المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2020

 Attention Mechanism for Human Motion Prediction

 العقل، أمل فهد


//uquui/handle/20.500.12248/117129
0 التحميل
1030 المشاهدات

Attention Mechanism for Human Motion Prediction

المؤلفون : العقل، أمل فهد
رقم الطلب : 23758
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2020 - 1441 هـ
الوصف : 112 ورقة.
نوع الوعاء : ماجستير
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

Human motion prediction aims to forecast the most likely future frames of motion conditioned on a given sequence of frames. Because of its importance to many applications especially robotics, human motion prediction has received a lot of interest and has become an active area of research. Recently, deep learning methods have been dominant in many tasks due to their successful results. Particularly, Recurrent Neural Networks (RNNs) have shown excellent performance on human motion prediction task and other tasks that depend on sequential data, where preserving the order of the sequence items is crucial. The well-known Sequence-to-Sequence (Seq2Seq) architectures have been used for sequence learning where two RNNs namely the encoder and the decoder work cooperatively to transform one sequence to another. In the context of neural machine translation, the use of attention decoders yields state-of-the-art results. This work attempts to assess quantitatively the use of a bidirectional encoder and an attention decoder in human motion prediction. The experiments of this work have shown that using attention decoder has achieved state-of-the-art results after 160 milliseconds of motion prediction. In contrast with earlier works, the quality of predictions doesn’t deteriorate and remains stable even after more than 1 second of motion prediction.

العنوان: Attention Mechanism for Human Motion Prediction
المؤلفون: العقل، أمل فهد
الموضوعات :: Computer engineering
التنبؤ العلمي
تاريخ النشر :: 2020
الناشر :: جامعة أم القرى
الملخص: Human motion prediction aims to forecast the most likely future frames of motion conditioned on a given sequence of frames. Because of its importance to many applications especially robotics, human motion prediction has received a lot of interest and has become an active area of research. Recently, deep learning methods have been dominant in many tasks due to their successful results. Particularly, Recurrent Neural Networks (RNNs) have shown excellent performance on human motion prediction task and other tasks that depend on sequential data, where preserving the order of the sequence items is crucial. The well-known Sequence-to-Sequence (Seq2Seq) architectures have been used for sequence learning where two RNNs namely the encoder and the decoder work cooperatively to transform one sequence to another. In the context of neural machine translation, the use of attention decoders yields state-of-the-art results. This work attempts to assess quantitatively the use of a bidirectional encoder and an attention decoder in human motion prediction. The experiments of this work have shown that using attention decoder has achieved state-of-the-art results after 160 milliseconds of motion prediction. In contrast with earlier works, the quality of predictions doesn’t deteriorate and remains stable even after more than 1 second of motion prediction.
الوصف :: 112 ورقة.
الرابط: https://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117129
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
23758.pdfالرسالة الكاملة2.96 MBAdobe PDFعرض/ فتح
title.pdfغلاف68.73 kBAdobe PDFعرض/ فتح
indu.pdfالمقدمة378.38 kBAdobe PDFعرض/ فتح
cont.pdfفهرس الموضوعات101.93 kBAdobe PDFعرض/ فتح
abse.pdfملخص الرسالة بالإنجليزي60.68 kBAdobe PDFعرض/ فتح
absa .pdfملخص الرسالة بالعربي85.75 kBAdobe PDFعرض/ فتح
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك