilpotent since the
quotient group NG(Qλ)/CG(Q) is the trivial group which is a p-group and
the block algebra I(P,Z2)ζ is the nilpotent block algebra of I(P,Z2).
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4.3 Category algebra and the relation between

group algebra and incidence algebra

In this section, we define a category and give some examples, can be seen
in [7]. We will offer two definitions for the category algebra over a field
which has characteristic prime number. These two definitions agree. We
then explain the relationship between group algebra and incidence algebra.

Definition 4.3.1. A category C consists of a class of objects and a class of
morphisms such that following conditions must be satisfied.

(a) For all A,B objects of C there is a set of morphisms Mor(A,B) f :
A −→ B such that

Mor(A,B) ∩Mor(A′, B′) = ∅ if (A,B) 6= (A′, B′).

(b) For each A,B,C objects of C there is a rule of composition

Mor(A,B)×Mor(B,C) −→Mor(A,C)

such that if (g, f) 7→ gf then

• Associativity: if f : A −→ B, g : B −→ C and h : C −→ D are
morphisms in C then (hg)f = h(gf).

• Identity: for each A object of C there is an identity morphism
IA : A −→ A such that fIA = f and IAg = g for any morphisms
f : A −→ B and g : C −→ A of a category C.

Remarks.
• A morphism f : A −→ B in a category C is said to be an equivalence if

there is a morphism g : B −→ A in C such that gf = IA and fg = IB.

• The composite of two equivalences is an equivalence.

• If f : A −→ B is an equivalence, we say that A and B are equivalent.

Example 4.3.2. A partially ordered set P can be considered as a category.
The objects of a category P are their elements. If x, y ∈ P we can write
f : x −→ y to indicate that x ≤ y. The set of morphism Mor(x, y) consists
of one morphism f : x −→ y if x ≤ y and Mor(x, y) = ∅ if x � y. The
rule of composition is given by the transitive property of the partial order:
if f : x −→ y and g : y −→ z then gf : x −→ z since x ≤ y and y ≤ z imply
x ≤ z.
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Example 4.3.3. Let C be a class of all groups. If G,H ∈ C then the
morphism Mor(G,H) is the set of all group homomorphism f : G −→ H.
The rule composition is the composition of group homomorphisms.

Definition 4.3.4. Let C be a category with a morphism set. Let F be a field.
The category algebra FC of C over F is a vector space with basis Mor(C). In
other words, FC consists of formal linear combinations of the form

∑
aiϕi,

where ϕi ∈ Mor(C) and ai ∈ F. Define a multiplication operation on FC as
follows ∑

aiϕi
∑

bjψj =
∑

aibj(ϕi ◦ ψj).

Definition 4.3.5. The category algebra FC of C over F consists of all func-
tions f : Mor(C) −→ F. The multiplication is described by a convolution, if
f, g ∈ FC then the product f ∗ g is defined as

(f ∗ g)(α) =
∑
ϕ◦ψ=α

f(ϕ)g(ψ).

Example 4.3.6. Let F be a field. Let C be a group, the group is the same
as a category with a single object. The morphism are endomorphism, where
the elements of the group correspond to the morphisms of the category. By
Definition 4.3.4, the category algebra FC as the group algebra.

Example 4.3.7. Let F be a field. Let C = P be a partially ordered set.
For any pair of objects x, y there is at most one morphism from x to y. By
Definition 4.3.5, the category algebra FP of P over F is f : Mor(P ) −→ F.
Then the category algebra FP as the incidence algebra.

Remark. The groups and the posets are special kinds of categories. Sim-
ilarly, the group algebra and the incidence algebra are special cases of a
category algebra. In fact, the incidence algebra is similar to the group alge-
bra. Where we mean by similar that the algebraic structures as well as the
behavour of the invariants in each category of them look like the same. This
enables us to see the properties in both sides and hence to get parallel results
in each case.
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