

Attention Mechanism for Human Motion

Prediction

 By

 AMAL FAHAD AL-AQEL

 Umm Al-Qura University

 Makkah, Saudi Arabia

 2020

 Submitted to the Faculty of the

College of Computer Science and Information System of

the

Umm Al-Qura University

 in partial fulfillment of

 the requirements for

 the Degree of

MASTER OF SCIENCE

 April 2020

ii

Attention Mechanism for Human Motion

Prediction

Signature of Author .……..………………

Committee Member Signature and Date

Dr. ………..……………… (Chairman) ………..………………

Dr. ………..……………… (Member) ………..………………

Dr. ………..……………… (Member) ………..………………

Dr. ………..……………… (Member) ………..………………

Dr. ………..……………… (External Examiner) ………..………………

Date of Degree : [April 2020]

iii

Acknowledgements reflect the views of the author and are not endorsed by committee members

or Umm AlQura University.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah Almighty for giving me the strength and

means to undertake this thesis. Also, I would like to express my sincere gratitude to my

advisor dr.Murtaza Khan for the continuous support of my thesis. I cannot express enough

thanks to my family and my colleagues for their continued support and encouragement.

iv

ABSTRACT

Full Name : Amal Fahad Al-Aqel

Thesis Title : Bidirectional Recurrent Neural Networks for Human Motion Prediction

Major Field : Computer Vision

Date of Degree : [April 2020]

Human motion prediction aims to forecast the most likely future frames of motion

conditioned on a given sequence of frames. Because of its importance to many applications

especially robotics, human motion prediction has received a lot of interest and has become

an active area of research. Recently, deep learning methods have been dominant in many

tasks due to their successful results. Particularly, Recurrent Neural Networks (RNNs) have

shown excellent performance on human motion prediction task and other tasks that depend

on sequential data, where preserving the order of the sequence items is crucial. The well-

known Sequence-to-Sequence (Seq2Seq) architectures have been used for sequence

learning where two RNNs namely the encoder and the decoder work cooperatively to

transform one sequence to another. In the context of neural machine translation, the use of

attention decoders yields state-of-the-art results. This work attempts to assess

quantitatively the use of a bidirectional encoder and an attention decoder in human motion

prediction. The experiments of this work have shown that using attention decoder has

achieved state-of-the-art results after 160 milliseconds of motion prediction. In contrast

with earlier works, the quality of predictions doesn’t deteriorate and remains stable even

after more than 1 second of motion prediction.

v

 ملخص الرسالة

]أمل فهد العقل[الاسم الكامل:

]تكراريةالالتنبؤ بالحركة البشرية باستخدام الشبكات العصبية [عنوان الرسالة:

]هندسة وعلوم الحاسب الآلي[التخصص:

 تاريخ الدرجة العلمية:

والمشروطة بسلسلة معطاة من إطارات كثر احتمالا المستقبلية الأ إطارات الحركة توقعيهدف التنبؤ بالحركة البشرية إلى

 باهتمامهذا المجال حظيعلم الروبوتات، فقد ل سيما، التطبيقات. نظراا لأهمية التنبؤ بالحركة البشرية لكثير من الحركة

ا للبحث. كبير في الآونة الأخيرة، سادت أساليب التعلم العميق في العديد من المهام نظراا لنتائجها وأصبح مجالا نشطا

أداءا ممتازاا في مهمة التنبؤ بالحركة البشرية وغيرها على وجه الخصوص رية الناجحة. أظهرت الشبكات العصبية التكرا

تم .، حيث يعد الحفاظ على ترتيب العناصر أمراا بالغ الأهميةمن المهام خاصة تلك التي تعتمد على البيانات المتسلسلة

هما نوعان من الشبكات العصبية التكرارية وعمل ي(في تعلم التسلسل حيث Seq2Seqاستخدام البنى المعروفة باسم)

 أسفرفي سياق الترجمة الآلية العصبية، إلى سلسلة أخرى. ما تحويل سلسلة بهدف والمفسر بشكل تعاونيالمشفر

استخدام المشفر كل كمي يحاول هذا العمل أن يقيم بشاستخدام المشفرات المعتمدة على تقنية النتباه إلى أحدث النتائج.

أوضحت التجارب التي أجريت في هذا ثنائي التجاه والمفسر المعتمد على تقنية النتباه في التنبؤ بالحركة البشرية.

 .بالحركة من التنبؤمن الثانية ا جزء 160 بعد المفسر المعتمد على تقنية النتباه قاد إلى تحقيق أحدث النتائجالعمل أن

من التنبؤ واحدة ثانية أكثر من على عكس الأعمال السابقة، فإن جودة التنبؤات ل تتدهور وتظل مستقرة حتى بعد مضي

 بالحركة.

vi

PUBLISHED WORK

A paper entitled “Attention Mechanism for Human Motion Prediction” was presented at

the 2020 3rd International Conference on Computer Applications Information Security

(ICCAIS20).

vii

TABLE OF CONTENTS

ABSTRACT ... iv

PUBLISHED WORK ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES ... ix

LIST OF FIGURES ... x

Chapter 1 ... 1

INTRODUCTION AND LITERATURE REVIEW ... 1

1.1 Human Motion Prediction .. 1

1.2 Recurrent Neural Networks and Motion Prediction .. 2

1.3 Motion Data .. 5

1.4 Overview of Motion Capture Data ... 6

1.2.3 MOCAP File Formats .. 7

1.5 Literature Review .. 12

Chapter 2 ... 15

DEEP LEARNING.. 15

2.1 Introduction .. 15

2.2 Machine learning vs deep learning ... 17

2.3 Machine learning categories ... 18

2.4 Neural Networks .. 20

2.4.1 Activation Functions .. 24

2.4.2 Neural Networks in Action .. 28

2.4.3 Vectorization in Neural Networks .. 40

Chapter 3 ... 43

RECURRENT NEURAL NETWORKS ... 43

3.1 Introduction .. 43

3.2 RNN Activation Functions .. 47

3.3 RNN Loss Function .. 48

3.4 RNNs in Action .. 48

3.5 Vanishing and Exploding Gradients .. 54

viii

3.6 Gated RNNs .. 55

3.6.1 Long Short-Term Memory - LSTM ... 55

3.6.2 Gated Recurrent Unit – GRU ... 60

3.7 Residual Connections ... 62

3.8 Gradient Clipping .. 65

3.9 RNN Architectures ... 67

3.10 Bidirectional Recurrent Neural Networks ... 69

3.11 Encoder-Decoder Sequence-to-Sequence Architecture .. 72

3.12 Attention Mechanism ... 74

Chapter 4 ... 76

MATERIALS AND METHODS .. 76

4.1 Materials ... 76

4.1.1 Human3.6 Dataset .. 76

4.2 Methods ... 81

4.2.1 Model Architecture .. 83

4.2.2 Encoder ... 84

4.2.3 Decoder ... 86

4.2.4 Model Implementation .. 88

Chapter 5 ... 98

EXPERIMENTS AND RESULTS.. 98

5.1 Experimental Setup ... 98

5.1.1 Environmental Specifications of the Experiment .. 98

a) Hardware .. 98

b) Software .. 98

5.1.2 Experimentations of this Work ... 99

a) Hyperparameters ... 100

b) Architecture and algorithm implementation details ... 100

5.1.3 Results ... 101

5.1.4 Discussion .. 105

5.1.5 Conclusion ... 106

5.1.6 Future work .. 107

REFRENCES .. 108

ix

LIST OF TABLES

Table 1: Common choices of activation functions used in RNNs. ... 47

Table 2: One-hot encoding for categorical variables. ... 50

Table 3: Joints of Human3.6 skeleton. ... 79

Table 4: Hardware specifications. .. 98

Table 5: Software specifications. .. 98

Table 6: Model’s hyperparameters. ... 100

Table 7: Model’s architectural and algorithmic details. .. 101

Table 8: Mean squared errors in Euler angles of discussion and smoking actions. 102

Table 9: Mean squared errors in Euler angles of discussion and smoking actions. 102

Table 10: Mean squared errors in Euler angles of directions and greeting actions. 103

Table 11: Mean squared errors in Euler angles of phoning and posing actions. 103

Table 12: Mean squared errors in Euler angles of purchases and sitting actions. 104

Table 13: Mean squared errors in Euler angles of sitting down and taking photo actions. 104

Table 14: Mean squared errors in Euler angles of waiting and walking dog actions. 105

Table 15: Mean squared errors in Euler angles of walking together action and the average

mean square errors for all actions. ... 105

x

LIST OF FIGURES

Figure 1.1: Motion prediction task. The gray colored sequence is the input sequence and the

red colored sequence is the output sequence or the prediction .. 1

Figure 1.2: RNN vs FNN. .. 3

Figure 1.3: Unidirectional RNN. ... 4

Figure 1.4: Bidirectional RNN (BRNN). .. 5

Figure 1.5: Marker-based MOCAP. .. 7

Figure 1.6: An articulated body model or skeleton illustrates the hierarchy of bones. 9

Figure 1.7: The hierarchy section of a BVH file with (.bvh) extension. 10

Figure 1.8: The motion section of a BVH file with (.bvh) extension. 11

Figure 2.1: The relationship between artificial intelligence, machine learning, and deep

learning according to Chollet. Figure adapted from .. 15

Figure 2.2: The relationship between Artificial intelligence, machine learning and deep

learning according to Trask. Figure adapted from .. 16

Figure 2.3: Machine learning vs classical programming. ... 17

Figure 2.4: Machine learning algorithms. ... 18

Figure 2.5: Deep neural network for handwritten digit classification 20

Figure 2.6: A neural network for handwritten digit classification shown as a function that

maps an input to a target. .. 21

Figure 2.7: A neural network with three layers. ... 21

Figure 2.8: A simple neural network. ... 22

Figure 2.9: Rectified linear unit (RELU) ... 25

Figure 2.10: Sigmoid function (Amidi & Amidi). ... 26

Figure 2.11: Hyperbolic tangent function (Tanh) ... 27

Figure 2.12: The effect of changing weights on the Sigmoid function curve 28

Figure 2.13: The effect of changing bias on the Sigmoid function curve 28

Figure 2.14: Gradient descent algorithm. .. 31

Figure 2.15: : A neural network with real numbers. .. 33

Figure 2.16: A simple neural network .. 40

Figure 3.1: A recurrent network with a loop. .. 44

Figure 3.2: RNN with no outputs. (left) a circuit diagram of the RNN. 45

Figure 3.3: Traditional RNN. .. 46

Figure 3.4: Vanilla RNN block. .. 46

Figure 3.5: Rolled RNN diagram vs unrolled RNN diagram. .. 48

Figure 3.6: A simple RNN that is to be trained to predict the last letter “e” from the word

“Nice” given the previous three letters. ... 50

Figure 3.7: Traditional RNN module - vanilla RNN. .. 56

Figure 3.8: Long-short term memory (LSTM). .. 57

Figure 3.9: First part of the input gate... 59

Figure 3.10: Second part of the input gate... 59

file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810658
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810658
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810659
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810660
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810661
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810662
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810663
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810664
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810665
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810666
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810666
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810667
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810667
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810668
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810670
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810671
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810671
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810672
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810673
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810674
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810675
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810676
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810677
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810678
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810679
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810681
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810682
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810683
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810685
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810686
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810687
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810687
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810688
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810689
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810690
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810691

xi

Figure 3.11: The two parts of the input gate combined through element-wise multiplication.

 ... 60

Figure 3.12: Gated Recurrent Unit (GRU). ... 61

Figure 3.13: (left) training error (right) testing error. ... 63

Figure 3.14: The residual block used by He et al., (2015)... 64

Figure 3.15: Cost function surface of highly non-linear models. ... 65

Figure 3.16: One-to-one RNN. .. 68

Figure 3.17: One-to-many RNN. ... 68

Figure 3.18: Many-to-one RNN. ... 68

Figure 3.19: Many-to-many RNN, 𝑻𝒙 = 𝑻𝒐. ... 68

Figure 3.20: Many-to-many RNN, 𝑻𝒙 ≠ 𝑻𝒐. ... 69

Figure 3.21 Bidirectional RNN. .. 70

Figure 3.22: Encoder-decoder architecture. .. 73

Figure 4.1: Preprocessed H3.6 dataset arrangement. ... 78

Figure 4.2: Part of a motion data file from the adopted dataset. ... 78

Figure 4.3: : H3.6 skeleton where joints are numbered according to their IDs given in Table

3. .. 80

Figure 4.4: The division of encoder-inputs, decoder-inputs and decoder-outputs sequences.

 ... 82

Figure 4.5: The Seq2Seq architecture used in this work. ... 84

Figure 4.6: A unidirectional encoder. .. 85

Figure 4.7: A bidirectional encoder. ... 85

Figure 4.8: Attention decoder with sampling. ... 87

Figure 4.9: Attention decoder with sampling. ... 87

Figure 4.10: Data preprocessing stages. ... 89

Figure 4.11: The extraction of SRNN sequences. .. 91

Figure 4.12: encoder-inputs dimensions .. 95

Figure 4.13: decoder-inputs and decoder-outputs dimensions. ... 95

Figure 4.14: Attention steps. ... 96

Figure 4.15: Finding the error between the ground truth and the prediction for a single

action. .. 97

file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810692
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810692
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810693
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810694
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810695
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810696
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810697
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810698
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810699
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810700
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810701
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810702
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810703
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810704
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810705
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810706
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810706
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810707
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810707
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810708
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810709
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810710
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810711
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810712
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810713
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810714
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810715
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810716
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810717
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810718
file:///C:/Users/atpc/Desktop/الملف%20الأول/Attention%20Mechanism%20for%20Human%20Motion%20Prediction%20.docx%23_Toc38810718

xii

1

Chapter 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Human Motion Prediction

Humans are blessed with a remarkable ability to make accurate short-term predictions

about their surroundings based on past observations (Gui et al., 2018). Crossing a crowded

street is one among many other tasks that would be very challenging without our capacity

of understanding human movements and anticipating their most likely actions in the near

future (Martinez et al., 2017).

Given a set of 3D poses or skeletons, the goal of human motion prediction is to forecast

the most likely future frames of human motion based on the given sequence as illustrated

in Figure 1.1 (Tang et al., 2018; Martinez et al., 2017).

Human motion prediction is essential for achieving the goal of robotic intelligence where

robots are supposed not only to have a notion of human motion but also to be able to predict

their movements, resulting in a seamless interaction between humans and machines (Tang

et al., 2018).

Figure 1.1: Motion prediction task. The gray colored sequence is the input sequence and the red colored

sequence is the output sequence or the prediction

(Martinez et al., 2017).

2

Many situations involve human-robot interaction such as handshaking during socialization

or handing tools to a surgeon during an operation. For the interaction to be successful, the

robot is supposed to recognize and forecast limbs’ pose and position precisely so that it can

provide a rapid and proper response (Tang et al., 2018). Human motion forecasting proved

to be important for plenty of tasks including action detection, action recognition and action

analysis in computer vision, body pose estimation as well as motion synthesis in computer

graphics, virtual and augmented reality, etc. (Pavllo at al., 2018). Humans by nature are

very flexible and can perform complex movements that are subject not only to the physical

laws but also to the intentions of the moving person. Thus, human motion is inherently

highly stochastic and non-deterministic which makes the task of modeling human motion

very challenging. (Martinez et al., 2017). Specifically, many future poses are of high

probability for the same set of observed sequence poses, thus making the task of long-term

prediction very complex and non-trivial (Pavllo et al., 2018).

Commonly, the literature refers to the task of long-term motion prediction as motion

generation which is of special interest to the computer graphics community specifically for

the animation industry. On the other hand, the task of short-term motion prediction is

commonly referred to as motion prediction which mostly concerns the community of

computer vision. (Pavllo et al., 2018). The former is harder to validate quantitatively,

therefore a qualitative metric, specifically human judgment is crucial while the latter can

be validated quantitatively typically by measuring the mean-squared error in the angle

space (Martinez et al., 2017).

1.2 Recurrent Neural Networks and Motion Prediction

Deep learning methods have proved to be successful for many tasks including pattern

recognition and human motion prediction (Pavllo et al., 2019).

Particularly, Recurrent neural networks (RNNs) have shown good performance in

predicting future 3D human poses not only in the short-term motion prediction

3

(Fragkiadaki et al., 2015) but also in the long-term motion generation (Martinez et al.,

2017).

Unlike traditional methods which require expert knowledge about human motion upfront,

RNNs like other deep learning methods can be trained to automatically learn

representations that generalize to novel tasks depending on the used network structure and

the task at hand (Butepage et al., 2017). RNNs excel at processing sequential data because

of their ability to capture temporal dependencies between elements of a sequence. Unlike

traditional neural networks known as feedforward neural networks (FNNs), RNNs have

internal loops to persist information allowing them to remember the context of previously

seen inputs.

FNNs process inputs at each iteration independently meaning that there is no context to be

preserved. i.e. FNNs lack any form of memory. In the context of language modeling,

machine translation as an example, FNNs can take a fixed number of previous words to

predict the incoming word, a drawback that results from how FNNs are built. As a result,

all words seen in previous iterations are forgotten even though those necessary to detect

Figure 1.2: RNN vs FNN.

(left) Recurrent neural network (RNN). (Right) Feed forward neural network (FNN). Figure adopted from

(Mulder et al., 2015).

4

the next word. However, RNNs theoretically can preserve arbitrary context lengths.

(Mulder et al., 2015). Figure 1.2 illustrates how RNNs differ from FNNs. RNNs will be

explored in depth in chapter 3.

Some applications may require information not only from the past of the input sequence

but also from the future. One can consider the case of speech recognition, if there happens

to be a word with two different interpretations that both look plausible, it might be crucial

to take into account future words alongside with past words to determine the current word

(Goodfellow et al., 2016). Bidirectional RNN (BRNN) was invented to fulfill that need

(Schuster & Paliwal, 1997).

In a nutshell, BRNN combines two RNNs, one of them processes the sequence in the

forward direction starting from the beginning of the sequence (forward through time) while

the other one processes the sequence in the backward direction starting from the end of the

sequence (backward through time) (Goodfellow et al., 2016). Figures 1.3 and 1.4 show

how a unidirectional RNN differs from a bidirectional RNN. BRNNs will be discussed

further in chapter 3, section 3.9.

Figure 1.3: Unidirectional RNN.

5

1.3 Motion Data

The task of modeling human motion relies often on motion data acquired through motion

capture technology. Mainly, Motion capture (MOCAP) is a cost-effective technique used

to acquire highly realistic motion data by recording the performance of live actors to be

converted later to mathematical representation and consequently applied to a mathematical

model (Dean, 2016). In general, MOCAP uses an articulated model or skeleton that

expresses the human joint chain which imposes certain parent-child relationships between

joints (Wang et al., 2014). Among several MOCAP datasets that are publicly available

(Sigal et al., 2009; Ionescu et al., 2014; Carnegie Mellon University - motion capture

library), Human3.6M is currently the largest dataset with 3.6 Million accurate 3D human

poses obtained by recording 15 different activities of 11 professional actors using accurate

marker-based motion capture system namely Vicon system (Ionescu et al., 2014). Two

common pose parametrizations considered in the literature are provided by the

Human3.6M including relative 3D joint positions representation and Kinematic

representation with a full skeleton of 32 joints for both representations (Ionescu et al.,

2014; Ionescu et al., 2011).

Figure 1.4: Bidirectional RNN (BRNN).

Figure adapted from (Amidi & Amidi).

6

As in previous works of Martinez et al., (2017) and Fragkiadaki et al., (2015), Human3.6M

dataset is used in this work to assess quantitatively the use of bidirectional recurrent Neural

Networks (BRNNs) in human motion prediction task.

1.4 Overview of Motion Capture Data

Conventional methods of character animation are very time consuming and require skillful

animators to pose a character with the aid of specialized animation software. As a result, a

need for better alternatives arises to fulfill the increasing demands of the animation

industry. MOCAP technology provides a solution that creates better looking 3D animation

in a shorter amount of time.

A comprehensive definition is given by Dyer, Martin, & Zulauf, (1995) which states that

MOCAP:

involves measuring an object's position and orientation in physical space, then

recording that information in a computer-usable form. Objects of interest include

human and non-human bodies, facial expressions, camera or light positions, and

other elements in a scene.

The process of capturing motion is accomplished by using either physical information or

image information provided by sensors to reconstruct the joints of the skeleton. Depending

on the used techniques, MOCAP could be classified to sensor-based and image-based

motion capture (Mulder et al., 2015). Sensor-based MOCAP involves the use of physical

sensors including but not limited to inertial, optical and pressure sensors whereas image-

based MOCAP involves the use of single or multiple cameras to capture human motion by

acquiring information from colored or depth images (Mulder et al., 2015).

An extensive presentation of different motion capture techniques can be found in (Mulder

et al., 2015). Another classification divides MOCAP into marker-based and marker-less

7

depending on the tracking technology (72.b Documentation with motion capture, 2012).

Generally, marker-based MOCAP offers a way to acquire animations directly from live

actors by attaching markers to the body of the subject who wears a motion-capturing suite

as shown in Figure 1.5, and then record the motion by tracking key points in the space over

time and finally, converting them to 3D digital form (Meredith & Maddock, 2001). Figure

1.5 shows a set of markers being attached to the actor’s body. The less common alternative

is the marker-less MOCAP which doesn’t involve the use of any artificial enhancements

of the object or the environment other than the sensors (72.b Documentation with motion

capture, 2012).

1.2.3 MOCAP File Formats

Before mentioning the most common MOCAP file formats, it would be useful to define

some terminologies that are necessary to understand these formats.

Figure 1.5: Marker-based MOCAP.

An actor wearing a motion-capturing suite with a set

of markers attached to his body (Carnegie Mellon

University - motion capture library - info).

8

Skeleton: The entire character that motion data is applied to make animation. The skeleton

consists of a set of bones. Figure 1.6 shows a hierarchical skeleton alongside the hierarchy

of the bones (Meredith & Maddock, 2001).

Bone or joint: The smallest entity in the motion that is subject to individual translational

or/and rotational changes throughout the animation. Bones are connected by joints which

are related to each other by a parent-child relationship. The movement of the joints down

the hierarchy i.e. children joints, is affected by the movement of joints higher in the

hierarchy i.e. parent joints (Meredith & Maddock, 2001). The root joint as illustrated in

Figure 1.6 is the hip joint. The hierarchical structure of the of the bones is shown to the left

of Figure 1.6. Different datasets have different number of joints. For example, the number

of joints composing the skeleton of Human3.6M is 32 while it’s 57 in CMU dataset.

Degree of freedom / channel: Translation and rotation changes can be applied to joints

over time to generate animation. These changes represent degree of freedoms (DOFs) of

joints. Usually, a joint may have between 1 to 6 DOFs (Khan, et al., 2017).

Frame: Any animation is composed of a set of frames that when played consecutively

generate motion. A single frame of motion contains channel DOF data for every bone in

the skeleton (Meredith & Maddock, 2001).

MOCAP data comes into different formats. One of the most common formats is Biovision

Hierarchy (BVH) format with .bvh extension. It was developed originally at Biovision and

gained its popularity since then due to its simplicity (72.b Documentation with motion

capture, 2012).

Any BVH file is comprised of 2 sections, the hierarchy section which contains information

about the hierarchy of the skeleton and the initial pose as shown in Figure 1.7 and the

motion section which contains information about the channels for every joint as shown in

Figure 1.8.

9

Specifically, the hierarchy section starting with HIERARCHY keyword is used to

determine the structure of the skeleton based on the joint’s hierarchy. ROOT keyword that

comes afterwards refers to a common root joint which indicates the start of the skeletal

structure. Following the root is a chain of joints connected to each other with a parent-child

relationship and encapsulated within a pair of curly braces where each child joint is

proceeded with JOINT keyword.

However, the end of the chain is indicated with (End site) keyword which refers to an end-

effector that is, the last joint in a chain with no children where offset values of this joint

indicates the bones’ length and orientation.

Each joint has a position indicated by the three numbers following OFFSET keyword.

These numbers represent x y z relative positions or translations of a joint with respect to

its parent. In the case of the root joint, these numbers represent a global position.

Furthermore, offset values determine implicitly the length and orientation of the parent

bone. CHANNELS keyword specifies the DOFs of a joint. The order of channels for every

joint matches the order of data in the motion section of the file. Particularly, the first 6

Figure 1.6: An articulated body model or skeleton illustrates the hierarchy of bones.

The root i.e. hip bone is highlighted in orange.

10

values in the motion section correspond to the channels defined for the root joint in the

hierarchy section in the same order they appear with and the next 3 values correspond to

the channels of the child joint that comes next in the hierarchy in the same order they appear

with and so forth.

Figure 1.7: The hierarchy section of a BVH file with (.bvh) extension.

11

The MOTION section of the file starts with number of frames and frame’s duration or

frame rate and finally the channel data for each bone as the appear in the hierarchy section

of the file. In fact, the channel data is nothing more than the animation data of each bone

through time. An older MOCAP format is the Biovision Action File (BVA) with .bva

extension which is similar to BVH file in many ways but with key differences, the most

important of which is that BVA can’t store motion for a hierarchical skeleton. The motion

of a child bone doesn’t depend on the motion of any other joints (Lander, 1998). Another

common format is the Hierarchical Translation Rotation (HTR) format with .htr extension

which was developed by Motion Analysis company with the aim of solving some problems

of BVH files (Du et al., 2016). Acclaim motion file is yet another popular format designed

by Acclaim gaming company. This format consists of two files. The first file is the Acclaim

Skeleton File ASF with .asf extension which contains information about the hierarchy and

the initial pose of the skeleton. The second file is the Acclaim Motion Capture (AMC) file

with .amc extension which is used to save motion data of the skeleton. This separation

between the hierarchy information and the motion data is useful since only one ASF file

can be used in a motion capture session with multiple AMC files (Lander, 1998).

Coordinate 3D (C3D) is a binary format defined by the National Institute of Health mainly

Figure 1.8: The motion section of a BVH file with (.bvh) extension.

Channel information of the first frame of motion is shown.

12

to be used in the biomechanical research. Unlike previously described formats which

merely contain information about 3D positions and orientations, C3D supports wide

diversity of data that is useful for the biomechanical research (72.b Documentation with

motion capture, 2012).

1.5 Literature Review

The scope of this work is focused primarily on the use of deep learning methods

specifically recurrent neural networks (RNNs) in the task of human motion prediction. This

section will briefly review the recent works that employ deep learning to predict human

motion with a special focus on RNNs. The reviewed works mainly rely on motion data

acquired from motion capture MOCAP techniques. It's worth mentioning that the literature

generally refers to the process of producing motion for less than 500ms as short-term

prediction which is the main concern of this research. Otherwise, if the generated motion

exceeds 500ms it's referred to as long-term generation or synthesis. For skeleton-based

tasks such as action recognition, deep learning approaches have outperformed traditional

methods (Tang et al., 2018). An early work of Taylor et al., (2007) suggested a conditional

restricted Boltzmann machine (CRBM) to model motion where sampling is needed for

inference (Martinez et al., 2017). The model was experimented with few motions including

walking, jogging and running (Butepage et al., 2017).Encoder-Recurrent-Decoder (ERD)

architecture for human motion prediction was proposed by Fragkiadaki et al., (2015). The

proposed model is an RNN that integrates a nonlinear encoder and a decoder before and

after the recurrent layers. To ease accumulated errors during training which eventually lead

to predicting unrealistic motion, the authors of Fragkiadaki, et al., (2015) suggested the use

of noise scheduling by adding increasing amounts of random noise gradually to the input

data during training. Although noise scheduling has alleviated the problem to some degree,

it's hard to tune noise scheduling in practice (Martinez et al., 2017).

Another architecture, namely 3-layer long short-term memory network (LSTM-3LR) was

proposed in the same study (Fragkiadaki, et al., 2015). ERD and LSTM-3LR both consist

of concatenated Long Short-Term Memory LSTM units, but the former has a non-linear

space encoder for data preprocessing. Recently, the authors of Martinez et al. (2017) have

13

further extended the work of Fragkiadaki et al. (2015) by proposing a significantly simpler

RNN architecture with one Gated Recurrent Unit (GRU) instead of using the more

complicated LSTM unit which was used in previous works (Jain et al., 2016; Fragkiadaki

et al., 2015). To address the problem of discontinuity between the last frame of the input

sequence and the first frame of the predicted sequence, authors of Martinez et al., (2017)

decided to model velocities instead of absolute joint angles by deploying a residual

architecture that models first-order motion derivatives. The use of a residual architecture

leads to smoother and more accurate predictions. Earlier, the work of Jain et al., (2016)

tried to combine high level spatio-temporal graphs (st-graphs) with RNNs by developing a

structural RNN (SRNN) which transforms an st-graph into a trainable and scalable RNNs

mixture. By combining st-graphs with RNNs, authors aimed at exploiting the power of

RNNs at modeling sequential data and to compensate for their lack of an intuitive spatio-

temporal structure that can capture spatio-temporal relations between joints and hence, is

suitable to represent skeletal data. As in Fragkiadaki et al., (2015), noise scheduling was

employed to lessen the effect of accumulated errors. As a result, SRNN generates plausible

motions for actions like eating. For more challenging actions like discussion, SRNN doesn't

generate unrealistic motions (Martinez et al., 2017). In the previously mentioned works

(Martinez et al., 2017; Fragkiadaki et al., 2015; Taylor et al., 2007; Butepage et al., 2017;

Jain et al., 2016), the traditional Euclidean loss is used to measure the distance between the

prediction and the ground truth during training. However, a novel loss function, namely

the geodesic loss, was proposed by Gui et al., (2018) to replace the Euclidean loss.

Generally, 3D rotations between joint angles are used to represent motion frames. Unlike

Euclidean distance, the geodesic distance exploits the geometric structure of 3D rotations

and thus, avoids inaccuracies in predictions and convergence to mean pose after longer

time periods that follow from the use of the Euclidean distance as a loss function. Inspired

by generative adversarial networks (GANs), the authors introduced two global

discriminators to validate the predicted motion while casting the predictor as a generator.

Basically, the generator is a decoder-encoder network while both discriminators are RNNs.

The first global discriminator is a fidelity discriminator that validates the overall

plausibility of the predicted motion whereas the second one is a continuity discriminator

that validates the coherence of the predicted sequence with the input sequence. The recent

14

work of Pavllo et al., (2019), uses Quaternions representation to represent joint angles,

which was overlooked by previously mentioned works. Because Euler angles

representation suffers from singularities and discontinuities, using it will ultimately lead to

the notorious problem of exploding gradients which makes the training very difficult or

impossible. Alternatively, Exponential maps representation was used in previous works

which alleviates these issues to some degree but doesn't eliminate them. In addition to using

Quaternions, the authors suggested a loss function that penalizes absolute joint position

errors instead of joint angle errors. Additionally, both convolutional and recurrent

architectures were investigated and evaluated on short-term prediction and long-term

generation.

15

Chapter 2

DEEP LEARNING

2.1 Introduction

Artificial Intelligence, machine learning, deep learning, despite being related and

sometimes overlapping concepts, they are not identical indeed. Different researchers may

have different views about how these fields are related. Figures 2.1 and 2.2 present different

views of the relations between these fields.

Figure 2.1: The relationship between artificial intelligence,

machine learning, and deep learning according to Chollet.

Figure adapted from

 (Chollet, 2017a).

16

Artificial intelligence or AI could be defined as “the effort to automate intellectual tasks

normally performed by humans.” (Chollet, 2017a). Even if one chose to go with the opinion

that considers machine learning a part of AI, there are many approaches in AI that don’t

involve any learning.

For example, early chess programs include merely hardcoded rules without any learning

mechanisms. Machine learning, on the other hand, seeks to grant computers the ability to

learn without being explicitly programmed to do so (Trask, 2019). Figure 2.3 points out the

difference between classical programming and machine learning.

The former is about taking as input handcrafted rules and data that will be processed

according to these rules to get answers as output whereas the latter is about taking data and

answers as input to get the rules. These rules are used then with new data to get the expected

answers. Classical programming or alternatively symbolic AI, provides solution to well-

Figure 2.2: The relationship between Artificial

intelligence, machine learning and deep learning

according to Trask. Figure adapted from

(Trask, 2019).

17

defined, logical problems but fails to solve more complex problems such as language

translation, image and speech recognition etc. Without being explicitly programmed, a

machine learning program is trained by being exposed to many training examples to learn

the rules by capturing certain patterns in the training data. At its essence, machine learning

observes a pattern and aims to imitate that pattern either directly or indirectly.

2.2 Machine learning vs deep learning

Mainly, machine learning learns how to map an input image for example, to some output

or a target such as a label or a class. This is done by looking at too many training examples

of inputs and targets (Chollet, 2017a). Deep learning resembles machine learning in the

learning process but with a distinction. When it comes to deep learning, the learning is

done through several successive layers which work as filters that purify the incoming

information to become increasingly meaningful. This is done using models loosely inspired

by the human brain known as neural networks. Before delving into the fundamental

building blocks of deep learning, the neural networks, a brief overview of the categories of

machine learning algorithms will be provided next.

Figure 2.3: Machine learning vs classical programming.

Figure adapted from (Chollet, 2017a).

18

2.3 Machine learning categories

Machine learning algorithms can be classified into 4 different categories as shown in Figure

2.4.

Figure 2.4: Machine learning algorithms.

Sometimes, these categories may overlap and may not be perfectly separable, nonetheless,

they are useful to give a broader view of different kinds of machine learning algorithms.

The following sections present briefly the categories of machine learning.

a) Supervised learning:

Most machine learning algorithms used successfully in industry today fall under the

supervised learning category (Chollet, 2017a). Supervised learning aims at learning to

predict a known target (usually human-annotated labels) given an input.

Usually, the input or the feature is denoted as 𝑥 and the target or the label is denoted as 𝑦.

For the 𝑖𝑡ℎ example in a dataset, (𝑥𝑖, 𝑦𝑖) refers to the (feature, target) pair of the 𝑖𝑡ℎ example

from the dataset. A dataset is a collection of 𝑛 examples each of which consists of an

(𝑥𝑖 , 𝑦𝑖) pair (Zhang et al., 2019). Given a set of labeled examples (𝑥𝑖 , 𝑦𝑖) of inputs and

correct labels, the goal of a supervised learning algorithm is to learn a model 𝑓 that maps

an input 𝑥𝑖 to a prediction 𝑓(𝑥𝑖) = 𝑦̂𝑖 by adjusting a set of parameters 𝜃 during the

training phase to get the prediction as close possible to the correct label. Most supervised

learning algorithms are either classification or regression tasks (Chollet, 2017a).

19

What differentiate a regression task from a classification task is the type of the output. A

regression task aims at learning a mapping 𝑓 from an input 𝑥 to a continuous real valued

𝑦. A classic example of a regression problem is predicting house prices given a set of

features such as the square footage, number of rooms, etc. The target 𝑦 may be any

arbitrary number in some range. However, for a classification problem 𝑦 may take only a

small number of discrete values. Recognizing a handwritten digit is a classification task in

which the goal is to look at an image as a set of pixels and predict which class or digit the

image belongs among a set of discrete values (classes) (Zhang, et al., 2019).

b) Unsupervised learning:

Unlike supervised learning, no correct answer is provided to the model to be duplicated.

The task of an unsupervised algorithm is to explore a dataset and attempt to find some

patterns in the data (Trask, 2019). Clustering is a well-known example of unsupervised

learning where the algorithm attempts to group the data into labeled clusters by exploring

correlations that present in the data (Chollet, 2017a; Trask, 2019). According to (Trask,

2019), any unsupervised task can be seen as a form of clustering. Grouping some users

based on their browsing activities is an example of a clustering problem (Zhang, et al.,

2019).

c) Self-supervised learning:

This is a recent branch of machine learning in which it attempts to learn a mapping from

pairs of inputs and outputs. Like supervised learning, the learning is supervised by the

labels but with a key difference that the labels are no longer human-annotated but rather

are generated from the dataset automatically without human intervention (Chollet, 2017a).

An example of a self-supervised learning is the Autoencoder network which aims at

learning a compact representation of the input so that it can reconstruct the input

unmodified using that representation.

d) Reinforcement learning:

This branch of machine learning algorithms addresses the case of an agent that interacts

with its environment over time and at each timestep 𝑡 the agent learns to choose actions

20

that will maximize some reward 𝑟𝑡. Applications may include robotics and AI for video

games (Zhang, et al., 2019).

2.4 Neural Networks

As mentioned before, deep learning uses neural networks to learn meaningful

representations of the input data successively through a bunch of layers that work as a

multistage distillation and purification system of the incoming information to make it as

closer as possible to the final output (Chollet, 2017a). Figure 2.5 shows a deep neural

network with 4 layers where each layer is trying to learn a useful representation of data.

The representations are getting closer to the target as they approach the final output. As

presented in Figure 2.6, a neural network is a universal approximator of a function 𝑓 that

maps an input (an image of a handwritten digit) to a target (a label). For example, the

handwritten classifier 𝑦 = 𝑓(𝑥) is a neural network that maps an input to a category. The

classifier in Figure 2.6 defines a mapping 𝑦 = 𝑓(𝑥; 𝜃) that maps an input 𝑥 to a category

𝑦. Given enough training data and computational time, the neural network of the classifier

can learn through training process the optimal set of parameters 𝜃 that result in the best

possible approximation to the function 𝑓 (Goodfellow et al., 2016).

Figure 2.5: Deep neural network for handwritten digit classification

(Chollet, 2017a).

21

Figure 2.6: A neural network for handwritten digit classification shown as a function that maps

an input to a target.

Figure 2.7: A neural network with three layers.

22

Each layer in a neural network is a simple data transformation that’s controlled by a set of

weights. A simple neural network is shown in Figure 2.7 which consists of 3 layers, an

input layer, a hidden layer and an output layer with 3, 4 and 3 nodes respectively. The input

layer doesn’t involve calculations, it just passes the information to the next layer.

For the sake of clarity, a simplified version of the network in Figure 2.7 is shown in Figure

2.8 and will be used to illustrate the processes executed by a neural network. A single node

or a neuron such as ℎ1, is the basic unit of computation in a neural network which takes an

input and generates an output (known as the activation of the node) which in turn is used

to calculate the inputs to the nodes of the next layer 𝑜1 and 𝑜2 in this case. Every node from

one layer is connected to every other node from the next layer and these connections

represent weights that are given based on the relative importance of an input to other inputs.

For example, the input feature 𝑥1 ∈ ℝ that is connected to the node ℎ1 is attached to

weight 𝑤11
(1)

∈ ℝ. Notice that the superscripts used for weights in Figure 2.8 is in the form

𝑤𝑖𝑗
𝑘 ∈ ℝ which means that the weight is connecting the 𝑖𝑡ℎ node in the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ

node in the 𝑘𝑡ℎ + 1 layer. 𝑏1 ∈ ℝ and 𝑏2 ∈ ℝ are the biases.

Figure 2.8: A simple neural network.

23

The bias is like the intercept in a linear equation. In fact, the bias is similar to a regular

weight, but it’s always multiplied by a constant activation which is 1. Weights and biases

are trainable parameters that need to be tuned during the training process to get the

prediction of the network as close as possible to the target. The reason that both weights

and biases are needed for a successful learning will be mentioned shortly after discussing

the activation functions. The final outputs of the network (predictions) are the activations

of the output nodes 𝑜1and 𝑜2. To acquire the activation of a single hidden unit such as ℎ1,

a linear combination (weighted sum) of the inputs 𝑥1 and 𝑥2 and the weights 𝑤11
(1)

, 𝑤21
(1)

and the bias 𝑏1 need to be calculated, followed by a non-linearity (activation function) 𝜎1

as shown in the following equations:

ℎ1(𝑖𝑛) = 𝑤11
(1)

𝑥1 + 𝑤21
(1)

𝑥2 + 𝑏1 (2.1)

ℎ1(𝑜𝑢𝑡) = 𝜎1 (ℎ1(𝑖𝑛)) (2.2)

Where:

 𝑤11
(1)

and 𝑤21
(1)

 :weights associated to the input features 𝑥1 and 𝑥2 respectively.

𝑥1 and 𝑥2 :input features of single training example.

𝑏1 :bias of the hidden unit.

ℎ1(𝑖𝑛) :input to the hidden unit ℎ1.

𝜎1 :activation function of all hidden units.

ℎ1(𝑜𝑢𝑡) :output of the hidden unit ℎ1 (the activation of ℎ1).

In the same manner, the following equations describe how ℎ2 is calculated:

ℎ2(𝑖𝑛) = 𝑤12
(1)

𝑥1 + 𝑤22
(1)

𝑥2 + 𝑏1 (2.3)

ℎ2(𝑜𝑢𝑡) = 𝜎1 (ℎ2(𝑖𝑛)) (2.4)

Before showing how the final output of the network is acquired, it should be noted that the

prediction of the network is usually referred to as 𝑦̂ (here, the symbol 𝑜(𝑜𝑢𝑡) will be used

24

but it is the same thing as 𝑦̂ which might be used in other places in this document). The

target of the network is referred to usually as 𝑦. As for the first prediction of the network

𝑦̂1 or 𝑜1(𝑜𝑢𝑡), the following formulas show how to get the first prediction:

𝑜1(𝑖𝑛) = 𝑤11
(2)

ℎ1(𝑜𝑢𝑡) + 𝑤21
(2)

ℎ2(𝑜𝑢𝑡) + 𝑏2 (2.5)

 𝑜1(𝑜𝑢𝑡) = 𝜎2(𝑜1(𝑖𝑛)) (2.6)

Where:

𝑤11
(2)

, 𝑤21
(2)

 : weights associated to the outputs of the hidden units ℎ1 and ℎ2

ℎ1(𝑜𝑢𝑡) , ℎ2(𝑜𝑢𝑡) : outputs (the activations) of the hidden units

𝑏1 : bias of the output unit

𝑜1(𝑖𝑛) : input to the output unit

𝜎2 : activation function of the output units

𝑜1(𝑜𝑢𝑡) : first output of the neural network (the first prediction)

Similarly, 𝑦̂2 or 𝑜2(𝑜𝑢𝑡) is given by the following equations:

𝑜2(𝑖𝑛) = 𝑤12
(2)

ℎ1(𝑜𝑢𝑡) + 𝑤22
(2)

ℎ2(𝑜𝑢𝑡) + 𝑏2 (2.6)

 𝑜2(𝑜𝑢𝑡) = 𝜎2(𝑜2(𝑖𝑛)) (2.7)

2.4.1 Activation Functions

Each node in the neural network involves a linear transformation 𝑤𝑥 + 𝑏 followed by a

non-linearity 𝜎 known as the activation function. Activation functions are crucial in neural

networks because they allow the network to learn much richer representations of input data.

Without using activation functions to break the linearity, the network will learn only linear

transformations of the input data and there would be no benefit from stacking more layers

as they can’t extend the learned representations (Chollet, 2017a). Some of the most popular

activation functions will be presented here along with their graphs, formulas and

25

derivatives. Derivatives will be given since differentiating activation functions is an

essential step in the training process of a neural network as will be discussed in the next

section. One of the most widely used activation function for hidden units is the Rectified

linear unit (RELU). As presented in Figure 2.9, RELU is a simple and efficient function

that is defined as 𝑚𝑎𝑥(0, 𝑥). It gives the output 𝑥 if it is positive, otherwise it turns it into

0. Mathematically, RELU function is described as follows:

𝑓(𝑥) = {
0 for 𝑥 ≤ 0
 𝑥 for 𝑥 > 0

 (2.8)

The derivative of the RELU is undefined at 0. For other values it is given below:

𝑓́(𝑥) = {
0 for 𝑥 < 0
 1 for 𝑥 > 0

 (2.9)

Other choices of the activation function include the Sigmoid function and the hyperbolic

tangent function Tanh. Figure 2.10 shows the plot of the Sigmoid function and the

following formula describes the Sigmoid function mathematically:

𝑓(𝑥) =
1

1+𝑒−𝑥 (2.10)

 Figure 2.9: Rectified linear unit (RELU)

(Amidi & Amidi).

26

As shown in Figure 2.10, the Sigmoid function takes values in the range (−∞,+∞) and

outputs values in the range (1,0) such that 𝑓(𝑥) approaches 1 as 𝑥 approaches +∞ whereas

𝑓(𝑥) approaches 0 as 𝑥 approaches −∞. Sigmoid has a nice derivative which is given by

the following formula:

𝑓́(𝑥) =
1

1+𝑒−𝑥 ∙ (1 −
1

1+𝑒−𝑥) (2.11)

Hyperbolic tangent function (Tanh) is another function that might be used as an activation

function to ca the hidden units to break the linearity. The plot of Tanh is shown in Figure

2.11. Below is the equation that defines Tanh mathematically:

𝑓(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥
 (2.12)

Tanh is a rescaling of the Sigmoid, it outputs values in the range (-1, 1). Tanh derivative is

given by the following equation:

𝑓́(𝑥) = 1 − (
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥)
2

 (2.13)

RELU is almost always used as an activation function in hidden units whereas Sigmoid

and Tanh are less commonly used. As for the activation functions used in the output layer,

Sigmoid is a natural choice for binary classification problems. For multi-class classification

Figure 2.10: Sigmoid function (Amidi & Amidi).

27

problems, the Softmax function, a generalization of the Sigmoid, is used to produce a

probability distribution in which the outputs sum to 1.

The Softmax function is described by the following formula:

𝑓𝑖(𝑥⃗) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

 for 𝑖 = 1,… , 𝐽 (2.14)

Expectedly, the Softmax has a similar derivative to the Sigmoid as shown by the

following formula:

𝑓́𝑖(𝑥⃗) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

∙ (1 −
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

) for 𝑖 = 1,… , 𝐽 (2.15)

However, for regression problems, usually a linear function is used as the activation of the

output layer. Now that the notion of activation functions becomes clear, it is appropriate to

answer the following question: why both weights and biases are needed in a neural

network? The reason is that changing the weights affect the activation function differently

than changing the bias. Changing the weights will affect the steepness of the curve while

changing the bias would shift the curve either to the right or to the left.

Figures 2.12 and 2.13 show the effect of changing weights and biases on the Sigmoid

function curve respectively.

Figure 2.11: Hyperbolic tangent function (Tanh)

(Amidi & Amidi).

28

2.4.2 Neural Networks in Action

This section illustrates the procedure taken by a neural network during the training phase.

The neural network in Figure 2.8 will be used as an example for this illustration. The neural

network starts with a forward pass traversing the nodes from left to right to find the final

outputs (the predictions). By the end of the forward pass, the predictions 𝑜1(𝑜𝑢𝑡) and 𝑜2(𝑜𝑢𝑡)

or 𝑦̂1 and 𝑦̂2 would be calculated as shown previously in section 2.4 (equations 2.1 to 2.7).

The network calculates the error by measuring how far its prediction is from the correct labels

(targets) 𝑦1 and 𝑦2. This is done using a cost function. Sometimes, the cost function is referred to

as the objective function or error function. However, the loss function term refers to the error of

Figure 2.12: The effect of changing weights on the

Sigmoid function curve

(Bisht, 2018).

Figure 2.13: The effect of changing bias on the

Sigmoid function curve

(Bisht, 2018).

29

one training example where the cost function refers to the average error over all training examples.

The cost function is the average of the losses as follows:

𝐿 =
1

𝑛
∑ 𝐿𝑖(𝑦𝑖,𝑦̂𝑖)

𝑛
𝑖 (2.16)

Where:

𝐿 : total cost

𝐿𝑖 : loss of the of the 𝑖𝑡ℎ example

𝑛 : total number of examples

𝑦𝑖 : correct label (target) of the 𝑖𝑡ℎ example

𝑦̂𝑖 : network’s final output (prediction) of the 𝑖𝑡ℎ example

Mean squared error or MSE, is one of the most widely used cost functions which works

best for regression problems. MSE is given by the following equation:

𝐿 =
1

2𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 (2.17)

For classification problems, another popular cost function is used which is known as the

cross-entropy cost function. For a binary classification problem, the cross-entropy cost

function is given by the following equation:

 𝐿 = −
1

𝑛
∑ 𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖)

𝑛
𝑖=1 (2.18)

For the more general case of the multiclassification problems, the generalization of the

cross-entropy function is given by the following formula:

𝐿 =
1

𝑛
∑ ∑ 𝑦𝑖𝑗 𝑙𝑜𝑔(𝑦̂𝑖𝑗)

𝑚
𝑗=1

𝑛
𝑖=1 (2.19)

Obviously, the larger the error the worse the prediction. At the beginning of training, the

network is naïve and will produce large errors. In order to get the prediction of the network

30

as close to the target as possible, the cost function i.e. the error needs to be minimized and

here comes the role of gradient descent, an iterative optimization algorithm of finding the

minimum of a function.

Gradient descent minimizes a function by iteratively following the direction of the steepest

descent given by the negative of the gradient of that function. Figure 2.14 shows a graph

of the cost function 𝐿(𝑤) vs the weight 𝑤 . The given cost function in Figure 2.14 is

assumed to be a single variable function to simplify the explanation but usually cost

functions are multivariable functions with many parameters to optimize. The goal of the

gradient descent is to minimize the cost function 𝐿(𝑤) through finding 𝐿́(𝑤) , the

derivative of 𝐿(𝑤) w.r.t the weight 𝑤.

The gradient is nothing but a generalization of the derivative where it is used for

multivariable functions. It is a vector ∇𝐿 that points to the direction of the greatest increase

of the function (local maxima). Intuitively, the negative of the gradient −∇𝐿 points to the

direction of the greatest decrease (local minima). For a multivariable function 𝐿(𝑤1, …𝑤𝑛),

the gradient ∇𝐿 is a vector where each component is a partial derivative as follows:

∇𝐿 =

[

𝜕𝐿

𝜕𝑤1
.
.
.

𝜕𝐿

𝜕𝑤𝑛]

 (2.20)

31

The following are the steps of the gradient descent algorithm as shown in Figure 2.14:

1) Start with some initial weight 𝑤0 (initialized randomly or assigned to 0).

2) Compute the derivative of the cost function 𝑐́(𝑤0) at 𝑤0.

3) Update the weight 𝑤𝑖 = 𝑤𝑖 − 𝛼𝐿́(𝑤𝑖) where 𝛼 is the learning rate that determines the

size of the gradient descent step (how big the step to take).

4) Repeat the steps until convergence or for a defined number of iterations.

Generally, the gradient descent update step according to the notation used in Figure 2.8 is

as follows:

𝑤𝑖𝑗
𝑘 = 𝑤̀𝑖𝑗

𝑘 − 𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗
𝑘 (2.21)

Where:

Figure 2.14: Gradient descent algorithm.

Figure adapted from (Gradient Descent with Momentum, 2019).

32

𝑤𝑖𝑗
𝑘 : new weight that connects the 𝑖𝑡ℎ node from the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ node from

 the 𝑘𝑡ℎ + 1 layer

𝑤̀𝑖𝑗
𝑘 : old weight that connects the 𝑖𝑡ℎ node from the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ node from

 the 𝑘𝑡ℎ + 1 layer

𝐿 : cost function

𝛼 : learning rate

An effective way of calculating all partial derivatives in a neural network in a linear time

– regardless the size of the network – is known as backpropagation (short for backward

propagation of errors). It’s an implementation of the chain rule of derivatives that aims at

calculating the gradient of the cost function w.r.t the network’s weights. The following is

the chain rule which computes the derivative of composite functions:

𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] = 𝑓́(𝑔(𝑥)). 𝑔́(𝑥) (2.22)

For example, to update the weight 𝑤11
(2)

in the network of Figure 2.8 the following update

rule is used:

 𝑤11
(2)

 = 𝑤11
(2)

− 𝛼
𝜕𝐿

𝜕 𝑤11
(2) (2.23)

Where 𝑐, is the cost function and
𝜕𝐿

𝜕 𝑤11
(2) is the partial derivative of the cost function w.r.t

the weight 𝑤11
(2)

. Knowing that 𝑐 is a function of the prediction 𝑜1(𝑜𝑢𝑡) or 𝑦̂1 (the quantity

that’s relevant to 𝑤11
(2)

), and that ℎ1(𝑜𝑢𝑡) and 𝑜1(𝑜𝑢𝑡) or 𝑦̂1 in Figure 2.8 are given by

equations 2.1, 2.2, 2.5 and 2.6, how to calculate
𝜕𝐿

𝜕 𝑤11
(2) ? Here comes the role of

backpropagation. Using the chain rule,
𝜕𝐿

𝜕 𝑤11
(2) is obtained as follows:

𝜕𝐿

𝜕 𝑤11
(2) =

𝜕𝐿

𝜕𝑜1(𝑜𝑢𝑡)

𝜕𝑜1(𝑜𝑢𝑡)

𝜕𝑜1(𝑖𝑛)

𝜕𝑜1(𝑖𝑛)

𝜕𝑤11
(2) (2.24)

33

By finding the quantity
𝜕𝐿

𝜕 𝑤11
(2) which quantifies how much a change in 𝑤11

(2)
 would affect

the cost function 𝑐, the next step is to update 𝑤11
(2)

 accordingly as shown in equation (2.21).

Below is a concrete example with real numbers to show how a neural network operates

(Mazur, 2017). The notation used for this example as shown in Figure 2.15 is different than

that used in Figure 2.8 to aid in illustration. All numbers have been rounded.

 Figure 2.15: : A neural network with real numbers.

The given neural network has the following information:

Input features: 𝑥1= 0.1 and 𝑥2= 0.2

Targets: 𝑜1= 0.5 and 𝑜2= 0.3

Activation function for hidden layer: 𝜎 = Sigmoid - given in equation 2.10.

Activation function for output layer: 𝜎 = Sigmoid

Cost function: mean squared error (MSE) - given in equation 2.17.

Learning rate: 𝛼 = 0.1

The following are the steps taken by a network during training:

1) Initialize weights and biases randomly.

34

2) Forward pass: traverse the nodes from left to right (from the input layer up to the

output layer) and calculate the following quantities:

From the input layer to the hidden layer:

ℎ1(𝑖𝑛) = 𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 + 𝑏1 = 0.13*(0.1) + 0.33*(0.2) + 0.22 = 0.299

 ℎ1(𝑜𝑢𝑡) = 𝜎(0.299) =
1

1+𝑒−0.299
 = 0.426

ℎ2(𝑖𝑛) = 𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏1 = 0.21*(0.1) + 0.41*(0.2) + 0.22 = 0.323

ℎ2(𝑜𝑢𝑡) = 𝜎(0.323) = 0.580

From the hidden layer to the output layer:

𝑜1(𝑖𝑛) = 𝑤5 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤7 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2 = 0.14*(0.429) + 0.13*(0.580) + 0.91 =

1.680

𝑜1(𝑜𝑢𝑡) = 𝜎(1.680) = 0.843

𝑜2(𝑖𝑛) = 𝑤6 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤8 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2 = 0.16*(0.429) + 0.71*(0.580) + 0.91 =

1.390

𝑜2(𝑜𝑢𝑡) = 𝜎(1.390) = 0.801

3) Calculate the error (cost) of the network using the cost function as follows:

The error (cost) of the first output:

𝐿𝑜1 =
1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡))

2
 =

1

2
(0.5 − 0.843)2 = 0.059

The error (cost) of the second output:

𝐿𝑜2 =
1

2
(𝑦2 − 𝑜2(𝑜𝑢𝑡))

2
 =

1

2
(0.3 − 0.801)2 = 0.126

The total error:

𝐿 = 𝐿𝑜1 + 𝐿𝑜2 = 0.059 + 0.126 = 0.185

35

4) Backward pass: traverse the nodes from right to left (from output layer up to the

input layer) to adjust the weights. This involves calculating the partial derivative of

the cost function w.r.t each weight. The partial derivative quantifies how much a

change in the weight affects the total error so that the weight is adjusted accordingly

later. This is done through backpropagation which is an application of the chain

rule in calculus. Backpropagation involves finding the following quantities:

a) From the output to the hidden layer:

𝜕𝐿

𝜕 𝑤5
,

𝜕𝐿

𝜕 𝑤6
,

𝜕𝐿

𝜕 𝑤7
 ,

𝜕𝐿

𝜕 𝑤8
 and

𝜕𝐿

𝜕 𝑏2
.

•
𝝏𝑳

𝝏 𝒘𝟓
:

𝜕𝐿

𝜕 𝑤5
=

𝜕𝐿

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗

𝜕𝑜1(𝑖𝑛)

𝜕 𝑤5

𝐿 =
1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡))

2
+

1

2
(𝑦2 − 𝑜2(𝑜𝑢𝑡))

2

𝜕𝐿

𝜕 𝑜1(𝑜𝑢𝑡)
= 2 ∗

1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡))

2−1
 ∗ (0 − 1) + 0 = −(𝑦1 − 𝑜1(𝑜𝑢𝑡))

= 𝑜1(𝑜𝑢𝑡) − 𝑦1 = 0.843 − 0.5 = 0.343

Knowing that: 𝑜1(𝑜𝑢𝑡) =
1

1+𝑒
−𝑜1(𝑖𝑛)

, it follows that:

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
=

1

1+𝑒
−𝑜1(𝑖𝑛)

∗ (1 −
1

1+𝑒
−𝑜1(𝑖𝑛)

) = 𝑜1(𝑜𝑢𝑡) ∗ (1 − 𝑜1(𝑜𝑢𝑡))

= 0.843 ∗ (1 − 0.843) = 0.132

Knowing that: 𝑜1(𝑖𝑛) = 𝑤5 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤7 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2, it follows that:

𝜕𝑜1(𝑖𝑛)

𝜕 𝑤5
= 1 ∗ ℎ1(𝑜𝑢𝑡) + 0 = ℎ1(𝑜𝑢𝑡) = 0.426

𝜕𝐿

𝜕 𝑤5
= 0.343 ∗ 0.132 ∗ 0.426 = 0.019

36

•
𝝏𝑳

𝝏 𝒘𝟔
:

𝜕𝐿

𝜕 𝑤6
=

𝜕𝐿

𝜕 𝑜2(𝑜𝑢𝑡)
∗

𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
∗

𝜕𝑜2(𝑖𝑛)

𝜕 𝑤6

𝜕𝐿

𝜕 𝑜2(𝑜𝑢𝑡)
= 𝑜2(𝑜𝑢𝑡) − 𝑦2 = 0.801 − 0.3 = 0.501

𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
= 𝑜2(𝑜𝑢𝑡) ∗ (1 − 𝑜2(𝑜𝑢𝑡)) = 0.801 ∗ (1 − 0.801) = 0.159

Knowing that: 𝑜2(𝑖𝑛) = 𝑤6 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤8 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2, it follows that:

𝜕𝑜2(𝑖𝑛)

𝜕 𝑤6
= ℎ1(𝑜𝑢𝑡) = 0.426

𝜕𝐿

𝜕 𝑤6
= 0.501 ∗ 0.159 ∗ 0.426 = 0.0339

•
𝝏𝑳

𝝏 𝒘𝟕
:

𝜕𝐿

𝜕 𝑤7
= 0.0263

•
𝝏𝑳

𝝏 𝒘𝟖
:

𝜕𝐿

𝜕 𝑤8
= 0.0462

𝜕𝐿

𝜕 𝑏2
=

𝜕𝐿𝑜1

𝜕 𝑏2
+

𝜕𝐿𝑜2

𝜕 𝑏2

𝜕𝐿𝑜1

𝜕 𝑏2
=

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗
𝜕𝑜1(𝑖𝑛)

𝜕 𝑏2
= 0.343 ∗ 0.132 ∗ 1 = 0.0453

𝜕𝐿𝑜2

𝜕 𝑏2
= 0.501 ∗ 0.159 ∗ 1 = 0.0797

𝜕𝑐

𝜕 𝑏2
= 0.0453 + 0.0797 = 0.125

37

b) From hidden layer to input layer:
𝜕𝐿

𝜕 𝑤1
,

𝜕𝐿

𝜕 𝑤2
,

𝜕𝐿

𝜕 𝑤3
 ,

𝜕𝐿

𝜕 𝑤4
 and

𝜕𝐿

𝜕 𝑏1

•
𝝏𝑳

𝝏 𝒘𝟏
:

𝜕𝐿

𝜕 𝑤1
=

𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
∗

𝜕ℎ1(𝑜𝑢𝑡)

𝜕 ℎ1(𝑖𝑛)
∗

𝜕ℎ1(𝑖𝑛)

𝜕 𝑤1

Each of the three quantities comprising
𝜕𝐿

𝜕 𝑤1
 will be found separately:

• Quantity (1)
𝝏𝑳

𝝏 𝒉𝟏(𝒐𝒖𝒕)
:

𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
=

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
+

𝜕𝐿𝑜2

𝜕 ℎ1(𝑜𝑢𝑡)

𝝏𝒄𝟏

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 :

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
=

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
= 0.343 ∗ 0.132 = 0.0453

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)
= 𝑤5 = 0.14

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
= 0.0453 ∗ 0.14 = 0.006

𝝏𝑳𝒐𝟐

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 :

𝜕𝐿𝑜2

𝜕 ℎ1(𝑜𝑢𝑡)
= 0.501 ∗ 0.159 ∗ 0.16 = 0.012

𝝏𝑳

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 :

38

𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
= 0.006 + 0.012 = 0.018

• Quantity (2)
𝝏𝒉𝟏(𝒐𝒖𝒕)

𝝏 𝒉𝟏(𝒊𝒏)
:

As shown previously: ℎ1(𝑜𝑢𝑡) =
1

1+𝑒
ℎ1(𝑖𝑛)

𝜕ℎ1(𝑜𝑢𝑡)

𝜕 ℎ1(𝑖𝑛)
=

1

1+𝑒
ℎ1(𝑖𝑛)

 ∗ (1 −
1

1+𝑒
ℎ1(𝑖𝑛)

) = ℎ1(𝑜𝑢𝑡) ∗ (1 − ℎ1(𝑜𝑢𝑡))

= 0.426 ∗ (1 − 0.426) = 0.245

• Quantity (3)
𝝏𝒉𝟏(𝒊𝒏)

𝝏 𝒘𝟏
 :

𝜕ℎ1(𝑖𝑛)

𝜕 𝑤1
= 𝑥1 = 0.1

• Now we can find
𝝏𝑳

𝝏 𝒘𝟏
:

𝜕𝐿

𝜕 𝑤1
= 0.018 ∗ 0.245 ∗ 0.1 = 0.000441

Other quantities can be found following the same approach:

𝜕𝐿

𝜕 𝑤2
= 0.063 ∗ 0.244 ∗ 0.1 = 0.0015372

𝜕𝐿

𝜕 𝑤3
= 0.018 ∗ 0.245 ∗ 0.2 = 0.000882

𝜕𝐿

𝜕 𝑤4
= 0.063 ∗ 0.244 ∗ 0.2 = 0.0030744

𝜕𝐿

𝜕 𝑏1
=

𝜕𝐿𝑜1

𝜕 𝑏1
+

𝜕𝐿𝑜2

𝜕 𝑏1

𝜕𝐿𝑜1

𝜕 𝑏1
=

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)
∗
𝜕 ℎ1(𝑜𝑢𝑡)

𝜕 ℎ1(𝑖𝑛)
∗

𝜕 ℎ1(𝑖𝑛)

𝜕 𝑏1

= 0.343 ∗ 0.132 ∗ 0.14 ∗ 0.245 ∗ 1 = 0.00156

39

𝜕𝐿𝑜2

𝜕 𝑏1
=

𝜕𝐿𝑜2

𝜕 𝑜2(𝑜𝑢𝑡)
∗
𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
∗

𝜕𝑜2(𝑖𝑛)

𝜕 ℎ2(𝑜𝑢𝑡)
∗
𝜕 ℎ2(𝑜𝑢𝑡)

𝜕 ℎ2(𝑖𝑛)
∗

𝜕 ℎ2(𝑖𝑛)

𝜕 𝑏1

= 0.501 ∗ 0.159 ∗ 0.71 ∗ 0.2436 ∗ 1 = 0.0138

𝜕𝐿

𝜕 𝑏1
= 0.0016 + 0.0138 = 0.0154

5) Update the weights using the formula: 𝑤 = 𝑤̀ − 𝛼
𝜕𝐿

𝜕 𝑤
 as shown previously in

equation 2.19.

 𝑤1 = 0.13 − 0.1 ∗ 0.000441 = 0.130

 𝑤2 = 0.21 − 0.1 ∗ 0.0015372 = 0.210

 𝑤3 = 0.33 − 0.1 ∗ 0.000882 = 0.330

 𝑤4 = 0.41 − 0.1 ∗ 0.0030744 = 0.410

 𝑤5 = 0.14 − 0.1 ∗ 0.019 = 0.1381

 𝑤6 = 0.16 − 0.1 ∗ 0.0339 = 0.1566

 𝑤7 = 0.13 − 0.1 ∗ 0.0263 = 0.1274

 𝑤8 = 0.71 − 0.1 ∗ 0.0462 = 0.7054

 𝑏1 = 0.22 − 0.1 ∗ 0.01533 = 0.2185

 𝑏2 = 0.91 − 0.1 ∗ 0.125 = 0.8975

40

2.4.3 Vectorization in Neural Networks

Vectorization means to implement an algorithm so that a vector of values is processed at

once rather than processing a single value at a time. In its essence, vectorization is the

process of eliminating for loops and replacing them with matrix operations. In practice,

vectorization is adopted when implementing neural networks since it allows the use of

matrix operations that exploit parallelization capabilities of modern CPUs and GPUs

resulting in a much faster implementation than the case of using for loops. A simple neural

network like previously shown networks is given in Figure 2.16 and will be used to

illustrate vectorization concept in neural networks. For one training example, the

vectorized forward propagation step is as follows:

• From the input layer to the hidden layer:

ℎ(𝑜𝑢𝑡) = 𝜎

(

[

 𝑤11

(1) 𝑤21
(1) 𝑤31

(1) 𝑤41
(1)

𝑤12
(1) 𝑤22

(1) 𝑤32
(1) 𝑤42

(1)

𝑤13
(1) 𝑤23

(1) 𝑤33
(1) 𝑤43

(1)
]

∗ [

𝑥1
𝑥2

𝑥3
𝑥4

] +

[

𝑏1

𝑏1

𝑏1

𝑏1]

)

 = 𝜎([
ℎ1(𝑖𝑛)

ℎ2(𝑖𝑛)

ℎ3(𝑖𝑛)

]) = [
ℎ1(𝑜𝑢𝑡)

ℎ2(𝑜𝑢𝑡)

ℎ3(𝑜𝑢𝑡)

]

Figure 2.16: A simple neural network

41

Which can be represented as follows:

ℎ(𝑖𝑛) = 𝑊(1) ∗ 𝑋 + 𝑏1 (2.23)

ℎ(𝑜𝑢𝑡) = 𝜎(ℎ(𝑖𝑛)) (2.24)

Where:

𝑊(1) ∈ ℝℎ×𝑛
 : weight matrix from the input to the hidden layer

𝑋 ∈ ℝ𝑛×1
 : input features vector

𝑏1 ∈ ℝ𝑛×1
 : bias vector from the input layer to the hidden layer

ℎ(𝑖𝑛) ∈ ℝℎ×1
 : input vector to the hidden unit

ℎ(𝑜𝑢𝑡) ∈ ℝℎ×1
 : output vector of the hidden unit

𝜎 : activation function

𝑛 : number of input features

ℎ : number of hidden units

• From the hidden layer to the output layer:

𝑜(𝑜𝑢𝑡) = 𝜎([
𝑤11

(2)
𝑤21

(2)
𝑤31

(2)

𝑤12
(2)

𝑤22
(2)

𝑤32
(2)

] ∗ [

ℎ1(𝑜𝑢𝑡)

ℎ2(𝑜𝑢𝑡)

ℎ3(𝑜𝑢𝑡)

] + [

𝑏2

𝑏2

𝑏2

]) = 𝜎 ([
𝑜1(𝑖𝑛)

𝑜2(𝑖𝑛)
]) = [

𝑜1(𝑜𝑢𝑡)

𝑜2(𝑜𝑢𝑡)
]

Which can be represented as follows:

𝑜(𝑖𝑛) = 𝑊(2) ∗ ℎ(𝑜𝑢𝑡) + 𝑏2 (2.25)

𝑜(𝑜𝑢𝑡) = 𝜎(𝑜(𝑖𝑛)) (2.26)

42

Where:

𝑊(2) ∈ ℝ𝑞×ℎ
 : weight matrix from the hidden to the output layer

ℎ(𝑜𝑢𝑡) ∈ ℝℎ×1
 : output vector of the hidden unit

𝑏2 ℝ
ℎ×1

 : bias vector from the hidden layer to the output layer

𝑜(𝑖𝑛) ∈ ℝ𝑞×1
 : input vector to the output unit

𝑜(𝑜𝑢𝑡) ∈ ℝ𝑞×1
 : output vector of the output unit

𝜎 : activation function

𝑛 : number of input features

ℎ : number of hidden units

𝑞 : number of output units

43

Chapter 3

RECURRENT NEURAL NETWORKS

3.1 Introduction

A human reader processes a sentence word by word while keeping memories – internal

model or state – of what has been seen so far. The internal state is built from past

information and is constantly updated as new information is being processed. This

incremental processing of a sequence – a sentence in this case – results in a robust

representation of the meaning conveyed by the sentence (Chollet, 2017a). Similarly,

Recurrent neural networks (RNNs) use the same strategy, though in a much simpler

fashion. They process sequences element by element through an internal loop while

keeping a state of what has been processed so far as shown in Figure 3.1.

Feed-forward neural networks (FNNs) make a blind assumption about the data to be

processed, i.e. FNNs assume that the data is independently and identically distributed.

However, this assumption doesn’t hold in most cases. This text is an example of a

sequential data in which words are written in some order. When these words are permuted

randomly, it would be impossible to interpret the meaning of the text. The audio signal of

a speech, image frames in a video and stock prices are some examples of sequential data

that FNNs fail to deal with. Moreover, the task at hand may not only take a sequence as

input but rather may require completing the sequence such as predicting the stock market

(Zhang et al., 2019). To overcome FNNs shortcomings, RNNs were designed with the aim

of handling sequential data. RNNs achieved promising results in many tasks specifically

those with variable input and output lengths such as machine translation, image captioning

and handwriting recognition (Lipton, 2015; Chung et al., 2014). Specifically, RNNs are a

rich class of neural networks specialized for processing sequential data that is often of

variable lengths. They can process much longer sequences than other neural network

architectures (Goodfellow et al., 2016).

44

According to (Graves, 2013), RNNs are dynamic models that can generate sequences of

music, text and motion capture data. Moreover, RNNs have shown good performance is

motion prediction (Martinez et al., 2017).

RNN extends the standard FNN to handle variable length sequences by using a recurrent

hidden state. At any timestep, the activation of the hidden state depends on the activation

of hidden state at the previous timestep (Chung et al., 2014).

RNNs operate on a sequence of values 𝑥(1), … , 𝑥(𝑇). This sequence is a vector 𝑥(𝑡) where

𝑡 is the timestep index ranging from 1 to 𝑇 . The timestep index does not necessarily

represent the time as in the real world but rather it may represent merely a position in the

sequence. RNNs employ the principle of parameter sharing. As the name indicates,

parameter sharing means sharing parameters or weights across several timesteps. Equation

3.1 describes an RNN generally (Goodfellow et al., 2016).

𝑎(𝑡) = 𝑓(𝑎(𝑡−1), 𝑥(𝑡);𝑊) (3.1)

Where:

𝑎(𝑡) : state of the network at time step 𝑡 (current activation)

 𝑎(𝑡−1) : state of the network at the previous time step 𝑡 − 1 (old activation)

Figure 3.1: A recurrent network with a loop.

Figure adapted from (Chollet, 2017a).

45

𝑥(𝑡) : input at the current time step 𝑡

𝑊 : set of weights or parameters

𝑓 : a non-linear activation function that can be as simple as Sigmoid or as complex

 as long short-term memory unit (LSTM) which will be discovered later in this

 chapter (Cho K. , et al., 2014b).

Clearly as indicated by equation 3.1, the state 𝑎(𝑡) (current activation) encodes information

about the complete past sequence because it’s calculated using the state of the previous

time step 𝑎(𝑡−1) (previous activation) which in turn encodes information about the

sequence from earlier time steps. Additionally, equation 3.1 is recursive (recurrent) as 𝑎(𝑡)

points back to 𝑎(𝑡−1) . The principle of parameter sharing means that the same set of

parameters 𝑊 is used across several time steps. An illustration of the equation is shown in

Figure 3.2 where the network is depicted from two perspectives. To the left of the figure is

the circuit diagram of an RNN that uses an input 𝑥 to calculate the state 𝑎 which is passed

forward through time. The black box represents a single time step. To the right of the figure

is the unfolded version of the same RNN where each node represents an instance of a single

time step. Typically, RNNs would have an output layer to use the state 𝑎 to make

predictions (Goodfellow et al., 2016). Figure 3.2 represents an RNN universally without

specifying neither the output of the network nor the choice of activation function for hidden

units.

Figure 3.2: RNN with no outputs. (left) a circuit diagram of the RNN.

(right) the same RNN but unfolded.
Figure adapted fron Goodfellow et al., (2016).

46

Figure 3.3: Traditional RNN.

Figure adapted from (Olah, Understanding LSTM Networks, 2015).

Figure 3.3 gives more detailed representation of a traditional RNN (vanilla RNN) where

𝑎(𝑡) is the activation at time step t, 𝑥(𝑡) is the input at time step t and 𝑜(𝑡) is the output at

time step t. 𝑎(𝑡) and 𝑜(𝑡) are calculated as described by equations 3.2 and 3.3 respectively

(Amidi & Amidi).

 𝑎(𝑡) = 𝑔1 (𝑊𝑎𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡) + 𝑏𝑎) (3.2)

𝑜(𝑡) = 𝑔2(𝑊𝑦𝑎(𝑡) + 𝑏𝑦) (3.3)

Figure 3.4: Vanilla RNN block.

47

Where:

𝑏 : number of examples in the mini-batch 𝑥(𝑡) (batch size)

𝑛 : number of features

ℎ : number of hidden units

𝑞 : number of output units

 𝑥(𝑡) ∈ ℝ𝑏×𝑛 : mini-batch input at current time step t

𝑎(𝑡) ∈ ℝ𝑏×ℎ : hidden state (activation) at current time step t

𝑎(𝑡−1) ∈ ℝ𝑏×ℎ : hidden state (activation) at previous time step t-1

𝑜(𝑡) ∈ ℝ𝑏×𝑞 : output at time step t

𝑊𝑎 ∈ ℝℎ×ℎ, 𝑊𝑥 ∈ ℝ𝑛×ℎ and 𝑊𝑦 ∈ ℝℎ×𝑞 : weight matrices

𝑏𝑎 ∈ ℝ1×ℎ and 𝑏𝑦 ∈ ℝ1×𝑞 : biases

𝑔1 and 𝑔2 : activation functions

3.2 RNN Activation Functions

RELU Sigmoid Tanh

𝜎(𝑥) = max(0, 𝑥) 𝜎(𝑥) =
1

1 + 𝑒−𝑥
 𝜎(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

 Table 1: Common choices of activation functions used in RNNs.

 (Amidi & Amidi).

48

Common choices of activation functions are shown in Table 1. Figures 3.2 and 3.3 depict

RNN units as a black box. The calculations carried out by an RNN unit as described by

equations 3.2 and 3.3 are illustrated visually in Figure 3.4.

3.3 RNN Loss Function

Generally, the loss function is a measure of how close a neural network is to the ideal

weights. RNN loss function is defined as the sum of losses over all time steps as shown in

the following equation:

𝐿𝑡𝑜𝑡𝑎𝑙(𝑦̂, 𝑦) = ∑ 𝐿𝑡(𝑦̂
(𝑡), 𝑦𝑡)

𝑇𝑦

𝑡=1 (3.4)

3.4 RNNs in Action

This section shows a simple example of an RNN in action including one forward pass

followed by a backward pass (Khuong, 2019; Chen, 2016). As shown previously, RNNs

can be viewed either as a circuit diagram or as an unfolded diagram as shown below.

Figure 3.5 shows a simple RNN, also known as vanilla RNN where the blue blocks are the

hidden states which can be thought of as an activation function that acts on each circle

Figure 3.5: Rolled RNN diagram vs unrolled RNN diagram.

(left): rolled version or circuit diagram of a vanilla RNN. (right): unrolled version or unfolded

diagram of the same vanilla RNN. Figure adapted from (Chen G. , 2016).

49

inside the block that is the hidden node. ℎ𝑖
(𝑡)

 is the 𝑖𝑡ℎ hidden node at timestep 𝑡. Each

hidden node performs a linear calculation then an activation function 𝑔1 is applied to all

nodes to get a vector of activations 𝑎(𝑡). At each timestep 𝑡, the RNN takes the output of

the hidden state at the previous timestep 𝑡 − 1 along with the input vector 𝑥(𝑡) at the

current timestep 𝑡 . This allows the RNN to accumulate information about the whole

sequence and thus keep a memory of what it has seen before. However, at timestep 0, there

is no previous hidden state, therefore 𝑎(0) would be a vector of 0s. As pointed out earlier,

RNNs use the concept of parameter sharing meaning that all weight matrices are shared

across several timesteps. i.e. 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 are the same throughout the whole sequence.

The following equations describe Figure 3.5 mathematically:

𝑎(𝑡) = 𝑔1(𝑊𝑎 𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡)) (3.5)

𝑜(𝑡) = 𝑔2(𝑊𝑜𝑎
(𝑡)) (3.6)

Where:

𝑛 : number of input features (length of input vector 𝑥(𝑡))

ℎ : number of hidden nodes (length of activation vector 𝑎(𝑡))

𝑞 : number of output nodes (length of output vector 𝑦̂(𝑡))

𝑎(𝑡) ∈ ℝℎ : vector of activation values at the current timestep 𝑡 − 1 (the output

 of the hidden state at the current timestep)

𝑎(𝑡−1) ∈ ℝℎ : vector of activation values at the previous timestep 𝑡 − 1 (the output

 of the hidden state at the previous timestep)

𝑥(𝑡) ∈ ℝ𝑛 : vector of input features at the current timestep 𝑡

𝑜(𝑡) ∈ ℝ𝑞 : output vector (prediction) at timestep 𝑡

𝑎(𝑡) ∈ ℝℎ : vector of activation values at the current timestep 𝑡 (the output

 of the hidden state of the current timestep).

50

𝑊𝑎 ∈ ℝℎ×ℎ : weight matrix multiplied by 𝑎(𝑡−1) to get 𝑎(𝑡)

𝑊𝑥 ∈ ℝℎ×𝑛 : weight matrix multiplied by 𝑥(𝑡) to get 𝑎(𝑡)

𝑊𝑜 ∈ ℝ𝑞×ℎ : weight matrix multiplied by 𝑎(𝑡) to get 𝑦̂(𝑡)

𝑔1 : activation function of hidden nodes

𝑔2 : activation function of output nodes

N i c e

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Table 2: One-hot encoding for categorical variables.

Figure 3.6: A simple RNN that is to be trained to predict the last letter “e” from the

word “Nice” given the previous three letters.

51

Below is given a superficial example of an RNN. The goal is to train the RNN to predict

the last letter of the word “Nice” given the previous three letters. As shown in Figure 3.6,

The given RNN has 3 hidden nodes. It’s a multi-classification problem since there are only

4 letters to predict “N”, “i”, “c” and “e”. Of course, Neural networks can deal with

numerical values only and hence each letter is represented as a one-hot encoded vector.

This means that each letter is assigned a vector of length that equals the number of classes,

4 in this case where one element of that vector is 1 and the rest are 0s. One-hot encoding

is used to convert categorical variables to a form that can be passed to neural networks.

Categorical variables are those that represent names or labels and don’t have a specific

ordering or ranking associated with them. Table 2 illustrates how each letter is represented

with one-hot encoding.

Generally, the training phase of the given RNN would look like the following:

• Initialize weight matrices 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 randomly.

• Make a forward pass to find the predictions.

• Calculate the loss for each timestep and then the cost for all timesteps.

• Make a backward pass to find the gradients.

• Update the weights according to the gradients.

• Repeat the steps until convergence or for a defined number of iterations.

One forward pass could be described mathematically as follows:

𝑎𝑡 = 𝑔1

(

[

𝑤𝑎,11 𝑤𝑎,12 𝑤𝑎,13

𝑤𝑎,21 𝑤𝑎,22 𝑤𝑎,23

𝑤𝑎,31 𝑤𝑎,32 𝑤𝑎,33

] [

𝑎1
(𝑡−1)

𝑎2
(𝑡−1)

𝑎3
(𝑡−1)

] + [

𝑤𝑥,11 𝑤𝑥,12 𝑤𝑥,13 𝑤𝑥,14

𝑤𝑥,21 𝑤𝑥,22 𝑤𝑥,23 𝑤𝑥,24

𝑤𝑥,31 𝑤𝑥,32 𝑤𝑥,32 𝑤𝑥,34

]

[

 𝑥1

(𝑡)

𝑥2
(𝑡)

𝑥3
(𝑡)

𝑥4
(𝑡)

]

)

= [

𝑎1
(𝑡)

𝑎2
(𝑡)

𝑎3
(𝑡)

] (3.7)

52

𝑜𝑡 = 𝑔2 ([

𝑤𝑜,11 𝑤𝑜,12 𝑤𝑜,13

𝑤𝑜,21 𝑤𝑜,22 𝑤𝑜,23

𝑤𝑜,31 𝑤𝑜,32 𝑤𝑜,33

𝑤𝑜,41 𝑤𝑜,42 𝑤𝑜,43

] [

𝑎1
(𝑡)

𝑎2
(𝑡)

𝑎3
(𝑡)

]) =

[

 𝑜1

(𝑡)

𝑜2
(𝑡)

𝑜3
(𝑡)

𝑜4
(𝑡)

]

 (3.8)

After the forward pass, the loss for each timestep is computed followed by the cost which

is the sum of all losses. Since the task at hand is a multiclassification problem, the used

loss would be the cross-entropy. The cross-entropy loss at timestep t is as follows:

𝐿(𝑡)(𝑦(𝑡), 𝑜(𝑡)) = − 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡)) (3.9)

Whereas the cross-entropy cost of all timesteps is as follows:

𝐿(𝑦, 𝑜) = − ∑ 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡))𝑡=𝑇
𝑡=1 (3.10)

Now it’s the time of the backward pass which aims at calculating the gradients using

backpropagation through time BPTT. BPTT is an application of backpropagation that is

used in RNNs (Zhang et al., 2019). It’s trickier than usual backpropagation since the

sequence might be too long and hence the dependencies of weights span over the whole

sequence. This is true due to the principle of parameter sharing where the same weight

matrices are used over several timesteps. When calculating the gradients of the weights

w.r.t the cost function, the weight dependencies are the same length as the sequence itself

which makes it a tricky and computationally intensive task, especially for long sequences.

The gradients of 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 w.r.t to the cost function are as follows:

1.
𝜕𝐿

𝜕 𝑤𝑜
∶

Knowing that:

𝐿𝑡(𝑦𝑡, 𝑜𝑡) = − 𝑦𝑡𝑙𝑜𝑔(𝑜𝑡)

𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡))

It follows that:

𝜕𝐿(𝑡)

𝜕 𝑤𝑜
=

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑤𝑜

53

𝜕𝐿

𝜕 𝑤𝑜
=

𝜕𝐿(1)

𝜕 𝑤𝑜
+

𝜕𝐿(2)

𝜕 𝑤𝑜
+

𝜕𝐿(3)

𝜕 𝑤𝑜
= ∑

𝜕𝐿(𝑡)

𝜕 𝑤𝑜

𝑡=𝑇

𝑡=1

2.
𝜕𝐿

𝜕 𝑤𝑎
∶

Knowing that:

 𝐿(𝑡)(𝑦(𝑡), 𝑜(𝑡)) = − 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡))

 𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡))

 𝑎(𝑡) = 𝜎1(𝑊𝑎 𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡))

It follows that:

𝜕𝐿(𝑡)

𝜕 𝑤𝑜
=

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑊𝑎

But 𝑎(𝑡−1) also contains 𝑊𝑎 and hence the chain rule is applied to 𝑎(𝑡−1) recursively until

reaching 𝑎(0)

𝜕𝐿
(𝑡)

𝜕 𝑤𝑎
=

𝜕𝐿
(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑊𝑎
+

𝜕𝐿
(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑡−1)

𝜕𝑎(𝑡−1)

𝜕 𝑊𝑎
+..

+
𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(0)

𝜕𝑎(0)

𝜕 𝑊𝑎

𝜕𝐿

𝜕 𝑤𝑎
= ∑ ∑

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑘)

𝜕𝑎(𝑘)

𝜕 𝑊𝑎

𝑘=𝑡

𝑘=0

𝑡=𝑇

𝑡=1

Similarly,
𝜕𝐿

𝜕 𝑤𝑥
 is:

𝜕𝐿

𝜕 𝑤𝑥
= ∑ ∑

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑘)

𝜕𝑎(𝑘)

𝜕𝑊𝑥

𝑘=𝑡

𝑘=0

𝑡=𝑇

𝑡=1

 Finally, to update weights proportionally to the gradients, the following update rule is

applied:

54

𝑊𝑖 = 𝑊𝑖 − 𝛼
𝜕𝐿

𝜕𝑊𝑖
 (3.11)

Where:

𝑊𝑖 : weight matrices 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜

𝛼 : learning rate

3.5 Vanishing and Exploding Gradients

Although RNNs have impressive achievements in many areas, almost none of them were

achieved by vanilla RNNs. Rather they were achieved by RNNs that use sophisticated

recurrent units. It has been reported that training vanilla RNNs to capture long-term

dependencies is hard due to the vanishing and exploding gradients problem (Chung et al.,

2014). In practice, vanilla RNNs experience the problem of vanishing or exploding

gradients which occurs during backpropagation in which gradients become extremely

small or extremely large. Both cases affect learning because vanishing gradients (very

small gradients) would rather lead to a model that barely if not at all learns during training

whereas exploding gradients (very large gradients) would crash the model and produce lots

of not-a-numbers (NaNs) (Trask, 2019). The problem of vanishing and exploding gradients

is not limited to RNNs, it occurs in a very deep traditional feed-forward neural networks

as well (Chollet, 2017a). The problem is rooted in the fact that computing gradients in

RNNs involves repetitive matrix multiplication. To understand the effect of repetitive

multiplication, imagine what would happen if some weight 𝑤 is multiplied by itself several

times. Depending on the magnitude of 𝑤 , the product will either explode or vanish

(Goodfellow et al., 2016). The question then arises, why doesn’t forward propagation -

which involves repetitive matrix multiplication - suffer from that problem? Unlike

backpropagation, forward propagation uses activation functions forcing the values to stay

within a specific range (Trask, 2019). In his book, “Grokking Deep Learning”, Trask

provides a synthesized example to show the results of a backpropagation loop for Sigmoid

and RELU functions when used as activation functions. The example shows how the

gradients become extremely small and extremely large for Sigmoid and RELU

55

respectively. For RELU, the reason for the gradient explosion is matrix multiplication

whereas for Sigmoid the reason for the gradient vanishing is because the derivative of the

Sigmoid is very flat at the tails of the function (Trask, 2019, p. 273).

Generally, this issue was tackled by researchers from two different perspectives. One

perspective is concerned with improving the learning algorithm itself such as using

gradient clipping technique, a simple solution to the exploding gradient problem which

been in use by practitioners (Goodfellow et al., 2016). Gradient clipping will be explored

further in section 3.7. The other perspective is concerned with modifying the architecture

of the network itself either by designing more sophisticated recurrent units such long short-

term memory (LSTM) and gated recurrent unit (GRU), or by using residual connections

between layers. LSTM and GRU layers were invented to conquer the vanishing/exploding

gradient problem (Chollet, 2017a). Section 3.6 is devoted to LSTM and GRU. The residual

connections will be covered in section 3.7.

3.6 Gated RNNs

Backpropagation in RNNs involves propagating gradients over many timesteps causing the

gradients to either vanish in most cases or explode occasionally but with severe damage to

the optimization. Gated RNNs are the most effective sequence models in use today

including long short-term memory (LSTM) and gated recurrent unit (GRU) (Goodfellow

et al., 2016).

3.6.1 Long Short-Term Memory - LSTM

Introduced by Hochreiter and Schmidhuber back in 1997, LSTM aims at modeling long

sequences by providing a remedy to the vanishing gradient problem. LSTM has been

improved by many others ever since. Essentially, what LSTM does is that it provides a way

of saving information for later use (Chollet, 2017a). Both vanilla RNN and LSTM have a

hidden state which is denoted by 𝑎(𝑡). However, LSTM differs from vanilla RNN in the

presence of the memory cell or cell state - the part surrounded by the orange dashed line in

Figure 3.8. The memory cell is the core of LSTM which acts as a long-term memory that

56

captures long-term dependencies. It is analogs to a conveyer belt that runs beside the

sequence to carry relevant information at any timestep to be used in later timesteps as

needed (Chollet, 2017a). In its essence, LSTM is designed to capture relevant information

that is useful for later timesteps. To appreciate the ability of LSTM to capture only relevant

information in long sequences, suppose that the task at hand is to classify a movie review

as positive or negative and then rank the movie based on that review. To excel in such a

task, the most informative and expressive words - even if they appear early in the sequence

- need to be captured as they provide a strong clue about the sentiment of the review while

insignificant neutral words need to be discarded as they don’t hold precious information

that may help in the classification. In addition to the memory cell, there are different gates

in the LSTM module that regulate the flow of information by deciding which relevant

information to be kept and thus to be taken to the conveyer belt (memory cell) for later use

and which irrelevant information to be thrown.

These gates can be thought of as real gates that could be fully opened, partially opened or

closed meaning that these gates control not only the kind of information to be kept or

thrown but also how much of information should be remembered or forgotten (“A

numerical example of LSTMs,” 2017).

Mainly, LSTM gates have control over the memory cell from which they can add or remove

information (Olah, Understanding LSTM Networks, 2015). These gates are learned during

training to become successful at capturing relevant information needed later for prediction

and throwing irrelevant information (Nguyen, 2019). Usually, LSTM has three gates as

shown in Figure 3.8. Every gate consists of a fully connected layer with a Sigmoid

Figure 3.7: Traditional RNN module - vanilla RNN.

Figure adapted from (Olah, Understanding LSTM Networks, 2015).

57

activation followed by an element-wise multiplication (“A numerical example of LSTMs,”

2017). As mentioned earlier, Sigmoid function produces values between 0 and 1 where 0

indicates pass nothing through the gate and 1 indicates pass everything through the gate.

To summarize, the memory cell in LSTM represents the long-term memory which is

getting updated first through the forget gate where irrelevant information is removed, and

second through the input gate where new information is added. 𝑎(𝑡) represents the working

memory (short-term memory) where LSTM keeps only the immediately useful information

from the memory cell (Chen E. , 2017). Notice that 𝑎(𝑡) usually is referred to as the hidden

state. Below, each gate is presented briefly.

Forget gate: As the name indicates, this is the part of LSTM responsible for deciding

which irrelevant information to be abandoned (and by how much).

Figure 3.8: Long-short term memory (LSTM).

Figure adapted from (Olah, Understanding LSTM Networks, 2015; Nguyen, 2019).

58

The following formula shows the output 𝐹(𝑡) of the forget gate (Olah, Understanding

LSTM Networks, 2015):

𝐹(𝑡) = 𝜎(𝑊𝑓 . [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑓) (3.12)

Where:

𝜎 : Sigmoid function

𝑊𝑓 : weight matrix of the forget gate

𝑎(𝑡−1) : activation vector of the previous timestep t-1 (output of the previous

 timestep)

𝑥(𝑡) : input vector of the current timestep t

[𝑎(𝑡−1), 𝑥(𝑡)] : concatenation of the two vectors

𝑏𝑓 : bias vector

By looking at 𝑎(𝑡−1) and 𝑥(𝑡) then applying Sigmoid, the forget gate outputs a number in

the range 0 - 1 for every number in 𝑐(𝑡−1), the old memory cell (long-term memory). Doing

so, the forget gate discards irrelevant information from 𝑐(𝑡−1) where 0 indicates forgetting

entirely while 1 indicates the opposite (Olah, Understanding LSTM Networks, 2015). After

calculating 𝐹(𝑡) as shown above, 𝐹(𝑡) is getting multiplied by the old memory cell 𝑐(𝑡−1).

represents element-wise multiplication (Hadamard product) in which This symbol

every element in the first matrix or vector is getting multiplied by the corresponding

element in the second matrix or vector as shown in the following equation:

[
𝑎1 𝑎2

𝑎3 𝑎4
] ° [

𝑏1 𝑏2

𝑏3 𝑏4
] = [

𝑎1. 𝑏1 𝑎2. 𝑏2

𝑎3. 𝑏3 𝑎4. 𝑏4
] (3.13)

Input gate: This gate consists of two parts. The first part shown in Figure 3.9 is the one

responsible for creating new candidate values vector 𝑐̃(𝑡) learned from the input vector 𝑥(𝑡)

which can be added to the new memory cell 𝑐(𝑡) to become a part of the long-term memory

(Chen E. , 2017). This part of the input gate is represented mathematically by the following

equation (Olah, Understanding LSTM Networks, 2015):

°

59

𝑐̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑐) (3.14)

The other part shown in Figure 3.10 is responsible for determining which values of the

candidate vector 𝑐̃(𝑡) worth to be added to the new memory cell (long-term memory) 𝑐(𝑡)

(Chen E. , 2017). The following equation describes this part of the input gate

mathematically (Olah, Understanding LSTM Networks, 2015):

𝐼(𝑡) = 𝜎(𝑊𝑖. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑖) (3.15)

Finally, these two parts of the input gate are getting combined through element-wise

multiplication as shown in Figure 3.11.

Figure 3.9: First part of the input

gate.

Figure 3.10: Second part of the

input gate.

60

As shown previously, the forget gate determines which irrelevant information that is no

longer needed to be memorized and thus need to be dropped from the memory cell. This

is achieved through multiplying 𝐹(𝑡) with the old memory cell 𝑐(𝑡−1) . After forgetting

irrelevant information from the old memory cell, the following step of updating the

memory cell is to multiply 𝐼(𝑡) with 𝑐̃(𝑡). This means that the new candidate values 𝑐̃(𝑡) are

getting scaled by 𝐼(𝑡) according to their importance. Finally, to finish updating the memory

cell, the input gate and the forget gate are getting combined as follows (Olah,

Understanding LSTM Networks, 2015):

𝑐(𝑡) = 𝐹(𝑡) ° 𝑐(𝑡−1) + 𝐼(𝑡) ° 𝑐̃(𝑡) (3.16)

Output gate: This part outputs the activation 𝑎(𝑡) of the LSTM cell. 𝑎(𝑡) be thought of as

the working memory (short-term memory) of LSTM. The output gate learns to focus on

the parts of the long-term memory that are immediately useful (Chen E. , 2017). The

following equations illustrate how 𝑎(𝑡) is obtained (Olah, Understanding LSTM Networks,

2015):

𝑂(𝑡) = 𝜎(𝑊𝑜 . [𝑎
(𝑡−1), 𝑥(1)] + 𝑏𝑜) (3.17)

𝑎(𝑡) = 𝑂(𝑡) ° 𝑡𝑎𝑛ℎ (𝑐(𝑡)) (3.18)

3.6.2 Gated Recurrent Unit – GRU

More recently, gated recurrent unit (GRU) was proposed in 2014 (Cho et al., 2014b).

Figure 3.11: The two parts of the input

gate combined through element-wise

multiplication.

61

Compared with LSTM, GRU doesn't have separate memory cells. Moreover, GRU uses

two gates instead of three. Although GRU has a simpler structure than LSTM, the former

has outperformed the latter empirically in some cases (Chung et al., 2014). Figure 3.12 is

an illustration of a GRU cell that consists of two gates, a reset gate and an update gate. At

every timestep, the GRU cell takes the current input 𝑥(𝑡) and the old activation of the

previous timestep 𝑡 − 1, that is 𝑎(𝑡−1) as an input to produce the new activation 𝑎(𝑡) of the

current timestep t. The reset gate controls how much of the old activation 𝑎(𝑡−1) should be

included in the candidate activation 𝑎̃(𝑡). Afterward, the update gate decides the amount

in which the old activation 𝑎(𝑡−1) and the candidate activation 𝑎̃(𝑡) should participate in

the calculation of the new activation 𝑎(𝑡). Below, a brief illustration of the GRU gates is

given.

Reset gate 𝐑(𝐭): The role of the reset gate is to control how much of the old activation

𝑎(𝑡−1) should be forgotten. i.e. how much of the old activation 𝑎(𝑡−1) should be included

when calculating the candidate activation 𝑎̃(𝑡). When 𝑅(𝑡) ≈ 0, it means forget the old

activation 𝑎(𝑡−1) and look at 𝑥(𝑡) only to form the candidate activation 𝑎̃(𝑡). When 𝑅(𝑡) ≈

Figure 3.12: Gated Recurrent Unit (GRU).

Figure adapted from (Nguyen, 2019; Drakos, 2019).

62

 1, it means remember the old activation 𝑎(𝑡−1) and use it beside 𝑥(𝑡) to form the candidate

activation 𝑎̃(𝑡) (Chung et al., 2014). Below is the equation of the reset gate (Drakos, 2019):

𝑅(𝑡) = 𝜎(𝑊𝑟. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑟) (3.19)

Update gate 𝐔(𝐭): The update gate controls the amount of the update that should be made

to the new activation. i.e. 𝑈(𝑡) decides the amount of which the old activation 𝑎(𝑡−1) and

the candidate activation 𝑎̃(𝑡) should participate in the calculation of the new activation

𝑎(𝑡) . When 𝑈(𝑡) ≈ 0 , it means keep the old activation 𝑎(𝑡−1) and use it as the new

activation 𝑎(𝑡) while discarding the candidate activation 𝑎̃(𝑡). When 𝑈(𝑡) ≈ 1, it means

discard the old activation 𝑎(𝑡−1) and use the candidate activation as the new activation 𝑎(𝑡).

All gates shown previously have similar formulas with different weights and biases and

the reset gate is no exception as shown below (Drakos, 2019):

𝑈(𝑡) = 𝜎(𝑊𝑢. [𝑎(𝑡−1), 𝑥(𝑡)] + 𝑏𝑢) (3.18)

Two quantities are involved in the calculation of the candidate activation 𝑎̃(𝑡), one of them

is 𝑥(𝑡) and the other one is 𝑎(𝑡−1) which is controlled by 𝑅(𝑡) as shown below (Drakos,

2019):

𝑎̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑎. [𝑅(𝑡) ° 𝑎(𝑡−1), 𝑥(𝑡)] + 𝑏𝑎) (3.20)

The final output of the GRU is the new activation 𝑎(𝑡) which is a linear interpolation

between two values 𝑎(𝑡−1) and 𝑎̃(𝑡) (Chung et al., 2014).

The following equation shows how 𝑎(𝑡) is obtained (Drakos, 2019):

𝑎(𝑡) = (1 − 𝑈(𝑡)) ° 𝑎(𝑡−1) + 𝑈(𝑡) ° 𝑎̃(𝑡) (3.21)

3.7 Residual Connections

The idea of residual connections, also known as skip connections, was used by Lin et al.,

(1996) following the work of Lang & Hinton, (1988) about delays in FNNs. (Goodfellow

63

et al., 2016). Later, a Microsoft research team won the 1st place on the ILSVRC 2015

classification task using residual nets with 125 layers depth. Afterward, the team has

published a technical report of their experiments on the ImageNet test set. (He et al., 2015).

Their work provided a piece of empirical evidence that the use of residual connections has

improved the performance of very deep convolutional neural networks. Specifically, the

authors have observed that stacking more layers doesn’t improve performance, on the

contrary, it leads to higher training and testing errors, which is counter-intuitive since a

deeper model is supposedly able to learn the representations learned by the shallower

model, i.e. the former is expected to have, at least, the same error as the latter.

The abovementioned problem is not caused by overfitting since the training error of the

deeper model is higher than that of the shallower model. Therefore, the work of He et al.,

(2015) introduced the residual connections as a solution to this problem. The reason behind

the success of the residual connections is unclear but it’s empirically evident. A residual

connection is a connection that skips one or more layers. Figure 3.14 shows a residual block

with a residual connection that bypasses every two layers

In Figure 3.14, the connection takes the output of a previous layer 𝑥 and adds it to the

output of the next two layers 𝑓(𝑥). The output of the residual block is 𝑓(𝑥) + 𝑥 . The

connection is nothing more than an identity mapping in which 𝑥 passes unchanged.

Figure 3.13: (left) training error (right) testing error.

The plots show training and testing errors of 20 layers (yellow curve) and 56 layers (red curve) convolutional

networks without residual connections on CIFAR-10. Deeper network has higher training and testing errors (He et

al., 2015).

64

Let’s say that the two layers are supposed to learn a mapping ℎ, i.e. the original mapping

to be learned is ℎ. Hence, 𝑥 is the input and ℎ(𝑥) is the output of these layers.

However, by introducing the residual connection as shown in Figure 3.14, the desired

mapping to be learned by the layers is no longer ℎ(𝑥), rather, its 𝑓(𝑥).

Hence, it follows logically that:

1) Desired mapping is 𝑓(𝑥) = ℎ(𝑥) − 𝑥.

2) Original mapping is ℎ(𝑥) = 𝑓(𝑥) + 𝑥.

The authors hypothesized that learning the residual mapping 𝑓(𝑥) is easier than learning

the original mapping ℎ(𝑥) by providing the following example:

If the original mapping to be learned were the identity mapping, i.e. ℎ(𝑥) = 𝑥, then it is

easier to push the residual 𝑓(𝑥) to 0 than to let the stacked layers learn the identity

mapping without a residual connection. To elaborate on the example, when the original

mapping is the identity, ℎ(𝑥) = 𝑥 then it follows that, with the presence of the residual

connection, the desired mapping is 𝑓(𝑥) = ℎ(𝑥) − 𝑥 = 𝑥 − 𝑥 = 0. Hence, the layers will try

to push 𝑓(𝑥) towards 0 rather than trying to learn the identity mapping.

Figure 3.14: The residual block used by He et al., (2015).

65

3.8 Gradient Clipping

Figure 3.16: The effect of using gradient clipping.

(left): Without gradient clipping, gradient descent step moves from the valley to the wall (it

moves suddenly from a low error region to a high error region) resulting in a high gradient

that updates the parameters with new values outside the axes of the plot. (right): With

gradient clipping, even though the gradient descent step ascends the wall, the step size isn’t

too big to update the parameters with values far away from the solution (Goodfellow et al.,

2016).

Figure 3.15: Cost function surface of highly non-linear models.

The cost function 𝐽(𝑤, 𝑏) is plotted as a function of its parameters 𝑤 and 𝑏 showing the

error surface with a wall that indicates an abrupt change in the error. In RNNs, Repetitive

multiplication of weights results in exremely steep regions (walls) as shown here in the

error surface of the cost function 𝐽(𝑤, 𝑏). These When approached by gradient descent

during optimization, these walls may cause the gradient descent to update the parameters

with values very far from the optimal solution (Goodfellow et al., 2016).

66

Usually, highly nonlinear models such as RNNs and deep FNNs have cost functions with

very steep regions (walls) as shown in Figure 3.15. These regions result from repeated

multiplication of parameters (weights) thus have large gradients. Avoiding steep regions

is essential since getting close to them during optimization my cause the gradient descent

to make an update of the parameters leading them to a region far away from the desired

solution and thus losing the progress that have been made so far (Goodfellow et al., 2016).

Gradient clipping is a simple mechanism to deal with exploding gradient problem. Two

variations of gradient clipping were suggested with minor differences between them

(Pascanu et al., 2012; Uení et al., 2012). Figure 3.7 shows the effect of using gradient

clipping. When the gradient is large, the update of the parameters may lead to a region

where the cost function is larger. Therefore, the step size must be small enough to prevent

the update from taking a big step upward the wall. As illustrated in figure 3.7, gradient

clipping prevents gradient descent from overshooting the minima by keeping the gradient

less than some threshold as follows (Pascanu et al., 2012):

 If ‖𝑔‖ > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then:

 𝑔 =
𝑔×𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

‖𝑔‖
 (3.12)

Where, ‖𝑔‖ is the norm of the gradient vector 𝑔 which can be possibly the L-1 norm of

𝑔, that is ‖𝑔‖1 or the L-2 norm of 𝑔, that is ‖𝑔‖2.

Simply, The L-1 norm of a vector 𝑥 ∈ ℝ𝑛
 with elements 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) is the

sum of its elements magnitudes as follows:

‖𝑥‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1 (3.14)

The L-2 norm is the Euclidean distance and is expressed mathematically as follows:

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1 (3.13)

67

3.9 RNN Architectures

RNN may have different architectures, each of which fulfills the need of a specific

application. The variations of RNNs input and output sizes in different applications led to

the emergence of a rich family of RNNs architectures. Below is a brief presentation of

RNNs architectures.

One-to-one neural network: 𝑇𝑥 = 𝑇𝑜 = 1. As illustrated in Figure 3.15, 𝑎(0) is the

activation at time step 0, 𝑥 and 𝑜 are the input and output vectors respectively. This is the

vanilla mode of processing where no RNN is used. One-to-one network takes one input

vector 𝑥 and generates one output vector 𝑜. This architecture is used in diverse applications

such as image classification.

One-to-many RNN: 𝑇𝑥 = 1 and 𝑇𝑜 > 1. Music generation is an example of one-to-many

RNN where the task is to generate original musical compositions that humans expect to

hear. Another application is image captioning in which a single image is processed, and

the output is an annotation of that image. Figure 3.16 demonstrates One-to-many RNN

architecture where the RNN takes one input which is image for image captioning

application or maybe nothing as the case of music generation and generates output at each

time step.

Many-to-one RNN: 𝑇𝑥 > 1 and 𝑇𝑦 = 1. This architecture is useful for the task of sentiment

classification where a sentence is classified as conveying negative or positive sentiment.

For example, a text review is given as an input and the output is supposed to be an integer

that represents the rating of the reviewed item according to the written review. One-to-one

RNN is shown in Figure 3.17. The RNN takes input at each time step (a word in sentiment

classification) and generates a single output (the rating).

Many-to-many RNN (input and output have the same length): 𝑇𝑥 = 𝑇𝑜. A well-known

application that uses this architecture is Named-entity recognition or NER. As the name

suggests, NER seeks to locate named entities in a text and classify these names into a set

of predefined categories such as organizations, person names, locations etc.

The output would be the same input text where named entities are highlighted and

annotated (Wikipedia, 2019). Figure 3.18 shows many-to-many RNN where the input is

the same size as the output.

68

Figure 3.16: One-to-one RNN.

Figure adapted from (Amidi &

Amidi).

Figure 3.17: One-to-many RNN.

Figure adapted from (Amidi & Amidi).

Figure 3.18: Many-to-one RNN.

Figure adapted from (Amidi & Amidi).

Figure 3.19: Many-to-many RNN, 𝑻𝒙 = 𝑻𝒐.

Figure adapted from (Amidi & Amidi).

69

Many-to-many RNN (input and output have variable lengths): 𝑇𝑥 ≠ 𝑇𝑜. The task of

machine translation is one of the most famous applications that uses this architecture. A

sentence is translated from the source language to the target language. Clearly, input and

output sequences would not be of the same length. This architecture is illustrated in Figure

2.19.

3.10 Bidirectional Recurrent Neural Networks

All previously presented architectures process information in one direction, meaning that

the hidden state 𝑎(𝑡) at any time step 𝑡 encapsulates information about the past

𝑥(1), … , 𝑥(𝑡−1) and the present 𝑥(𝑡). However, some applications might need to process the

whole sequence to output a prediction 𝑜(𝑡) (Goodfellow et al., 2016). Consider the

following example, which is taken from (Zhang et al., 2019).

1. I am _____

2. I am _____ very hungry.

3. I am _____ very hungry, I could eat three chickens.

If the task were to fill the blanks, we might choose different words such as ‘happy’, ‘not’

and ‘very’. Apparently, the end of the sentence provides important information about

which word to choose. A model that doesn’t make use of such information will lose its’

Figure 3.20: Many-to-many RNN, 𝑻𝒙 ≠ 𝑻𝒐.

Figure adapted from (Amidi & Amidi).

70

predictive power. Named-entity recognition NER is another example where longer-range

context is critical (e.g. does Brown refer to a person or to the color?). To address the need

of processing the whole sequence, Bidirectional RNNs (BRNNs) were invented (Schuster

& Paliwal, 1997).

BRNNs have proven to be successful in many applications including handwriting

recognition, speech recognition and bioinformatics (Goodfellow et al., 2016). Figure 4.8

shows a BRNN. Unlike traditional RNN, BRNNs constitute of two RNNs. One is a forward

RNN that processes the sequence in the forward direction and computes a forward state.

The other is a backward RNN that processes the sequence in the backward direction and

computes a backward state. Thus, BRNN computes two hidden states, forward and

backward hidden states at each time step t. For a given time step t, the mini-batch input is

𝑥(𝑡) ∈ ℝ𝑏×𝑛 where 𝑏 refers to the number of examples in the mini-batch (batch size) and

𝑛 refers to the number of features. Forward and backward hidden states are 𝑎→
(𝑡)

∈ ℝ𝑏×ℎ

and 𝑎←
(𝑡)

∈ ℝ𝑏×ℎ where ℎ refers to the number of hidden units. At time step 𝑡, forward

and backward hidden states (activations) are computed as follows:

𝑎→
(𝑡)

= 𝜎1 (𝑊𝑎
𝑓
𝑎(𝑡−1) + 𝑊𝑥

𝑓
𝑥(𝑡) + 𝑏𝑎

𝑓
) (3.14)

Figure 3.21 Bidirectional RNN.

71

𝑎←
(𝑡)

= 𝜎1 (𝑊𝑎
𝑏𝑎(𝑡−1) + 𝑊𝑥

𝑏𝑥(𝑡) + 𝑏𝑎
𝑏) (3.15)

Where:

 𝑥(𝑡) ∈ ℝ𝑏×𝑛 : mini-batch input at current time step t

𝑎(𝑡) ∈ ℝ𝑏×ℎ : hidden state (activation) at current time step t

𝑎(𝑡−1) ∈ ℝ𝑏×ℎ : hidden state (activation) at previous time step t-1

𝑎→
(𝑡)

 ∈ ℝ𝑏×ℎ : forward hidden state at current time step t

𝑎←
(𝑡)

 ∈ ℝ𝑏×ℎ : backward hidden state at current time step t

𝑊𝑎
𝑓
 ∈ ℝ𝑛×ℎ , 𝑊𝑥

𝑓
 ∈ ℝℎ×ℎ , 𝑊𝑎

𝑏 ∈ ℝ𝑛×ℎ and 𝑊𝑥
𝑏 ∈ ℝℎ×ℎ : the weight matrices

𝑏𝑎
𝑓

∈ ℝ1×ℎ and 𝑏𝑎
𝑏 ∈ ℝ1×ℎ : the biases

𝜎1 : activation function

𝑏 : number of examples in the input mini-batch 𝑥(𝑡) (batch size)

𝑛 : number of features

ℎ : number of hidden units

𝑞 : number of output units

Afterwards, forward and backward hidden states, 𝑎→
(𝑡)

 and 𝑎←
(𝑡)

 are concatenated to form

𝑎(𝑡) ∈ ℝ𝑏×2ℎ.

Finally, the output is computed as in traditional RNNs:

𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡) + 𝑏𝑜) (3.16)

Where:

72

 𝑜(𝑡) ∈ ℝ𝑏×𝑞 : output at time step t

𝑊𝑜 ∈ ℝ2ℎ×𝑞 : weight matrix

 𝑏𝑜 ∈ ℝ1×𝑞 : bias

𝜎2 : activation function

3.11 Encoder-Decoder Sequence-to-Sequence Architecture

Many applications involve processing sequences of variable lengths. Machine translation,

video captioning, speech recognition, and question answering among many others may

have input and output sequences of different lengths (Goodfellow et al., 2016). Two

pioneering works were first to propose an RNN architecture that maps two sequences of

variable-lengths, Cho K. et al., (2014b) and Sutskever et al., (2014).

The authors of both works referred to the proposed architecture as encoder-decoder or

sequence-to-sequence respectively (Goodfellow et al., 2016). Generally, a sequence-to-

sequence (Seq2Seq) or encoder-decoder model aims at learning to convert an input

sequence from one domain (e.g. source language) to an output sequence from another

domain (e.g. target language) (Chollet, 2017b).

A (Seq2Seq) model is composed of two RNNs:

a) An encoder that takes the input sequence element by element and produce a fixed-

length vector, namely the context vector 𝐶 . Typically, the last hidden state of the

encoder is used as the context vector (Goodfellow et al., 2016).

b) A decoder that uses the context vector 𝐶 either as its initial hidden state or by

connecting it to the hidden units at each timestep. Both ways can be used in

combination (Goodfellow et al., 2016).

73

In fact, the encoder-decoder architecture is a many-to-many RNN where the length of the

input sequence doesn’t necessarily match that of the output sequence, 𝑇𝑥 ≠ 𝑇𝑜 . The

encoder is a regular RNN that processes the input sequence 𝑥 sequentially and updates its

hidden state (activation) 𝑎𝑑
(𝑡)

 at each timestep t as follows (Cho K. , et al., 2014b):

𝑎𝑒
(𝑡)

= 𝑓(𝑎𝑒
(𝑡−1)

, 𝑥(𝑡)) (3.18)

When the encoder scans the whole input sequence, the activation of the last timestep t

represents the context vector 𝐶. Ideally, the context vector summarizes the entire input

sequence (Cho K. , et al., 2014b). However, the decoder’s activation is slightly different,

since its activation 𝑎𝑑
(𝑡)

 at timestep t depends on the previous activation 𝑎𝑑
(𝑡−1)

, the previous

output 𝑜(𝑡−1), and the context vector 𝐶 as follows (Cho K. , et al., 2014b):

𝑎𝑑
(𝑡)

= 𝑓(𝑎𝑑
(𝑡−1)

, 𝑜(𝑡−1), 𝐶) (3.19)

Figure 3.22: Encoder-decoder architecture.

Figure adapted from (Goodfellow et al., 2016).

74

3.12 Attention Mechanism

The notion of attention has gained popularity in diverse learning applications. In the

context of machine translation, the work of Bahdanau et al., (2015) was the first to exploit

the power of attention (Luong et al., 2015). Authors of Bahdanau et al., (2015) argue that

the use of a fixed-length context vector in Seq2Seq models is a bottleneck, especially for

long sequences. Instead of putting the burden on the context vector alone to encode the

entire input sequence, the attention allows the decoder at every step of decoding to

selectively focus on (attend to) different parts of the input sequence that are more relevant

to predicting the current part of the output sequence.

Unlike attention decoder, classic decoder ignores all hidden states of the encoder and uses

the last hidden state (context vector) alone during decoding which is obviously a waste of

precious information about the input sequence encoded by the overlooked hidden states.

However, attention decoder takes all hidden states into consideration. Based on the

architecture used by Bahdanau et al., (2015), the work of Luong et al., (2015) suggested a

simpler version of attention which has achieved the state-of-the-art results in the neural

machine translation task. Below is an illustration the attention mechanism as described in

Luong et al., (2015).

At every decoding step 𝑡:

1) Calculate energy 𝑒(𝑗):

𝑒(𝑗) = 𝑓1(𝑎𝑑
(𝑡−1)

, 𝑎𝑒
(𝑗)

) (3.20)

Where:

𝑒(𝑗) : 𝑗𝑡ℎ energy

𝑎𝑑
(𝑡−1)

 : previous decoder’s activation

𝑎𝑒
(𝑗)

 : 𝑗𝑡ℎ encoder’s activation

𝑓1 : a linear layer

2) Calculate attention weights 𝑎𝑤(𝑗) by taking the Softmax of the 𝑗𝑡ℎ energy 𝑒(𝑗) over

all energies:

𝑎𝑤(𝑗) =
𝑒𝑥𝑝 (𝑒(𝑗))

∑ 𝑒𝑥𝑝(𝑒(𝑘))𝑇
𝑘=1

 (3.21)

Where:

75

𝑇 : length of the source sequence

3) Calculate the context vector 𝑐:

𝑐 = ∑ 𝑎𝑤(𝑗)𝑎𝑒
(𝑗)𝑇

𝑗=1 (3.22)

4) Calculate the current decoder’s activation 𝑎𝑑
(𝑡)

:

𝑎𝑑
(𝑡)

 = 𝑟𝑛𝑛(𝑎𝑑
(𝑡−1)

, 𝑜𝑑
(𝑡−1)

, 𝑐) (3.23)

Where:

𝑎𝑑
(𝑡−1)

 : previous decoder’s activation

𝑜𝑑
(𝑡−1)

 : previous decoder’s output

𝑐 : current context vector

𝑟𝑛𝑛 : RNN function

5) Calculate the decoder’s current output 𝑜𝑑
(𝑡)

 depends on 3 quantities as follows:

𝑜𝑑
(𝑡) = 𝑓2(𝑜𝑑

(𝑡−1)
, 𝑎𝑑

(𝑡)
, 𝑐) (3.20)

Where:

𝑓2 : a linear layer

76

Chapter 4

MATERIALS AND METHODS

4.1 Materials

4.1.1 Human3.6 Dataset

As mentioned earlier, Human3.6 dataset was used in the experimentation of this work as

in previous works. Currently, Human3.6 is the largest publicly available motion dataset

with 3.6 million 3D human poses (Ionescu et al., 2011; Ionescu et al., 2014). It has 50Hz

framerate - 50 frames per second (fps) and it provides motion data for 7 professional actors

(subjects) performing 15 different activities. Human3.6 uses an articulated skeleton with

32 joints. Furthermore, Human3.6 provides motion data in several formats including image

data, time-of-flight data, scanner data, and pose data. Primarily, pose data includes two

parametrizations, joint positions and joint angles. As the adopted dataset in this work comes

in pose data format, this format will be explored in more detail in the next section.

4.1.2 Human3.6 Pose Parametrizations

Motion data parametrization is the task of converting motion data raw format to a

numerical format suitable for data analysis (Du, Manns, Herrmann, & Fischer, 2016).

Originally, Human3.6 dataset is available in two parametrizations, relative 3D joint

positions (R3DJP) and Kinematic representation (KR). These representations are common

in the literature, each one has its own strengths and weaknesses. (R3DJP) representation

uses the 3D cartesian positions directly to represent the joints of the skeleton. This

representation doesn’t preserve the skeleton structure and thus it requires constraints to be

imposed on the skeleton (bone-length constraints) to make sure that the distances between

joints remain fixed throughout the animation (Komura, Habibie, Schwarz, & Holden, 2017;

Du et al., 2016).

77

Imposing these constraints comes with its own cost as it requires non-linear optimization

(Komura et al., 2017). On the other hand, (KR) representation depends on the angles of the

joints rather than their positions. Specifically, (KR) uses the translation (position) and

orientation of the root joint as well as the relative orientations of other joints (Du et al.,

2016). (KR) connects joints through a parent-child relationship to form an articulated

skeleton. The movement of a joint is relative to its parent. (KR) requires forward

kinematics to obtain 3D joints positions which involves non-linear transformations and

trigonometric functions (Komura et al., 2017). Unlike (R3DJP), (KR) preserves the

structure of the skeleton and thus it is most commonly used in motion analysis tasks. Also,

it is the standard representation for most (MOCAP) datasets (Du et al., 2016). The dataset

adopted in this work uses (KR) representation.

4.1.3 Human3.6 Preprocessing

Following earlier works (Jain et al., 2016; Martinez et al., 2017; Fragkiadaki et al., 2015;

Pavllo et al., 2019), this work uses a preprocessed version of H3.6 dataset provided by (Jain

et al., 2016). The preprocessing of the dataset follows the approach of (Taylor et al., 2007)

in which the original raw angles were converted from Euler angle to exponential maps

representation alongside with a special preprocessing applied to the root joint. The

preprocessed H3.6 dataset provides motion data for 7 professional actors or subjects

performing 15 different activities including: walking, eating, smoking, discussion,

directions, greeting, phoning, posing, purchases, sitting, sitting down, taking photo,

waiting, walking dog and walking together. The motion data of every subject contains 15

actions where each action contains 2 sub-actions, i.e. the same action is performed twice

by the subject resulting in 30 actions for each subject. The dataset is arranged as shown in

Figure 4.1. The motion data for each subject is stored in a folder such that the name of the

folder consists of a capital “S” followed by the number of the subject. For example, the

folder of the 1st subject has the name “S1”. Other folders are given names in the same

manner.

78

Figure 4.1: Preprocessed H3.6 dataset arrangement.

Figure 4.2: Part of a motion data file from the adopted dataset.

79

 Table 3: Joints of Human3.6 skeleton.

 The ID, name, parent and children of each joint are shown.

ID Name parent Children

0 Hips 0 1, 6, 11

1 Right Up Leg 0 2

2 Right Leg 1 3

3 Right Foot 2 4

4 Right Toe Base 3 5

5 Site 4 -

6 Left Up Leg 0 7

7 Left Leg 6 8

8 Left Foot 7 9

9 Left Toe Base 8 10

10 Site 9 -

11 Spine 0 12

12 Spine 1 11 13, 16, 24

13 Neck 12 14

14 Head 13 15

15 Site 14 -

16 Left Shoulder 12 17

17 Left Arm 16 18

18 Arm 17 19

19 Left Hand 18 20, 22

20 Left Hand Thumb 19 21

21 Site 20 -

22 Left wrist End 19 23

23 Site 22 -

24 Right Shoulder 12 25

25 Right Arm 24 26

26 Right Fore Arm 25 27

27 Right Hand 26 28, 30

28 Right Hand Thumb 27 29

29 Site 28 -

30 Right wrist End 27 31

31 Site 30 -

80

Following previous works, subjects 1, 6, 7, 8, 9 and 11 were used for training and subject

5 was used for testing. As mentioned before, every subject has 2 sub-actions for the same

action. For example, subject 1 has two files for the “directions” action, directions_1.txt and

directions_2.txt. Figure 2.4 shows part of a motion data in the adopted dataset. For any

motion data file in the dataset, “directions_1.txt” for example, the rows represent the

number of frames of motion which vary from one file to another whereas the columns

represent joint angles in exponential maps representation. The file resembles the comma-

separates-values (CSV) format in which the comma is used as a delimiter. Every 3 elements

in a row is related to a single joint except the first 3 elements, i.e. the first 3 elements

Figure 4.3: : H3.6 skeleton where joints are numbered according to their IDs given

in Table 3.

81

represent 3D position information of the root joint “Hips”, the next 4 elements represent

3D joint angle information of the root joint and the next 4 elements represent 3D joint angle

information of the next joint in the hierarchy “Right Up Leg” and so forth. The order in

which joint angles appear corresponds to the order of joints in Table 3. As the angles are

given in exponential maps representation, the total number of columns is 69 for all files.

This is because the total number of joints is 32 where each joint angle is represented by 3

elements thus the total number of columns is the number of joints multiplied with 3 in

addition to the first 3 elements of the root 3D position, i.e. (number of joint = 32) *

(exponential maps elements = 3) + (root 3D position =3) = 69. In this work, Human3.6

dataset is down sampled by 2 as in previous works i.e. frame rate becomes 25 fps instead

of 50 fps.

4.2 Methods

Before breaking down the architecture into its constituting building blocks, it is useful to

introduce some important ideas as a preface to the incoming material. Some important

terminologies are given below.

• Sequence: A set of sequential frames of motion.

• Source sequence (input sequence): The sequence that will be provided as input to the

encoder during training and testing.

• Target sequence (output sequence): The sequence that the decoder will predict.

• Teacher forcing: Training the decoder by feeding the ground-truth at every decoding

step (the ground-truth of the decoder’s output of the previous timestep is fed as input

to the next timestep).

• Sampling: Training the decoder by feeding its own predictions at every decoding step

(the decoder’s output of the previous timestep is fed as input to the next timestep).

• Scheduled sampling: A combination of teacher forcing and sampling in which the

decoder is fed the ground-truth at some steps and its own predictions at other steps.

• Time major: The data is time major when its 0th dimension is the length of the sequence

be it the source or target sequence. It’s called time major because the length of the

sequence represents the number of timesteps.

82

• Batch major: The data is time major when its 0th dimension is the batch size.

Since the motion dataset is down sampled to 25 frames/second, feeding 50 frames to the

model is equivalent to feeding 2 seconds of motion and predicting 10 frames is equivalent

to predicting 400 milliseconds.

During training, the Seq2Seq model needs 3 sequences which are extracted from the

dataset. The extraction of theses sequences is illustrated in Figure 4.4. These sequences are

as follows:

a) encoder-inputs: The sequence that is fed to the encoder during training as well as

testing. All frames of the source sequence are taken as encoder-inputs except the last

frame which is fed to the decoder at the first step of decoding. Hence, encoder-inputs

is 1 frame less than the source sequence.

b) decoder-inputs: The sequence that is fed as input to the decoder. During training, this

sequence will be always the ground-truth if pure teacher forcing is used. If pure

sampling is used, it will be always decoder’s predictions. However, if scheduled

sampling is used, decoder-inputs is either the ground-truth or the decoder’s predictions.

Figure 4.4: The division of encoder-inputs, decoder-inputs and decoder-

outputs sequences.

Number of encoder-inputs frames = (input-sequence length) - 1. Number of

decoder-inputs frames = output-sequence length. Number of decoder-outputs

frames = output-sequence length. The decoder-outputs sequence is shifted one

timestep ahead of the decoder-inputs.

83

This is applicable only during training, during testing however, decoder-inputs is

always decoder’s predictions. decoder-inputs has the same length of the target

sequence.

c) decoder-outputs: The decoder’s desired output (ground-truth) that the decoder’s

prediction will be compared against. decoder-outputs length is the same as the source

sequence length. decoder-outputs sequence is shifted one timestep ahead of the

decoder-inputs.

The abovementioned sequences namely encoder-inputs, decoder-inputs, and decoder-

outputs are supplied to the model ahead of training. During testing, encoder-inputs is only

the sequence to be supplied to the model.

4.2.1 Model Architecture

This work uses a Seq2Seq model with an encoder and a decoder as shown Figure 4.5. The

encoder can be either a unidirectional RNN or a bidirectional RNN as shown in Figures

4.6 and 4.7 respectively. However, the decoder is always a unidirectional RNN with

attention which either uses teacher forcing or sampling during training as shown in Figures

4.8 and 4.9 respectively.

84

At every iteration, the Seq2Seq model starts training by supplying the encoder with the

source sequence (encoder-inputs) which is shown as green skeletons in Figure 4.5. At

every step of encoding, the encoder will consume the provided sequence frame by frame

and produce a hidden state (activation) at each step. Upon finishing the encoding of the

source sequence, the encoder provides two outputs; the encoder-outputs which comprises

the hidden states of all steps and the hidden which is the hidden state of the last step. Since

this Seq2Seq model uses an attention decoder, both hidden and encoder-outputs are

needed. However, when a classic decoder is used (one that doesn’t employ any form of

attention), only hidden is needed for decoding hence encoder-outputs is discarded.

At first step of decoding, the attention decoder takes 3 input sequences namely encoder-

outputs, hidden and the last frame of the source sequence (serves as decoder-inputs). The

hidden is used to initialize the hidden state of the decoder thus, the decoder is conditioned

on the source sequence since hidden is supposed to encode the whole source sequence. In

the subsequent steps of decoding, the hidden state of the decoder is updated, and decoder-

inputs becomes either the previous prediction (sampling) or the ground-truth of the

previous output (teacher forcing). The role of encoder-outputs is to obtain attention

weights which will be illustrated in detail later.

4.2.2 Encoder

As mentioned earlier, this work has experimented with a unidirectional encoder and its

bidirectional counterpart to assess their performance quantitatively. Both encoder’s

architectures used in this work have a single GRU layer and both will be explored in this

section. Figure 4.6 illustrates a unidirectional encoder, its inputs (encoder-inputs), and its

outputs (encoder-outputs and hidden). The dimensions of inputs and outputs are shown in

time major format where S is the length of source sequence, B is the batch size and H is he

hidden size. Since the unidirectional encoder processes the source sequence in one

direction, it produces a single hidden state for the last step (hidden) and a single hidden

state for every step (encoder-outputs).

Figure 4.5: The Seq2Seq architecture used in this work.

85

However, the hidden of the bidirectional encoder shown in Figure 4.7 contains 2 hidden

states; the last step’s hidden state of the forward RNN (blue blocks in Figure 4.7), and the

first step’s hidden state of the backward RNN (purple blocks in Figure 4.7).

Figure 4.6: A unidirectional encoder.

 S = length of source sequence, B = batch size, H = hidden size, and N = input size

(No. of features).

Figure 4.7: A bidirectional encoder.

S = length of source sequence, B = batch size, H = hidden size, and N = input size

(No. of features).

86

The forward RNN processes the source sequence in the original order and the backward

RNN processes the sequence in the reversed order. Ultimately, forward and backward

hidden states (blue and purple squares) are combined (added) and the last dimension of

hidden is reduced consequently to become like that of the unidirectional encoder. The same

is true for encoder-outputs produced by the bidirectional encoder. Reducing the

dimensions of the bidirectional encoder’s outputs is crucial since the unidirectional

decoder expects the dimensions of hidden and encoder-outputs to be like those of the

unidirectional encoder.

4.2.3 Decoder

 The decoder used in the Seq2Seq model of this work is a unidirectional attention decoder.

Figures 4.8 and 4.9 show the same attention decoder. The blue diamond represents the

steps of attention which will be illustrated later whereas the red trapezoid represents a

projection layer that projects the output of the GRU cell from hidden size back to input

size. Figure 4.8 shows the attention decoder when trained with teacher forcing approach

for a single iteration where the decoder is fed the ground-truth (green skeleton) at every

decoding step. Figure 4.9 shows the same attention decoder when trained with sampling

approach for a single iteration where the decoder is fed the ground-truth (green skeleton)

at the first step of decoding only and is fed its own predictions (blue skeleton) at the

remaining steps.

Pure teacher forcing is when the attention decoder sees ground-truth in all training

iterations whereas pure sampling is when the attention decoder sees its own predictions in

all training iterations. Scheduled sampling is when the decoder sees the ground-truth in

some iterations and its own predictions in others. It is possible for the decoder that uses

scheduled sampling to have different probabilities for teacher forcing and sampling e.g.

60% of teacher forcing and 40% of sampling.

87

Figure 4.8: Attention decoder with sampling.

T = length of target sequence, B = batch size, H = hidden size, and N = input size (No. of features).

Figure 4.9: Attention decoder with sampling.

T = length of target sequence, B = batch size, H = hidden size, and N = input size (No. of features).

88

4.2.4 Model Implementation

4.2.4.1 High-level overview of the implementation

The data preprocessing part is mostly adopted from Martinez et al., (2017) whereas the

attention implementation is adopted from (Robertson, 2019). Below are the steps of the

human motion prediction task as implemented in this work.

1. Hyperparameters initialization

Since the Seq2Seq model requires a predefined set of hyperparameters, the following

variables are defined upfront creating the model:

• Length of the source sequence: number of frames to feed into the encoder.

• Length of the target sequence: number of frames that the decoder must predict.

• Size of the hidden layer: number of hidden units for each layer.

• Number of hidden layers.

• Maximum L-2 norm: threshold after which the gradient is clipped.

• Batch size.

• Learning rate.

• Learning decay factor: multiplicative factor to decay the learning rate.

• Learning rate decay step: number of steps after which to decay the learning rate.

• Teacher forcing ratio: 0 means the decoder uses pure sampling for training, 0.5 means

it uses scheduled sampling and 1 means it uses pure teacher forcing.

• Number of iterations: number of training iterations.

• Evaluate step: number of iterations to after which evaluation takes place.

Usually, it is useful to reduce the learning rate as the training progresses. This is known as

learning rate decay or scheduling. The intuition behind this idea is that as the training

progresses, the model optimizes its parameters and becomes closer to the optimal solution

thus reducing the learning rate prevents overshooting the minima and helps the model to

converge. The decay takes place every (Learning rate decay step) according to the

following equation:

 𝛼 = 𝛼̀𝛾 (4.1)

89

Where:

𝛼 : new learning rate

𝛼̀ : old learning rate

𝛾 : learning rate decay factor

2. Data preprocessing

The same preprocessing is applied to data during training and testing. The steps of the

preprocessing are highlighted in Figure 4.10. These steps are presented in more detail

below.

• Load data: Convert data from (CSV) format to float Numpy array.

• Down-sample data by 2: Take even rows and discard odd rows.

• Add one-hot encoding: Append the one-hot encoding to the data.

Figure 4.10: Data preprocessing stages.

90

• Compute normalization statistics: Find the mean and the standard deviation (std) of

the whole dataset.

• Ignore dimensions with very small 𝒔𝒕𝒅: Columns with 𝑠𝑡𝑑 < 1𝑒 − 4 will not be

used in the training since they don’t provide helpful information.

• Normalize data: Subtract the mean and divide by the std.

3. Extract encoder-outputs of SRNN seeds

The same ground truth sequences that were used for evaluation and testing by Jain et al.,

(2016) in their proposed architecture, that is the structural recurrent neural network

(SRNN), are un-normalized and converted to Euler angles to be used in evaluation and

testing later. This will ensure that the results are comparable to previous researches. i.e.

this stage will reproduce the same SRNN’s seed sequences (the ground truth of the

expected output sequences) taken from the testing set, i.e. subject 5. As mentioned before,

subject 5 was used in previous works for testing. This stage constitutes of the following

steps:

a) Extract SRNN seed sequences:

For each action of subject 5, the total number of seed sequences is 8, in which 4 sequences

are taken from sub-action 1 and the other 4 are taken from sub-action 2. Figure 4.11 shows

how the seed sequences are extracted from any sub-action of subject 5. Each seed sequence

is then assigned to encoder-inputs, decoder-inputs and decoder-outputs as shown

previously in Figure 4.4. At this point, only decoder-outputs are needed as they will be

used in evaluation later to be compared against the model predictions.

b) Un-normalize SRNN decoder-outputs

The decoder-outputs will be un-normalized so that it can be used in evaluation.

Un-normalization recover original data from the normalized data as follows:

• Recover the ignored dimensions.

• Multiply by the standard deviation of motion data

• Add the mean of motion data

91

c) Convert SRNN decoder-outputs to Euler angle representation

SRNN decoder-outputs are converted from exponential maps to Euler angles.

4. Start the training loop

Before starting the training loop, the following steps are executed:

1. Get a random batch from the training set consisting of encoder-inputs, decoder-inputs

and decoder-outputs. These sequences follow the same pattern shown in Figure 4.5.

The dimensionality of each sequence is given below:

 encoder-inputs =

 (batch size, input sequence length – 1, number of normalized of joint angles).

Figure 4.11: The extraction of SRNN sequences.

The blue block is any sub-action of subject 5. The purple block starts at frame number = SEED and ends at frame

number = SEED + (input sequence length). The yellow block starts at frame number = SEED + (input sequence length)

+ 1 and ends at frame number = SEED + (input sequence length) + 1 + (output sequence).

92

 decoder-inputs =

 (batch size, output sequence length , number of normalized of joint angles).

 decoder-outputs =

 (batch size, output sequence length , number of normalized of joint angles).

Figures 4.12 and 4.13 illustrate the dimensionality of the abovementioned sequences.

The decoder-outputs is shifted one timestep ahead of the decoder-inputs as shown

previously in Figure 4.11.

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs.

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden state of

the last step).

4. If the random number < teacher forcing ratio:

1. For every element in target-sequence:

❖ Pass encoder-outputs, decoder-hidden and decoder-inputs (will be always

the ground-truth since it uses teacher forcing).

❖ Perform attention steps as shown in Figure 4.12

❖ Get prediction and updated decoder-hidden

❖ Add prediction to previous predictions

5. else:

2. For every element in target-sequence:

❖ Feed the decoder with encoder-outputs, decoder-hidden and decoder-

inputs (it will be the ground-truth only at 1st steps but for other steps it will

be the prediction since the decoder uses sampling).

❖ Perform attention steps as shown in Figure 4.12

❖ Get prediction and updated decoder-hidden

❖ Add prediction to previous predictions

6. step-loss = (predictions – decoder-outputs)2

7. step-loss = mean(step-loss)

8. Backward propagate step-loss

9. Perform optimizer step for encoder and decoder

93

10. Print the step loss every k steps.

11. Do learning decay every l steps.

If this is a validation step (current step % m == 0):

• Validate on random sequences:

1. Get a random batch exactly as done previously under the training step but this

time the batch is taken from testing data i.e. subject 5.

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs.

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden

state of the last step).

4. For every element in target-sequence:

❖ Feed the decoder with encoder-outputs, decoder-hidden and decoder-

inputs (it will be the ground-truth only at 1st steps but for other steps it will

be the prediction since the decoder uses sampling).

❖ Perform attention steps as shown in Figure 4.12

❖ Get prediction and updated decoder-hidden

❖ Add prediction to previous predictions

5. step-loss = (predictions – decoder-outputs)2

6. step-loss = mean(step-loss)

7. validation-loss = step-loss

• Validate on SRNN sequences:

For every action:

1. Get the 8 SRNN seed sequences as done previously in step 3 of the training

phase, but this time encoder-inputs, decoder-inputs and decoder-outputs are

needed.

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs.

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden

state of the last step)

4. For every element in target-sequence:

94

❖ Feed the decoder encoder-outputs, decoder-hidden and decoder-inputs (it

will be the ground-truth only at 1st steps but for other steps it will be the

prediction since the decoder uses sampling)

❖ Perform attention steps as shown in Figure 4.14

❖ Get prediction and updated decoder-hidden

❖ Add prediction to previous predictions

5. step-loss = (predictions – decoder-outputs)2

6. step-loss = mean(step-loss)

7. SRNN-loss = step-loss

8. Return the 8 predictions of the model.

9. Un-normalize the predictions.

10. Convert the predictions from exponential maps to Euler angles.

11. Obtain the mean-squared-error between the ground truth and the predictions

as shown in Figure 4.15.

o For every sequence, compute the squared sum of errors for every

frame (each sequence will have 1 value for every frame).

o Compute the mean of the squared sums for all the 8 sequences.

5. Print the results

The following information are printed to the screen:

For every n steps:

• Current step.

• Current step loss (training loss).

For every m steps:

• Global step.

• Learning rate.

• Step time in milliseconds (total steps time / number of steps).

• Average training loss(training loss / number of steps).

• SRNN loss.

95

Figure 4.12: encoder-inputs dimensions

Figure 4.13: decoder-inputs and decoder-outputs

dimensions.

96

Figure 4.14: Attention steps.

97

Figure 4.15: Finding the error between the ground truth and the prediction for a single action.

98

Chapter 5

EXPERIMENTS AND RESULTS

5.1 Experimental Setup

5.1.1 Environmental Specifications of the Experiment

a) Hardware

The experiments were conducted using Google Collaboratory, a research project of Google

based on Jupyter notebook environment that’s connected to a cloud-base runtime with a

Tesla GPU. Table 4 shows environmental specifications of the experiment.

Hardware Specifications

GPU 1xTesla K80, compute 3.7, having 2496 CUDA cores, 12GB GDDR5

VRAM

CPU 2xsingle core hyper threaded Xeon Processors @2.3Ghz

RAM ~12.6 GB Available

Disk ~33 GB Available
 Table 4: Hardware specifications.

b) Software

Table 5 presents software specifications of the experimentations.

Software Description Version

Python General-purpose programming

language

3.6.9

PyTorch (Paszke, et al., 2019) Deep learning framework 1.4.0
Table 5: Software specifications.

99

5.1.2 Experimentations of this Work

This work explores quantitatively the performance of the following 4 variations of the

Seq2Seq model:

• Uni-Enc-50: Unidirectional encoder and attention decoder with 50% teacher forcing

(the decoder sees ground-truth 50% of the time – scheduled sampling).

• Bi-Enc-50: Bidirectional encoder and attention decoder with 50% teacher forcing

(the decoder sees ground-truth 50% of the time – scheduled sampling).

• Uni-Enc-0: Unidirectional encoder and attention decoder with 0% teacher forcing

(the decoder sees its own predictions all the time – sampling).

• Uni-Enc-100: Unidirectional encoder and attention decoder with 100% teacher

forcing (the decoder sees ground-truth all the time – teacher forcing).

One of this work’s models namely Bi-Enc-50, uses a bidirectional encoder while other

models use unidirectional encoders. However, common to all models is the architecture of

the attention decoder. The abovementioned models differ in the way the decoder is trained.

The number appended to the name of each model signifies the probability that the decoder

is fed ground-truth or its own predictions during training. During training, the decoder in

Uni-Enc-50 and Bi-Enc-50 models is fed the ground-truth 50% of the time and its own

predictions 50% of the time. This is approach is known as scheduled sampling. For Uni-

Enc-0 model, the decoder is never fed the ground-truth, instead, it is fed its own predictions

all the time which is a pure sampling approach. However, the decoder of Uni-Enc-100

model is fed the ground-truth all the time i.e. it is trained through teacher forcing approach.

The motivation behind changing the percentages is to test the impact of different

approaches of training including teacher forcing, scheduled sampling, and sampling on the

performance. According to Martinez et al., (2017), training the decoder with pure teacher

forcing may lead a network that is unable to recover from its own mistakes. Surprisingly,

the findings of the experimentations done by this work are neutral and don’t signify any

difference between these approaches.

100

a) Hyperparameters

For all models, the hyperparameters used in the experimentations are given in Table 6.

These are supplied by the user.

b) Architecture and algorithm implementation details

All experiments are conducted using a Seq2Seq architecture with a single GRU layer for

the encoder and the decoder. The optimization algorithm is the Stochastic gradient descent

(SGD) and the cost function is the Mean squared error (MSE). During training, the

Hyperparameter Value

Learning rate 0.005

Learning rate decay factor 0.95

Number of steps after which the learning rate is decayed 10.000

Maximum L-2 norm after which the gradient is clipped 5

Batch size 16

Number of iterations 100.000

Number of hidden units 1024

Number of layers 1

Length of the input sequence - number of frames to be fed to

the encoder

50

Length of the output sequence – number of frames to be

predicted by the decoder

25

Table 6: Model’s hyperparameters.

101

Architecture Seq2Seq

Encoder Unidirectional or bidirectional RNN

Decoder Unidirectional RNN with attention

RNN cell Gated recurrent unit (GRU)

Additional techniques Residual connections

Cost function Mean squared error (MSE)

Optimization algorithm Stochastic gradient descent (SGD)

Table 7: Model’s architectural and algorithmic details.

5.1.3 Results

Following previous works, mean errors are shown in Euler angles after 80ms, 160ms,

320ms and 400ms of motion. i.e. after 2, 4, 8 and 10 frames since the frame rate is 25 fps.

Furthermore, the errors of this works models are also shown after 560ms and 1000ms i.e.

after 14 and 25 frames respectively. The models of this work are compared against the

following models:

• ERD: Encoder-Recurrent-Decoder by Fragkiadaki et al., (2015).

• LSTM-3LR: 3-layer long short-term memory network by Fragkiadaki et al., (2015).

• SRNN: Structural recurrent neural network by Jain et al., (2016).

• Res. sup.: Residual decoder with a unidirectional encoder by (Martinez et al., 2017).

• AGED w/ adv+geo: Adversarial geometry-aware encoder-decoder with frame-wise

geodesic loss by Gui wt al., (2018).

Tables 8 and 9 show errors of all abovementioned models on walking, eating, smoking,

and discussion actions. Tables 10, 11, 12, 13, 14, and 15 show errors for last two models

since earlier models have not been tested on the remaining actions. The lowest error is

shown in bold and the second lowest error is shown underlined. Table 15 shows average

errors on all actions.

102

 Walking Eating

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

ERD 0.93 1.18 1.59 1.78 - - 1.27 1.45 1.66 1.80 - -

LSTM-3LR 0.77 1.00 1.29 1.47 - - 0.89 1.09 1.35 1.46 - -

SRNN 0.81 0.94 1.16 1.30 - - 0.97 1.14 1.35 1.46 - -

Res. sup. 0.27 0.47 0.67 0.73 - - 0.23 0.39 0.62 0.78 - -

AGED w/

adv+geo
0.22 0.36 0.55 0.67 - - 0.17 0.28 0.51 0.64 - -

Uni-Enc-50 0.22 0.21 0.24 0.24 0.22 0.24 0.25 0.23 0.20 0.21 0.20 0.25

Bi-Enc-50 0.22 0.21 0.23 0.24 0.23 0.24 0.19 0.20 0.20 0.19 0.19 0.23

Uni-Enc-0 0.22 0.22 0.25 0.26 0.25 0.25 0.22 0.21 0.20 0.20 0.19 0.25

Uni-Enc-100 0.23 0.21 0.23 0.23 0.23 0.23 0.21 0.19 0.18 0.19 0.18 0.24

Table 8: Mean squared errors in Euler angles of discussion and smoking actions.

 Smoking Discussion

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

ERD 1.66 1.95 2.35 2.42 - - 2.27 2.47 2.68 2.76 - -

LSTM-3LR 1.34 1.65 2.04 2.16 - - 1.88 2.12 2.25 2.23 - -

SRNN 1.45 1.68 1.94 2.08 - - 1.22 1.49 1.83 1.93 - -

Res. sup. 0.32 0.59 0.99 1.09 - - 0.33 0.61 1.05 1.15 - -

AGED w/

adv+geo
0.27 0.43 0.82 0.84 - - 0.27 0.56 0.76 0.83 - -

Uni-Enc-50 0.33 0.34 0.40 0.30 0.30 0.36 0.23 0.29 0.24 0.25 0.24 0.23

Bi-Enc-50 0.29 0.29 0.38 0.26 0.24 0.35 0.25 0.31 0.25 0.26 0.25 0.23

Uni-Enc-0 0.28 0.32 0.38 0.28 0.27 0.36 0.29 0.33 0.29 0.29 0.24 0.22

Uni-Enc-100 0.31 0.34 0.41 0.30 0.27 0.35 0.27 0.27 0.24 0.24 0.25 0.24

Table 9: Mean squared errors in Euler angles of discussion and smoking actions.

103

 Directions Greeting

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.26 0.47 0.72 0.84 - - 0.75 1.17 1.74 1.83 - -

AGED w/

adv+geo
0.23 0.39 0.63 0.69 - - 0.56 0.81 1.30 1.46 - -

Uni-Enc-50 0.25 0.23 0.23 0.20 0.21 0.21 0.28 0.27 0.29 0.30 0.40 0.33

Bi-Enc-50 0.25 0.22 0.24 0.20 0.20 0.22 0.31 0.25 0.25 0.30 0.40 0.33

Uni-Enc-0 0.24 0.23 0.22 0.19 0.21 0.20 0.31 0.26 0.27 0.29 0.40 0.32

Uni-Enc-100 0.24 0.23 0.22 0.19 0.22 0.22 0.31 0.26 0.27 0.28 0.36 0.31

Table 10: Mean squared errors in Euler angles of directions and greeting actions.

 Phoning Posing

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.23 0.43 0.69 0.82 - - 0.36 0.71 1.22 1.48 - -

AGED w/

adv+geo
0.19 0.34 0.50 0.68 - - 0.31 0.58 1.12 1.34 - -

Uni-Enc-50 0.52 0.42 0.86 0.86 0.41 0.30 0.42 0.37 0.36 0.33 0.44 0.35

Bi-Enc-50 0.54 0.48 0.88 0.90 0.44 0.32 0.40 0.34 0.31 0.32 0.37 0.36

Uni-Enc-0 0.53 0.47 0.87 0.88 0.43 0.32 0.38 0.35 0.33 0.34 0.39 0.37

Uni-Enc-100 0.58 0.48 0.87 0.88 0.42 0.30 0.40 0.36 0.30 0.30 0.40 0.36

Table 11: Mean squared errors in Euler angles of phoning and posing actions.

104

 Purchases Sitting

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.51 0.97 1.07 1.16 - - 0.41 1.05 1.49 1.63 - -

AGED w/

adv+geo
0.46 0.78 1.01 1.07 - - 0.41 0.76 1.05 1.19 - -

Uni-Enc-50 0.42 0.38 0.34 0.34 0.37 0.41 0.49 0.45 0.48 0.44 0.46 0.44

Bi-Enc-50 0.39 0.33 0.32 0.29 0.30 0.36 0.42 0.45 0.44 0.43 0.45 0.41

Uni-Enc-0 0.38 0.32 0.30 0.28 0.32 0.37 0.43 0.40 0.42 0.41 0.40 0.40

Uni-Enc-100 0.36 0.32 0.28 0.28 0.31 0.37 0.46 0.43 0.44 0.43 0.43 0.39

Table 12: Mean squared errors in Euler angles of purchases and sitting actions.

 Sitting down Taking photo

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.39 0.81 1.40 1.62 - - 0.24 0.51 0.90 1.05 - -

AGED w/

adv+geo
0.33 0.62 0.98 1.10 - - 0.23 0.48 0.81 0.95 - -

Uni-Enc-50 0.55 0.60 0.53 0.49 0.50 0.53 0.24 0.28 0.26 0.25 0.22 0.24

Bi-Enc-50 0.56 0.61 0.55 0.50 0.52 0.56 0.24 0.26 0.23 0.22 0.22 0.22

Uni-Enc-0 0.61 0.63 0.51 0.48 0.50 0.56 0.24 0.30 0.25 0.24 0.22 0.22

Uni-Enc-100 0.65 0.67 0.55 0.52 0.50 0.55 0.26 0.27 0.24 0.23 0.24 0.22

Table 13: Mean squared errors in Euler angles of sitting down and taking photo actions.

105

5.1.4 Discussion

This work implemented 4 models namely Uni-Enc-50, Bi-Enc-50, Uni-Enc-0, and Uni-

Enc-100.

 Waiting Walking dog

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.28 0.53 1.02 1.14 - - 0.56 0.91 1.26 1.40 - -

AGED w/

adv+geo
0.24 0.50 1.02 1.13 - - 0.50 0.81 1.15 1.27 - -

Uni-Enc-50 0.32 0.33 0.30 0.29 0.38 0.30 0.37 0.42 0.38 0.33 0.34 0.35

Bi-Enc-50 0.29 0.28 0.27 0.27 0.37 0.28 0.38 0.38 0.32 0.31 0.32 0.37

Uni-Enc-0 0.27 0.29 0.26 0.26 0.36 0.29 0.36 0.43 0.35 0.32 0.35 0.33

Uni-Enc-100 0.30 0.30 0.27 0.28 0.36 0.29 0.37 0.43 0.36 0.33 0.34 0.34

Table 14: Mean squared errors in Euler angles of waiting and walking dog actions.

 Walking together Average

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000

Res. sup. 0.31 0.58 0.87 0.91 - - 0.36 0.67 1.02 1.15 - -

AGED w/

adv+geo
0.23 0.41 0.56 0.62 - - 0.31 0.54 0.85 0.97 - -

Uni-Enc-50 0.24 0.23 0.22 0.22 0.24 0.28 0.34 0.34 0.36 0.34 - -

Bi-Enc-50 0.22 0.21 0.22 0.22 0.24 0.28 0.33 0.32 0.34 0.33 - -

Uni-Enc-0 0.22 0.21 0.22 0.22 0.23 0.28 0.33 0.33 0.34 0.33 - -

Uni-Enc-100 0.22 0.21 0.20 0.21 0.23 0.26 0.34 0.33 0.34 0.33 - -

Table 15: Mean squared errors in Euler angles of walking together action and the average mean

square errors for all actions.

106

All models use the same attention decoder but with varying probabilities of teacher forcing

i.e. how much the decoder sees its own predictions as opposed to seeing ground-truths

during training. Specifically, Uni-Enc-50 and Bi-Enc-50 use attention decoders that see

ground-truth 50% of the time during training. Uni-Enc-0 and Uni-Enc-100 use attention

decoders that see ground-truth 0% and 100% of the time during training respectively.

Moreover, the work has experimented with two models, Uni-Enc-50 and Bi-Enc-50, that

use different versions of encoders, that is unidirectional and bidirectional respectively.

As it is evident from the results, errors after 80ms of this work’s models are comparable to

those of Res. sup. and AGED w/ adv+geo. However, as the time of prediction increases,

the errors of earlier models deteriorate progressively unlike models of this work which

show very stable prediction performance. The models used by this work have beaten earlier

models on all actions except phoning where earlier models have lower prediction errors as

shown in Table 11. Nevertheless, the errors produced by this work’s models on phoning

action have reduced noticeably after 560ms and 1000ms. Furthermore, this work’s models’

performance on all actions stays high even after 560ms and 1000ms, which is a strong

indicator of the suitability of attention decoders not only for motion prediction (<500ms),

but also for motion generation (>500ms). On average, models of this work have beaten

earlier models with a large margin as shown in Table 4. According to the experimentations

of this work, changing the percentage of teacher forcing (the probability that the decoder

sees ground-truth during training) has no real impact on the results. Moreover, the use of a

bidirectional encoder has no added benefit over its unidirectional counterpart. On the

contrary of [2] and [5], residual connections and Quaternions have not improved the results

but rather make them worse.

5.1.5 Conclusion

Learning a model that can generalize to different categories of human motion is a super-

intensive task since human motion is highly variable and complex by nature. Nonetheless,

many researchers are approaching the task relentlessly. Recent works have achieved good

results on the task using deep learning methods. However, at the time of writing, the general

107

model that can learn all kinds of human motion is still beyond the reach. For the first time,

this work employs a bidirectional encoder to model human motion with an attention

decoder to make predictions such that both are trained jointly on 15 different actions from

the Human3.6 dataset. Prediction results after 80ms are comparable to those of previous

works, however, after 160ms, models used by this work have much lower errors on all

periodic and non-periodic actions except phoning. Even though, errors after 560ms and

1000ms on phoning action have reduced significantly and become less than those of

previous works. According the findings of this work, the use of attention decoder has

achieved state-of-the-art of human motion prediction after 160ms of motion prediction with

very stable performance that doesn’t deteriorate even after 1000ms of motion prediction

which is not the case with earlier works. However, using a bidirectional encoder has no

advantage over its unidirectional counterpart. Moreover, varying the percentages of teacher

forcing i.e. training the decoder with 100%, 50%, or 0% of teacher forcing has no effect

either.

5.1.6 Future work

Future work may include validating the predicted motion qualitatively, experimenting with

different forms of attention, comparing the performance of LSTM against GRU, and using

larger datasets of human motion.

108

REFRENCES
72.b Documentation with motion capture. (2012). Retrieved from

https://pdfs.semanticscholar.org/fc18/0849a4171814aa7f9a0366305d791071227a.pdf

A numerical example of LSTMs. (2017, 6). Retrieved from

https://statisticalinterference.wordpress.com/2017/06/01/lstms-in-even-more-

excruciating-detail/

Amidi, S., & Amidi, A. (n.d.). Recurrent Neural Networks cheatsheet. Retrieved from

https://stanford.edu/ shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to

Align and Translate. In Y. Bengio, & Y. LeCun (Ed.), 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings. Retrieved from http://arxiv.org/abs/1409.0473

Bisht, H. S. (2018, 9). Effect of Bias in Neural Network. Retrieved from

https://www.geeksforgeeks.org/effect-of-bias-in-neural-network/

Butepage, J., Black, M. J., Kragic, D., & Kjellstrom, H. (2017, 7). Deep Representation Learning

for Human Motion Prediction and Classification. 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE. doi:10.1109/cvpr.2017.173

Carnegie Mellon University - motion capture library. (n.d.). Retrieved from

http://mocap.cs.cmu.edu/

Carnegie Mellon University - motion capture library - info. (n.d.). Retrieved from

http://mocap.cs.cmu.edu/info.php

Chen, E. (2017, 5). Exploring LSTMs. Retrieved from

http://blog.echen.me/2017/05/30/exploring-lstms/

Chen, G. (2016). A Gentle Tutorial of Recurrent Neural Network with Error Backpropagation.

CoRR, abs/1610.02583. Retrieved from http://arxiv.org/abs/1610.02583

Cho, K., Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014a). On the Properties of Neural

Machine Translation: Encoder-Decoder Approaches. CoRR, abs/1409.1259. Retrieved

from http://arxiv.org/abs/1409.1259

Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., & Bengio, Y. (2014b).

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation. CoRR, abs/1406.1078. Retrieved from http://arxiv.org/abs/1406.1078

Chollet, F. (2017a). Deep Learning with Python (1st ed.). Greenwich, CT, USA: Manning

Publications Co.

109

Chollet, F. (2017b, 9). The Keras Blog. Retrieved from https://blog.keras.io/a-ten-minute-

introduction-to-sequence-to-sequence-learning-in-keras.html

Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling. CoRR, abs/1412.3555. Retrieved from

http://arxiv.org/abs/1412.3555

Dean, C. J. (2016). Manifold Learning Techniques for Editing Motion Capture Data. Master's

thesis, Victoria University of Wellington. Retrieved from

https://pdfs.semanticscholar.org/9124/1839dbde7088ccf0e5ea5d86dada6293e34e.pdf

Drakos, G. (2019, 2). What is a Recurrent NNs and Gated Recurrent Unit (GRUS). Medium.

Retrieved from https://medium.com/@george.drakos62/what-is-a-recurrent-nns-and-

gated-recurrent-unit-grus-ea71d2a05a69

Du, H., Manns, M., Herrmann, E., & Fischer, K. (2016, 12). Joint Angle Data Representation for

Data Driven Human Motion Synthesis. Procedia CIRP, 41, 746-751.

doi:10.1016/j.procir.2015.12.096

Dyer, S., Martin, J.-P., & Zulauf, J. (1995). Motion Capture White Paper.

Fragkiadaki, K., Levine, S., Felsen, P., & Malik, J. (2015, 12). Recurrent Network Models for

Human Dynamics. 2015 IEEE International Conference on Computer Vision (ICCV),

(pp. 4346-4354). doi:10.1109/ICCV.2015.494

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Google Colaboratory. (n.d.). Google. Retrieved from

https://colab.research.google.com/notebooks/welcome.ipynb

Gradient Descent with Momentum. (2019, 9). Retrieved from

https://kraj3.com.np/blog/2019/09/gradient-descent-with-momentum/

Graves, A. (2013). Generating Sequences With Recurrent Neural Networks. CoRR,

abs/1308.0850. Retrieved from http://arxiv.org/abs/1308.0850

Gui, L.-Y., Wang, Y.-X., Liang, X., & Moura, J. M. (2018). Adversarial Geometry-Aware

Human Motion Prediction. In V. Ferrari, M. Hebert, C. Sminchisescu, & Y. Weiss (Ed.),

Computer Vision -- ECCV 2018 (pp. 823-842). Cham: Springer International Publishing.

Retrieved from https://www.amazon.com/Computer-Vision-Conference-September-

Proceedings-

ebook/dp/B07JB3HQ8Z?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori0

5-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07JB3HQ8Z

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.

CoRR, abs/1512.03385. Retrieved from http://arxiv.org/abs/1512.03385

110

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9,

1735-1780. doi:10.1162/neco.1997.9.8.1735

Ionescu, C., Li, F., & Sminchisescu, C. (2011, 11). Latent structured models for human pose

estimation. 2011 International Conference on Computer Vision, (pp. 2220-2227).

doi:10.1109/ICCV.2011.6126500

Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2014, 7). Human3.6M: Large Scale

Datasets and Predictive Methods for 3D Human Sensing in Natural Environments. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36, 1325-1339.

doi:10.1109/TPAMI.2013.248

Jain, A., Zamir, A. R., Savarese, S., & Saxena, A. (2016, 6). Structural-RNN: Deep Learning on

Spatio-Temporal Graphs. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), (pp. 5308-5317). doi:10.1109/CVPR.2016.573

Khan, M. A., Arif, M., & Kamal, A. (2017, 2). Modeling and compression of motion capture

data. 2017 Learning and Technology Conference (L T) - The MakerSpace: from

Imagining to Making!, (pp. 7-13). doi:10.1109/LT.2017.8088120

Khuong, B. (2019, 7). The Basics of Recurrent Neural Networks (RNNs). Towards AI. Retrieved

from https://medium.com/towards-artificial-intelligence/whirlwind-tour-of-rnns-

a11effb7808f

Komura, T., Habibie, I., Schwarz, J., & Holden, D. (2017). Data-Driven Character Animation

Synthesis. In B. Müller, S. I. Wolf, G.-P. Brueggemann, Z. Deng, A. McIntosh, F. Miller,

& W. S. Selbie (Eds.), Handbook of Human Motion (pp. 1-29). Cham: Springer

International Publishing. doi:10.1007/978-3-319-30808-1_10-1

Lander, J. (1998). Working with motion capture file formats. Retrieved from

http://www.darwin3d.com/gamedev/articles/col0198.pdf

Lang, K. J., & Hinton, G. E. (1988). The development of the time-delay neural network

architecture for speech recognition. Carnegie-MellonUniversity. Retrieved from

https://apps.dtic.mil/dtic/tr/fulltext/u2/a221540.pdf

Lin, T., Horne, B. G., Tiňo, P., & Giles, C. L. (1996). Learning Long-Term Dependencies is Not

as Difficult with NARX Recurrent Neural Networks. USA: University of Maryland at

College Park.

Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning.

CoRR, abs/1506.00019. Retrieved from http://arxiv.org/abs/1506.00019

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective Approaches to Attention-based

Neural Machine Translation. CoRR, abs/1508.04025. Retrieved from

http://arxiv.org/abs/1508.04025

111

Martinez, J., Black, M. J., & Romero, J. (2017). On human motion prediction using recurrent

neural networks. CoRR, abs/1705.02445. Retrieved from http://arxiv.org/abs/1705.02445

Mazur, M. (2017, 11). A Step by Step Backpropagation Example. Retrieved from

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Mulder, W. D., Bethard, S., & Moens, M.-F. (2015). A survey on the application of recurrent

neural networks to statistical language modeling. Computer Speech & Language, 30, 61-

98. doi:https://doi.org/10.1016/j.csl.2014.09.005

Nguyen, M. (2019, 7). Illustrated Guide to LSTM's and GRU's: A step by step explanation.

Towards Data Science. Retrieved from https://towardsdatascience.com/illustrated-guide-

to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Olah, C. (2015, 9). Neural Networks, Types, and Functional Programming. Retrieved from

https://colah.github.io/posts/2015-09-NN-Types-FP/

Olah, C. (2015, 8). Understanding LSTM Networks. Retrieved from

https://colah.github.io/posts/2015-08-Understanding-LSTMs/#fnref1

Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding gradient problem.

CoRR, abs/1211.5063. Retrieved from http://arxiv.org/abs/1211.5063

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., . . . Chintala, S. (2019).

PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in

Neural Information Processing Systems 32 (pp. 8024-8035). Curran Associates, Inc.

Retrieved from http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

Pavllo, D., Feichtenhofer, C., Auli, M., & Grangier, D. (2019). Modeling Human Motion with

Quaternion-based Neural Networks. CoRR, abs/1901.07677. Retrieved from

http://arxiv.org/abs/1901.07677

Pavllo, D., Grangier, D., & Auli, M. (2018). QuaterNet: A Quaternion-based Recurrent Model for

Human Motion. CoRR, abs/1805.06485. Retrieved from http://arxiv.org/abs/1805.06485

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixé, L., Müller, M., Seidel, H., & Rosenhahn, B. (2011,

11). Outdoor human motion capture using inverse kinematics and von mises-fisher

sampling. 2011 International Conference on Computer Vision, (pp. 1243-1250).

doi:10.1109/ICCV.2011.6126375

Robertson, S. (2019, 9). NLP From Scratch: Translation with a Sequence to Sequence Network

and Attention. Retrieved from

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

112

Schuster, M., & Paliwal, K. K. (1997, 11). Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45, 2673-2681. doi:10.1109/78.650093

Sigal, L., Balan, A. O., & Black, M. J. (2009, 8). HumanEva: Synchronized Video and Motion

Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion.

International Journal of Computer Vision, 87, 4-27. doi:10.1007/s11263-009-0273-6

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. CoRR, abs/1409.3215. Retrieved from http://arxiv.org/abs/1409.3215

Tang, Y., Ma, L., Liu, W., & Zheng, W.-S. (2018). Long-Term Human Motion Prediction by

Modeling Motion Context and Enhancing Motion Dynamic. CoRR, abs/1805.02513.

Retrieved from http://arxiv.org/abs/1805.02513

Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2007). Modeling Human Motion Using Binary

Latent Variables. In B. Schölkopf, J. C. Platt, & T. Hoffman (Eds.), Advances in Neural

Information Processing Systems 19 (pp. 1345-1352). MIT Press. Retrieved from

http://papers.nips.cc/paper/3078-modeling-human-motion-using-binary-latent-

variables.pdf

Trask, A. (2019). Grokking Deep Learning (1st ed.). Greenwich, CT, USA: Manning Publications

Co.

Uení, V., Brně, T. V., Multimédií, G. A., & Práce, D. (2012). Statistical Language Models Based

on Neural Networks.

Wang, X., Chen, Q., & Wang, W. (2014). 3D Human Motion Editing and Synthesis: A Survey.

Computational and Mathematical Methods in Medicine, 2014, 1-11.

doi:10.1155/2014/104535

Wikipedia. (2019). Named-entity recognition --- Wikipedia, The Free Encyclopedia.

Xia, S., Gao, L., Lai, Y.-K., Yuan, M.-Z., & Chai, J. (2017, 5 01). A Survey on Human

Performance Capture and Animation. Journal of Computer Science and Technology, 32,

536-554. doi:10.1007/s11390-017-1742-y

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2019). Dive into Deep Learning.

