
INTRODUCTION  

1.1 Human Motion Prediction 

Humans are blessed with a remarkable ability to make accurate short-term predictions 

about their surroundings based on past observations (Gui et al., 2018). Crossing a crowded 

street is one among many other tasks that would be very challenging without our capacity 

of understanding human movements and anticipating their most likely actions in the near 

future (Martinez et al., 2017). Given a set of 3D poses or skeletons, the goal of human 

motion prediction is to forecast the most likely future frames of human motion based on 

the given sequence as illustrated in Figure 1.1 (Tang et al., 2018; Martinez et al., 2017).  

 

 

 

 

 

Human motion prediction is essential for achieving the goal of robotic intelligence where 

robots are supposed not only to have a notion of human motion but also to be able to predict 

their movements, resulting in a seamless interaction between humans and machines (Tang 

et al., 2018). Many situations involve human-robot interaction such as handshaking during 

socialization or handing tools to a surgeon during an operation. For the interaction to be 

successful, the robot is supposed to recognize and forecast limbs’ pose and position 

precisely so that it can provide a rapid and proper response (Tang et al., 2018). Human 

motion forecasting proved to be important for plenty of tasks including action detection, 

action recognition and action analysis in computer vision, body pose estimation as well as 

motion synthesis in computer graphics, virtual and augmented reality, etc. (Pavllo at al., 

Figure Error! No text of specified style in document..1: Motion prediction task. The gray colored sequence 

is the input sequence and the red colored sequence is the output sequence or the prediction  

(Martinez et al., 2017). 

 



2018). Humans by nature are very flexible and can perform complex movements that are 

subject not only to the physical laws but also to the intentions of the moving person. Thus, 

human motion is inherently highly stochastic and non-deterministic which makes the task 

of modeling human motion very challenging. (Martinez et al., 2017). Specifically, many 

future poses are of high probability for the same set of observed sequence poses, thus 

making the task of long-term prediction very complex and non-trivial (Pavllo et al., 2018).  

Commonly, the literature refers to the task of long-term motion prediction as motion 

generation which is of special interest to the computer graphics community specifically for 

the animation industry. On the other hand, the task of short-term motion prediction is 

commonly referred to as motion prediction which mostly concerns the community of 

computer vision.  (Pavllo et al., 2018). The former is harder to validate quantitatively, 

therefore a qualitative metric, specifically human judgment is crucial while the latter can 

be validated quantitatively typically by measuring the mean-squared error in the angle 

space (Martinez et al., 2017). 

 

1.2 Recurrent Neural Networks and Motion Prediction 

Deep learning methods have proved to be successful for many tasks including pattern 

recognition and human motion prediction (Pavllo et al., 2019). Particularly, Recurrent 

neural networks (RNNs) have shown good performance in predicting future 3D human 

poses not only in the short-term motion prediction (Fragkiadaki et al., 2015) but also in the 

long-term motion generation (Martinez et al., 2017).  

Unlike traditional methods which require expert knowledge about human motion upfront, 

RNNs like other deep learning methods can be trained to automatically learn 

representations that generalize to novel tasks depending on the used network structure and 

the task at hand (Butepage et al., 2017). RNNs excel at processing sequential data because 

of their ability to capture temporal dependencies between elements of a sequence.  

Unlike traditional neural networks known as feedforward neural networks (FNNs), RNNs 

have internal loops to persist information allowing them to remember the context of 

previously seen inputs.  

 

 



 

 

 

 

 

 

 

 

      

 

 

FNNs process inputs at each iteration independently meaning that there is no context to be 

preserved. i.e. FNNs lack any form of memory. In the context of language modeling, 

machine translation as an example, FNNs can take a fixed number of previous words to 

predict the incoming word, a drawback that results from how FNNs are built. As a result, 

all words seen in previous iterations are forgotten even though those necessary to detect 

the next word. However, RNNs theoretically can preserve arbitrary context lengths. 

(Mulder et al., 2015). Figure 1.2 illustrates how RNNs differ from FNNs. RNNs will be 

explored in depth in chapter 3.   

 

 

 

 

 

 

Figure Error! No text of specified style in document..2: RNN vs FNN.  

(left) Recurrent neural network (RNN). (Right) Feed forward neural network (FNN). Figure adopted from 

(Mulder et al., 2015). 

 

Figure Error! No text of specified style in document..3: Unidirectional RNN. 



Some applications may require information not only from the past of the input sequence 

but also from the future. One can consider the case of speech recognition, if there happens 

to be a word with two different interpretations that both look plausible, it might be crucial 

to take into account future words alongside with past words to determine the current word 

(Goodfellow et al., 2016). Bidirectional RNN (BRNN) was invented to fulfill that need 

(Schuster & Paliwal, 1997).  

In a nutshell, BRNN combines two RNNs, one of them processes the sequence in the 

forward direction starting from the beginning of the sequence (forward through time) while 

the other one processes the sequence in the backward direction starting from the end of the 

sequence (backward through time) (Goodfellow et al., 2016). Figures 1.3 and 1.4 show 

how a unidirectional RNN differs from a bidirectional RNN. BRNNs will be discussed 

further in chapter 3, section 3.9.  

 

 

 

 

 

 

 

 

1.3 Motion Data 

The task of modeling human motion relies often on motion data acquired through motion 

capture technology. Mainly, Motion capture (MOCAP) is a cost-effective technique used 

to acquire highly realistic motion data by recording the performance of live actors to be 

Figure Error! No text of specified style in document..4: Bidirectional RNN (BRNN).  

Figure adapted from (Amidi & Amidi). 

 



converted later to mathematical representation and consequently applied to a mathematical 

model (Dean, 2016). In general, MOCAP uses an articulated model or skeleton that 

expresses the human joint chain which imposes certain parent-child relationships between 

joints (Wang et al., 2014). Among several MOCAP datasets that are publicly available  

(Sigal et al., 2009; Ionescu et al., 2014; Carnegie Mellon University - motion capture 

library), Human3.6M is currently the largest dataset with 3.6 Million accurate 3D human 

poses obtained by recording 15 different activities of 11 professional actors using accurate 

marker-based motion capture system namely Vicon system (Ionescu et al., 2014). Two 

common pose parametrizations considered in the literature are provided by the 

Human3.6M including relative 3D joint positions representation and Kinematic 

representation with a full skeleton of 32 joints for both representations (Ionescu et al., 

2014; Ionescu et al., 2011). As in previous works of Martinez et al., (2017) and Fragkiadaki 

et al., (2015), Human3.6M dataset is used in this work to assess quantitatively the use of 

bidirectional recurrent Neural Networks (BRNNs) in human motion prediction task.    

 

1.4    Overview of Motion Capture Data 

Conventional methods of character animation are very time consuming and require skillful 

animators to pose a character with the aid of specialized animation software. As a result, a 

need for better alternatives arises to fulfill the increasing demands of the animation 

industry. MOCAP technology provides a solution that creates better looking 3D animation 

in a shorter amount of time.  

 

A comprehensive definition is given by Dyer, Martin, & Zulauf, (1995) which states that 

MOCAP: 

involves measuring an object's position and orientation in physical space, then 

recording that information in a computer-usable form. Objects of interest include 

human and non-human bodies, facial expressions, camera or light positions, and 

other elements in a scene.  



The process of capturing motion is accomplished by using either physical information or 

image information provided by sensors to reconstruct the joints of the skeleton. Depending 

on the used techniques, MOCAP could be classified to sensor-based and image-based 

motion capture (Mulder et al., 2015). Sensor-based MOCAP involves the use of physical 

sensors including but not limited to inertial, optical and pressure sensors whereas image-

based MOCAP involves the use of single or multiple cameras to capture human motion by 

acquiring information from colored or depth images (Mulder et al., 2015). An extensive 

presentation of different motion capture techniques can be found in (Mulder et al., 2015). 

Another classification divides MOCAP into marker-based and marker-less depending on 

the tracking technology (72.b Documentation with motion capture, 2012). Generally, 

marker-based MOCAP offers a way to acquire animations directly from live actors by 

attaching markers to the body of the subject who wears a motion-capturing suite as shown 

in Figure 1.5, and then record the motion by tracking key points in the space over time and 

finally, converting them to 3D digital form (Meredith & Maddock, 2001). Figure 1.5 shows 

a set of markers being attached to the actor’s body. The less common alternative is the 

marker-less MOCAP which doesn’t involve the use of any artificial enhancements of the 

object or the environment other than the sensors (72.b Documentation with motion capture, 

2012). 

 

 

 

 

 

 

 

 

 

 

Figure Error! No text of specified style in document..5: 

Marker-based MOCAP.  

An actor wearing a motion-capturing suite with a set 

of markers attached to his body (Carnegie Mellon 

University - motion capture library - info). 

 



1.2.3 MOCAP File Formats   

Before mentioning the most common MOCAP file formats, it would be useful to define 

some terminologies that are necessary to understand these formats. 

 

Skeleton: The entire character that motion data is applied to make animation. The skeleton 

consists of a set of bones. Figure 1.6 shows a hierarchical skeleton alongside the hierarchy 

of the bones (Meredith & Maddock, 2001).   

 

Bone or joint: The smallest entity in the motion that is subject to individual translational 

or/and rotational changes throughout the animation. Bones are connected by joints which 

are related to each other by a parent-child relationship. The movement of the joints down 

the hierarchy i.e. children joints, is affected by the movement of joints higher in the 

hierarchy i.e. parent joints (Meredith & Maddock, 2001). The root joint as illustrated in 

Figure 1.6 is the hip joint. The hierarchical structure of the of the bones is shown to the left 

of Figure 1.6. Different datasets have different number of joints. For example, the number 

of joints composing the skeleton of Human3.6M is 32 while it’s 57 in CMU dataset.  

 

Degree of freedom / channel: Translation and rotation changes can be applied to joints 

over time to generate animation. These changes represent degree of freedoms (DOFs) of 

joints. Usually, a joint may have between 1 to 6 DOFs (Khan, et al., 2017). 

 

Frame: Any animation is composed of a set of frames that when played consecutively 

generate motion. A single frame of motion contains channel DOF data for every bone in 

the skeleton (Meredith & Maddock, 2001).       

 

MOCAP data comes into different formats. One of the most common formats is Biovision 

Hierarchy (BVH) format with .bvh extension. It was developed originally at Biovision and 

gained its popularity since then due to its simplicity (72.b Documentation with motion 

capture, 2012).  

Any BVH file is comprised of 2 sections, the hierarchy section which contains information 

about the hierarchy of the skeleton and the initial pose as shown in Figure 1.7 and the 



motion section which contains information about the channels for every joint as shown in 

Figure 1.8.  

 

 

 

 

 

  

  

 

 

 

 

 

 

  

Specifically, the hierarchy section starting with HIERARCHY keyword is used to 

determine the structure of the skeleton based on the joint’s hierarchy. ROOT keyword that 

comes afterwards refers to a common root joint which indicates the start of the skeletal 

structure. Following the root is a chain of joints connected to each other with a parent-child 

relationship and encapsulated within a pair of curly braces where each child joint is 

proceeded with JOINT keyword.  

However, the end of the chain is indicated with (End site) keyword which refers to an end-

effector that is, the last joint in a chain with no children where offset values of this joint 

indicates the bones’ length and orientation.  

Each joint has a position indicated by the three numbers following OFFSET keyword. 

These numbers represent x y z relative positions or translations of a joint with respect to 

its parent. In the case of the root joint, these numbers represent a global position. 

Figure Error! No text of specified style in document..6: An articulated body model or 

skeleton illustrates the hierarchy of bones. 

The root i.e. hip bone is highlighted in orange. 

 



Furthermore, offset values determine implicitly the length and orientation of the parent 

bone. CHANNELS keyword specifies the DOFs of a joint. The order of channels for every 

joint matches the order of data in the motion section of the file. Particularly, the first 6 

values in the motion section correspond to the channels defined for the root joint in the 

hierarchy section in the same order they appear with and the next 3 values correspond to 

the channels of the child joint that comes next in the hierarchy in the same order they appear 

with and so forth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure Error! No text of specified style in document..7: The hierarchy section of a BVH 
file with (.bvh) extension. 

 



 

 

 

 

 

 

 

 

 

 

 

The MOTION section of the file starts with number of frames and frame’s duration or 

frame rate and finally the channel data for each bone as the appear in the hierarchy section 

of the file. In fact, the channel data is nothing more than the animation data of each bone 

through time.  An older MOCAP format is the Biovision Action File (BVA) with .bva 

extension which is similar to BVH file in many ways but with key differences, the most 

important of which is that BVA can’t store motion for a hierarchical skeleton. The motion 

of a child bone doesn’t depend on the motion of any other joints (Lander, 1998). Another 

common format is the Hierarchical Translation Rotation (HTR) format with .htr extension 

which was developed by Motion Analysis company with the aim of solving some problems 

of BVH files (Du et al., 2016). Acclaim motion file is yet another popular format designed 

by Acclaim gaming company. This format consists of two files. The first file is the Acclaim 

Skeleton File ASF with .asf extension which contains information about the hierarchy and 

the initial pose of the skeleton. The second file is the Acclaim Motion Capture (AMC) file 

with .amc extension which is used to save motion data of the skeleton. This separation 

between the hierarchy information and the motion data is useful since only one ASF file 

can be used in a motion capture session with multiple AMC files (Lander, 1998). 

Coordinate 3D (C3D) is a binary format defined by the National Institute of  Health mainly 

Figure Error! No text of specified style in document..8: The motion section of a BVH file with (.bvh) 
extension.  
Channel information of the first frame of motion is shown. 
 



to be used in the biomechanical research. Unlike previously described formats which 

merely contain information about 3D positions and orientations, C3D supports wide 

diversity of data that is useful for the biomechanical research (72.b Documentation with 

motion capture, 2012).  

 


