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ABSTRACT 

 

 

Full Name : Amal Fahad Al-Aqel 

Thesis Title : Bidirectional Recurrent Neural Networks for Human Motion Prediction 

Major Field : Computer Vision 

Date of Degree : [April 2020] 

 

Human motion prediction aims to forecast the most likely future frames of motion 

conditioned on a given sequence of frames. Because of its importance to many applications 

especially robotics, human motion prediction has received a lot of interest and has become 

an active area of research. Recently, deep learning methods have been dominant in many 

tasks due to their successful results. Particularly, Recurrent Neural Networks (RNNs) have 

shown excellent performance on human motion prediction task and other tasks that depend 

on sequential data, where preserving the order of the sequence items is crucial. The well-

known Sequence-to-Sequence (Seq2Seq) architectures have been used for sequence 

learning where two RNNs namely the encoder and the decoder work cooperatively to 

transform one sequence to another. In the context of neural machine translation, the use of 

attention decoders yields state-of-the-art results. This work attempts to assess 

quantitatively the use of a bidirectional encoder and an attention decoder in human motion 

prediction. The experiments of this work have shown that using attention decoder has 

achieved state-of-the-art results after 160 milliseconds of motion prediction. In contrast 

with earlier works, the quality of predictions doesn’t deteriorate and remains stable even 

after more than 1 second of motion prediction.      
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 ملخص الرسالة 

 ]أمل فهد العقل[الاسم الكامل: 

 ]تكراريةالالتنبؤ بالحركة البشرية باستخدام الشبكات العصبية [عنوان الرسالة: 

 ]هندسة وعلوم الحاسب الآلي[التخصص: 

 تاريخ الدرجة العلمية: 

والمشروطة بسلسلة معطاة من إطارات   كثر احتمالا المستقبلية الأ  إطارات الحركة   توقعيهدف التنبؤ بالحركة البشرية إلى  

 باهتمامهذا المجال    حظيعلم الروبوتات، فقد    ل سيما،  التطبيقات. نظراا لأهمية التنبؤ بالحركة البشرية لكثير من  الحركة

ا للبحث.  كبير في الآونة الأخيرة، سادت أساليب التعلم العميق في العديد من المهام نظراا لنتائجها وأصبح مجالا نشطا

أداءا ممتازاا في مهمة التنبؤ بالحركة البشرية وغيرها على وجه الخصوص  رية  الناجحة. أظهرت الشبكات العصبية التكرا

تم  .، حيث يعد الحفاظ على ترتيب العناصر أمراا بالغ الأهميةمن المهام خاصة تلك التي تعتمد على البيانات المتسلسلة

هما نوعان من الشبكات العصبية التكرارية وعمل ي( في تعلم التسلسل حيث Seq2Seqاستخدام البنى المعروفة باسم )

 أسفرفي سياق الترجمة الآلية العصبية،  إلى سلسلة أخرى. ما تحويل سلسلة بهدف والمفسر بشكل تعاونيالمشفر 

استخدام المشفر كل كمي يحاول هذا العمل أن يقيم بشاستخدام المشفرات المعتمدة على تقنية النتباه إلى أحدث النتائج. 

أوضحت التجارب التي أجريت في هذا  ثنائي التجاه والمفسر المعتمد على تقنية النتباه في التنبؤ بالحركة البشرية. 

 .بالحركة من التنبؤمن الثانية  ا  جزء 160 بعد المفسر المعتمد على تقنية النتباه قاد إلى تحقيق أحدث النتائجالعمل أن 

من التنبؤ واحدة  ثانية  أكثر من    على عكس الأعمال السابقة، فإن جودة التنبؤات ل تتدهور وتظل مستقرة حتى بعد مضي

 بالحركة. 
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Chapter 1  

INTRODUCTION AND LITERATURE REVIEW 

1.1 Human Motion Prediction 

Humans are blessed with a remarkable ability to make accurate short-term predictions 

about their surroundings based on past observations (Gui et al., 2018). Crossing a crowded 

street is one among many other tasks that would be very challenging without our capacity 

of understanding human movements and anticipating their most likely actions in the near 

future (Martinez et al., 2017).  

 

Given a set of 3D poses or skeletons, the goal of human motion prediction is to forecast 

the most likely future frames of human motion based on the given sequence as illustrated 

in Figure 1.1 (Tang et al., 2018; Martinez et al., 2017).  

 

 

 

 

 

Human motion prediction is essential for achieving the goal of robotic intelligence where 

robots are supposed not only to have a notion of human motion but also to be able to predict 

their movements, resulting in a seamless interaction between humans and machines (Tang 

et al., 2018).  

 

Figure 1.1: Motion prediction task. The gray colored sequence is the input sequence and the red colored 

sequence is the output sequence or the prediction  

(Martinez et al., 2017). 
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Many situations involve human-robot interaction such as handshaking during socialization 

or handing tools to a surgeon during an operation. For the interaction to be successful, the 

robot is supposed to recognize and forecast limbs’ pose and position precisely so that it can 

provide a rapid and proper response (Tang et al., 2018). Human motion forecasting proved 

to be important for plenty of tasks including action detection, action recognition and action 

analysis in computer vision, body pose estimation as well as motion synthesis in computer 

graphics, virtual and augmented reality, etc. (Pavllo at al., 2018). Humans by nature are 

very flexible and can perform complex movements that are subject not only to the physical 

laws but also to the intentions of the moving person. Thus, human motion is inherently 

highly stochastic and non-deterministic which makes the task of modeling human motion 

very challenging. (Martinez et al., 2017). Specifically, many future poses are of high 

probability for the same set of observed sequence poses, thus making the task of long-term 

prediction very complex and non-trivial (Pavllo et al., 2018).  

 

Commonly, the literature refers to the task of long-term motion prediction as motion 

generation which is of special interest to the computer graphics community specifically for 

the animation industry. On the other hand, the task of short-term motion prediction is 

commonly referred to as motion prediction which mostly concerns the community of 

computer vision.  (Pavllo et al., 2018). The former is harder to validate quantitatively, 

therefore a qualitative metric, specifically human judgment is crucial while the latter can 

be validated quantitatively typically by measuring the mean-squared error in the angle 

space (Martinez et al., 2017). 

 

 

1.2 Recurrent Neural Networks and Motion Prediction 

Deep learning methods have proved to be successful for many tasks including pattern 

recognition and human motion prediction (Pavllo et al., 2019).  

Particularly, Recurrent neural networks (RNNs) have shown good performance in 

predicting future 3D human poses not only in the short-term motion prediction 
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(Fragkiadaki et al., 2015) but also in the long-term motion generation (Martinez et al., 

2017).  

 

Unlike traditional methods which require expert knowledge about human motion upfront, 

RNNs like other deep learning methods can be trained to automatically learn 

representations that generalize to novel tasks depending on the used network structure and 

the task at hand (Butepage et al., 2017). RNNs excel at processing sequential data because 

of their ability to capture temporal dependencies between elements of a sequence. Unlike 

traditional neural networks known as feedforward neural networks (FNNs), RNNs have 

internal loops to persist information allowing them to remember the context of previously 

seen inputs.  

 

 

 

 

 

 

 

 

 

 

      

 

 

FNNs process inputs at each iteration independently meaning that there is no context to be 

preserved. i.e. FNNs lack any form of memory. In the context of language modeling, 

machine translation as an example, FNNs can take a fixed number of previous words to 

predict the incoming word, a drawback that results from how FNNs are built. As a result, 

all words seen in previous iterations are forgotten even though those necessary to detect 

Figure 1.2: RNN vs FNN.  

(left) Recurrent neural network (RNN). (Right) Feed forward neural network (FNN). Figure adopted from 

(Mulder et al., 2015). 
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the next word. However, RNNs theoretically can preserve arbitrary context lengths. 

(Mulder et al., 2015). Figure 1.2 illustrates how RNNs differ from FNNs. RNNs will be 

explored in depth in chapter 3.   

 

 

 

 

 

 

 

Some applications may require information not only from the past of the input sequence 

but also from the future. One can consider the case of speech recognition, if there happens 

to be a word with two different interpretations that both look plausible, it might be crucial 

to take into account future words alongside with past words to determine the current word 

(Goodfellow et al., 2016). Bidirectional RNN (BRNN) was invented to fulfill that need 

(Schuster & Paliwal, 1997).  

In a nutshell, BRNN combines two RNNs, one of them processes the sequence in the 

forward direction starting from the beginning of the sequence (forward through time) while 

the other one processes the sequence in the backward direction starting from the end of the 

sequence (backward through time) (Goodfellow et al., 2016). Figures 1.3 and 1.4 show 

how a unidirectional RNN differs from a bidirectional RNN. BRNNs will be discussed 

further in chapter 3, section 3.9.  

 

 

 

Figure 1.3: Unidirectional RNN. 
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1.3 Motion Data 

The task of modeling human motion relies often on motion data acquired through motion 

capture technology. Mainly, Motion capture (MOCAP) is a cost-effective technique used 

to acquire highly realistic motion data by recording the performance of live actors to be 

converted later to mathematical representation and consequently applied to a mathematical 

model (Dean, 2016). In general, MOCAP uses an articulated model or skeleton that 

expresses the human joint chain which imposes certain parent-child relationships between 

joints (Wang et al., 2014). Among several MOCAP datasets that are publicly available  

(Sigal et al., 2009; Ionescu et al., 2014; Carnegie Mellon University - motion capture 

library), Human3.6M is currently the largest dataset with 3.6 Million accurate 3D human 

poses obtained by recording 15 different activities of 11 professional actors using accurate 

marker-based motion capture system namely Vicon system (Ionescu et al., 2014). Two 

common pose parametrizations considered in the literature are provided by the 

Human3.6M including relative 3D joint positions representation and Kinematic 

representation with a full skeleton of 32 joints for both representations (Ionescu et al., 

2014; Ionescu et al., 2011).  

 

Figure 1.4: Bidirectional RNN (BRNN).  

Figure adapted from (Amidi & Amidi). 
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As in previous works of Martinez et al., (2017) and Fragkiadaki et al., (2015), Human3.6M 

dataset is used in this work to assess quantitatively the use of bidirectional recurrent Neural 

Networks (BRNNs) in human motion prediction task.    

 

1.4    Overview of Motion Capture Data 

Conventional methods of character animation are very time consuming and require skillful 

animators to pose a character with the aid of specialized animation software. As a result, a 

need for better alternatives arises to fulfill the increasing demands of the animation 

industry. MOCAP technology provides a solution that creates better looking 3D animation 

in a shorter amount of time.  

 

A comprehensive definition is given by Dyer, Martin, & Zulauf, (1995) which states that 

MOCAP: 

involves measuring an object's position and orientation in physical space, then 

recording that information in a computer-usable form. Objects of interest include 

human and non-human bodies, facial expressions, camera or light positions, and 

other elements in a scene.  

 

The process of capturing motion is accomplished by using either physical information or 

image information provided by sensors to reconstruct the joints of the skeleton. Depending 

on the used techniques, MOCAP could be classified to sensor-based and image-based 

motion capture (Mulder et al., 2015). Sensor-based MOCAP involves the use of physical 

sensors including but not limited to inertial, optical and pressure sensors whereas image-

based MOCAP involves the use of single or multiple cameras to capture human motion by 

acquiring information from colored or depth images (Mulder et al., 2015).  

 

An extensive presentation of different motion capture techniques can be found in (Mulder 

et al., 2015). Another classification divides MOCAP into marker-based and marker-less 
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depending on the tracking technology (72.b Documentation with motion capture, 2012). 

Generally, marker-based MOCAP offers a way to acquire animations directly from live 

actors by attaching markers to the body of the subject who wears a motion-capturing suite 

as shown in Figure 1.5, and then record the motion by tracking key points in the space over 

time and finally, converting them to 3D digital form (Meredith & Maddock, 2001). Figure 

1.5 shows a set of markers being attached to the actor’s body. The less common alternative 

is the marker-less MOCAP which doesn’t involve the use of any artificial enhancements 

of the object or the environment other than the sensors (72.b Documentation with motion 

capture, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.3 MOCAP File Formats   

Before mentioning the most common MOCAP file formats, it would be useful to define 

some terminologies that are necessary to understand these formats. 

 

Figure 1.5: Marker-based MOCAP.  

An actor wearing a motion-capturing suite with a set 

of markers attached to his body (Carnegie Mellon 

University - motion capture library - info). 
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Skeleton: The entire character that motion data is applied to make animation. The skeleton 

consists of a set of bones. Figure 1.6 shows a hierarchical skeleton alongside the hierarchy 

of the bones (Meredith & Maddock, 2001).   

 

Bone or joint: The smallest entity in the motion that is subject to individual translational 

or/and rotational changes throughout the animation. Bones are connected by joints which 

are related to each other by a parent-child relationship. The movement of the joints down 

the hierarchy i.e. children joints, is affected by the movement of joints higher in the 

hierarchy i.e. parent joints (Meredith & Maddock, 2001). The root joint as illustrated in 

Figure 1.6 is the hip joint. The hierarchical structure of the of the bones is shown to the left 

of Figure 1.6. Different datasets have different number of joints. For example, the number 

of joints composing the skeleton of Human3.6M is 32 while it’s 57 in CMU dataset.  

 

Degree of freedom / channel: Translation and rotation changes can be applied to joints 

over time to generate animation. These changes represent degree of freedoms (DOFs) of 

joints. Usually, a joint may have between 1 to 6 DOFs (Khan, et al., 2017). 

 

Frame: Any animation is composed of a set of frames that when played consecutively 

generate motion. A single frame of motion contains channel DOF data for every bone in 

the skeleton (Meredith & Maddock, 2001).       

 

MOCAP data comes into different formats. One of the most common formats is Biovision 

Hierarchy (BVH) format with .bvh extension. It was developed originally at Biovision and 

gained its popularity since then due to its simplicity (72.b Documentation with motion 

capture, 2012).  

Any BVH file is comprised of 2 sections, the hierarchy section which contains information 

about the hierarchy of the skeleton and the initial pose as shown in Figure 1.7 and the 

motion section which contains information about the channels for every joint as shown in 

Figure 1.8.  
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Specifically, the hierarchy section starting with HIERARCHY keyword is used to 

determine the structure of the skeleton based on the joint’s hierarchy. ROOT keyword that 

comes afterwards refers to a common root joint which indicates the start of the skeletal 

structure. Following the root is a chain of joints connected to each other with a parent-child 

relationship and encapsulated within a pair of curly braces where each child joint is 

proceeded with JOINT keyword.  

However, the end of the chain is indicated with (End site) keyword which refers to an end-

effector that is, the last joint in a chain with no children where offset values of this joint 

indicates the bones’ length and orientation.  

Each joint has a position indicated by the three numbers following OFFSET keyword. 

These numbers represent x y z relative positions or translations of a joint with respect to 

its parent. In the case of the root joint, these numbers represent a global position. 

Furthermore, offset values determine implicitly the length and orientation of the parent 

bone. CHANNELS keyword specifies the DOFs of a joint. The order of channels for every 

joint matches the order of data in the motion section of the file. Particularly, the first 6 

Figure 1.6: An articulated body model or skeleton illustrates the hierarchy of bones. 

The root i.e. hip bone is highlighted in orange. 
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values in the motion section correspond to the channels defined for the root joint in the 

hierarchy section in the same order they appear with and the next 3 values correspond to 

the channels of the child joint that comes next in the hierarchy in the same order they appear 

with and so forth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 1.7: The hierarchy section of a BVH file with (.bvh) extension. 

 



11 

 

 

 

 

 

 

 

 

 

 

 

 

The MOTION section of the file starts with number of frames and frame’s duration or 

frame rate and finally the channel data for each bone as the appear in the hierarchy section 

of the file. In fact, the channel data is nothing more than the animation data of each bone 

through time.  An older MOCAP format is the Biovision Action File (BVA) with .bva 

extension which is similar to BVH file in many ways but with key differences, the most 

important of which is that BVA can’t store motion for a hierarchical skeleton. The motion 

of a child bone doesn’t depend on the motion of any other joints (Lander, 1998). Another 

common format is the Hierarchical Translation Rotation (HTR) format with .htr extension 

which was developed by Motion Analysis company with the aim of solving some problems 

of BVH files (Du et al., 2016). Acclaim motion file is yet another popular format designed 

by Acclaim gaming company. This format consists of two files. The first file is the Acclaim 

Skeleton File ASF with .asf extension which contains information about the hierarchy and 

the initial pose of the skeleton. The second file is the Acclaim Motion Capture (AMC) file 

with .amc extension which is used to save motion data of the skeleton. This separation 

between the hierarchy information and the motion data is useful since only one ASF file 

can be used in a motion capture session with multiple AMC files (Lander, 1998). 

Coordinate 3D (C3D) is a binary format defined by the National Institute of  Health mainly 

Figure 1.8: The motion section of a BVH file with (.bvh) extension.  

Channel information of the first frame of motion is shown. 
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to be used in the biomechanical research. Unlike previously described formats which 

merely contain information about 3D positions and orientations, C3D supports wide 

diversity of data that is useful for the biomechanical research (72.b Documentation with 

motion capture, 2012).  

 

1.5  Literature Review 

The scope of this work is focused primarily on the use of deep learning methods 

specifically recurrent neural networks (RNNs) in the task of human motion prediction. This 

section will briefly review the recent works that employ deep learning to predict human 

motion with a special focus on RNNs. The reviewed works mainly rely on motion data 

acquired from motion capture MOCAP techniques. It's worth mentioning that the literature 

generally refers to the process of producing motion for less than 500ms as short-term 

prediction which is the main concern of this research. Otherwise, if the generated motion 

exceeds 500ms it's referred to as long-term generation or synthesis. For skeleton-based 

tasks such as action recognition, deep learning approaches have outperformed traditional 

methods (Tang et al., 2018). An early work of  Taylor et al., (2007) suggested a conditional 

restricted Boltzmann machine (CRBM) to model motion where sampling is needed for 

inference (Martinez et al., 2017). The model was experimented with few motions including 

walking, jogging and running (Butepage et al., 2017).Encoder-Recurrent-Decoder (ERD) 

architecture for human motion prediction was proposed by Fragkiadaki et al., (2015). The 

proposed model is an RNN that integrates a nonlinear encoder and a decoder before and 

after the recurrent layers. To ease accumulated errors during training which eventually lead 

to predicting unrealistic motion, the authors of Fragkiadaki, et al., (2015) suggested the use 

of noise scheduling by adding increasing amounts of random noise gradually to the input 

data during training. Although noise scheduling has alleviated the problem to some degree, 

it's hard to tune noise scheduling in practice (Martinez et al., 2017).  

Another architecture, namely 3-layer long short-term memory network (LSTM-3LR) was 

proposed in the same study (Fragkiadaki, et al., 2015). ERD and LSTM-3LR both consist 

of concatenated Long Short-Term Memory LSTM units, but the former has a non-linear 

space encoder for data preprocessing. Recently, the authors of Martinez et al. (2017) have 
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further extended the work of Fragkiadaki et al. (2015) by proposing a significantly simpler 

RNN architecture with one Gated Recurrent Unit (GRU) instead of using the more 

complicated LSTM unit which was used in previous works (Jain et al., 2016; Fragkiadaki 

et al., 2015). To address the problem of discontinuity between the last frame of the input 

sequence and the first frame of the predicted sequence, authors of Martinez et al., (2017) 

decided to model velocities instead of absolute joint angles by deploying a residual 

architecture that models first-order motion derivatives. The use of a residual architecture 

leads to smoother and more accurate predictions. Earlier, the work of Jain et al., (2016) 

tried to combine high level spatio-temporal graphs (st-graphs) with RNNs by developing a 

structural RNN (SRNN) which transforms an st-graph into a trainable and scalable RNNs 

mixture. By combining st-graphs with RNNs, authors aimed at exploiting the power of 

RNNs at modeling sequential data and to compensate for their lack of an intuitive spatio-

temporal structure that can capture spatio-temporal relations between joints and hence, is 

suitable to represent skeletal data. As in Fragkiadaki et al., (2015), noise scheduling was 

employed to lessen the effect of accumulated errors. As a result, SRNN generates plausible 

motions for actions like eating. For more challenging actions like discussion, SRNN doesn't 

generate unrealistic motions (Martinez et al., 2017). In the previously mentioned works 

(Martinez et al., 2017; Fragkiadaki et al., 2015; Taylor et al., 2007; Butepage et al., 2017; 

Jain et al., 2016), the traditional Euclidean loss is used to measure the distance between the 

prediction and the ground truth during training. However, a novel loss function, namely 

the geodesic loss, was proposed by Gui et al., (2018) to replace the Euclidean loss. 

Generally, 3D rotations between joint angles are used to represent motion frames. Unlike 

Euclidean distance, the geodesic distance exploits the geometric structure of 3D rotations 

and thus, avoids inaccuracies in predictions and convergence to mean pose after longer 

time periods that follow from the use of the Euclidean distance as a loss function. Inspired 

by generative adversarial networks (GANs), the authors introduced two global 

discriminators to validate the predicted motion while casting the predictor as a generator. 

Basically, the generator is a decoder-encoder network while both discriminators are RNNs. 

The first global discriminator is a fidelity discriminator that validates the overall 

plausibility of the predicted motion whereas the second one is a continuity discriminator 

that validates the coherence of the predicted sequence with the input sequence. The recent 
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work of Pavllo et al., (2019), uses Quaternions representation to represent joint angles, 

which was overlooked by previously mentioned works. Because Euler angles 

representation suffers from singularities and discontinuities, using it will ultimately lead to 

the notorious problem of exploding gradients which makes the training very difficult or 

impossible. Alternatively, Exponential maps representation was used in previous works 

which alleviates these issues to some degree but doesn't eliminate them. In addition to using 

Quaternions, the authors suggested a loss function that penalizes absolute joint position 

errors instead of joint angle errors. Additionally, both convolutional and recurrent 

architectures were investigated and evaluated on short-term prediction and long-term 

generation. 
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Chapter 2  

DEEP LEARNING 

2.1  Introduction 

Artificial Intelligence, machine learning, deep learning, despite being related and 

sometimes overlapping concepts, they are not identical indeed. Different researchers may 

have different views about how these fields are related. Figures 2.1 and 2.2 present different 

views of the relations between these fields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The relationship between artificial intelligence, 

machine learning, and deep learning according to Chollet. 

Figure adapted from 

 (Chollet, 2017a). 
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Artificial intelligence or AI could be defined as “the effort to automate intellectual tasks 

normally performed by humans.” (Chollet, 2017a). Even if one chose to go with the opinion 

that considers machine learning a part of AI, there are many approaches in AI that don’t 

involve any learning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, early chess programs include merely hardcoded rules without any learning 

mechanisms. Machine learning, on the other hand, seeks to grant computers the ability to 

learn without being explicitly programmed to do so (Trask, 2019). Figure 2.3 points out the 

difference between classical programming and machine learning.  

The former is about taking as input handcrafted rules and data that will be processed 

according to these rules to get answers as output whereas the latter is about taking data and 

answers as input to get the rules. These rules are used then with new data to get the expected 

answers. Classical programming or alternatively symbolic AI, provides solution to well-

 

 

 

 

 

Figure 2.2: The relationship between Artificial 

intelligence, machine learning and deep learning 

according to Trask. Figure adapted from  

(Trask, 2019). 
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defined, logical problems but fails to solve more complex problems such as language 

translation, image and speech recognition etc. Without being explicitly programmed, a 

machine learning program is trained by being exposed to many training examples to learn 

the rules by capturing certain patterns in the training data.  At its essence, machine learning 

observes a pattern and aims to imitate that pattern either directly or indirectly.   

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Machine learning vs deep learning 

Mainly, machine learning learns how to map an input image for example, to some output 

or a target such as a label or a class. This is done by looking at too many training examples 

of inputs and targets (Chollet, 2017a). Deep learning resembles machine learning in the 

learning process but with a distinction. When it comes to deep learning, the learning is 

done through several successive layers which work as filters that purify the incoming 

information to become increasingly meaningful. This is done using models loosely inspired 

by the human brain known as neural networks. Before delving into the fundamental 

building blocks of deep learning, the neural networks, a brief overview of the categories of 

machine learning algorithms will be provided next. 

 

 

 

Figure 2.3: Machine learning vs classical programming.  

Figure adapted from (Chollet, 2017a). 
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2.3 Machine learning categories 

Machine learning algorithms can be classified into 4 different categories as shown in Figure 

2.4. 

 

 

 

 

 

 

 

Figure 2.4: Machine learning algorithms. 

 

Sometimes, these categories may overlap and may not be perfectly separable, nonetheless, 

they are useful to give a broader view of different kinds of machine learning algorithms. 

The following sections present briefly the categories of machine learning.  

 

a) Supervised learning:  

Most machine learning algorithms used successfully in industry today fall under the 

supervised learning category (Chollet, 2017a). Supervised learning aims at learning to 

predict a known target (usually human-annotated labels) given an input.  

Usually, the input or the feature is denoted as 𝑥 and the target or the label is denoted as 𝑦. 

For the 𝑖𝑡ℎ example in a dataset, (𝑥𝑖, 𝑦𝑖) refers to the (feature, target) pair of the 𝑖𝑡ℎ example 

from the dataset. A dataset is a collection of 𝑛 examples each of which consists of an 

(𝑥𝑖 , 𝑦𝑖) pair (Zhang et al., 2019). Given a set of labeled examples (𝑥𝑖 , 𝑦𝑖) of inputs and 

correct labels, the goal of a supervised learning algorithm is to learn a model 𝑓 that maps 

an input 𝑥𝑖  to a prediction 𝑓(𝑥𝑖) =  𝑦̂𝑖  by adjusting a set of parameters 𝜃  during the 

training phase to get the prediction as close possible to the correct label. Most supervised 

learning algorithms are either classification or regression tasks (Chollet, 2017a).  
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What differentiate a regression task from a classification task is the type of the output. A 

regression task aims at learning a mapping 𝑓 from an input 𝑥 to a continuous real valued 

𝑦. A classic example of a regression problem is predicting house prices given a set of 

features such as the square footage, number of rooms, etc. The target 𝑦  may be any 

arbitrary number in some range. However, for a classification problem 𝑦 may take only a 

small number of discrete values. Recognizing a handwritten digit is a classification task in 

which the goal is to look at an image as a set of pixels and predict which class or digit the 

image belongs among a set of discrete values (classes) (Zhang, et al., 2019).   

 

b)  Unsupervised learning: 

Unlike supervised learning, no correct answer is provided to the model to be duplicated. 

The task of an unsupervised algorithm is to explore a dataset and attempt to find some 

patterns in the data (Trask, 2019).   Clustering is a well-known example of unsupervised 

learning where the algorithm attempts to group the data into labeled clusters by exploring 

correlations that present in the data (Chollet, 2017a; Trask, 2019). According to (Trask, 

2019), any unsupervised task can be seen as a form of clustering. Grouping some users 

based on their browsing activities is an example of a clustering problem (Zhang, et al., 

2019).  

 

c) Self-supervised learning: 

This is a recent branch of machine learning in which it attempts to learn a mapping from 

pairs of inputs and outputs. Like supervised learning, the learning is supervised by the 

labels but with a key difference that the labels are no longer human-annotated but rather 

are generated from the dataset automatically without human intervention (Chollet, 2017a). 

An example of a self-supervised learning is the Autoencoder network which aims at 

learning a compact representation of the input so that it can reconstruct the input 

unmodified using that representation.  

d) Reinforcement learning: 

This branch of machine learning algorithms addresses the case of an agent that interacts 

with its environment over time and at each timestep 𝑡 the agent learns to choose actions 
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that will maximize some reward 𝑟𝑡. Applications may include robotics and AI for video 

games (Zhang, et al., 2019). 

 

2.4 Neural Networks  

As mentioned before, deep learning uses neural networks to learn meaningful 

representations of the input data successively through a bunch of layers that work as a 

multistage distillation and purification system of the incoming information to make it as 

closer as possible to the final output (Chollet, 2017a). Figure 2.5 shows a deep neural 

network with 4 layers where each layer is trying to learn a useful representation of data. 

The representations are getting closer to the target as they approach the final output. As 

presented in Figure 2.6, a neural network is a universal approximator of a function 𝑓 that 

maps an input (an image of a handwritten digit) to a target (a label). For example, the 

handwritten classifier 𝑦 = 𝑓(𝑥) is a neural network that maps an input to a category. The 

classifier in Figure 2.6 defines a mapping 𝑦 = 𝑓(𝑥; 𝜃) that maps an input 𝑥 to a category 

𝑦. Given enough training data and computational time, the neural network of the classifier 

can learn through training process the optimal set of parameters 𝜃 that result in the best 

possible approximation to the function 𝑓 (Goodfellow et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Deep neural network for handwritten digit classification  

(Chollet, 2017a). 
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Figure 2.6: A neural network for handwritten digit classification shown as a function that maps 

an input to a target. 

Figure 2.7: A neural network with three layers. 
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Each layer in a neural network is a simple data transformation that’s controlled by a set of 

weights. A simple neural network is shown in Figure 2.7 which consists of 3 layers, an 

input layer, a hidden layer and an output layer with 3, 4 and 3 nodes respectively. The input 

layer doesn’t involve calculations, it just passes the information to the next layer.  

For the sake of clarity, a simplified version of the network in Figure 2.7 is shown in Figure 

2.8 and will be used to illustrate the processes executed by a neural network. A single node 

or a neuron such as ℎ1, is the basic unit of computation in a neural network which takes an 

input and generates an output (known as the activation of the node) which in turn is used 

to calculate the inputs to the nodes of the next layer 𝑜1 and 𝑜2 in this case. Every node from 

one layer is connected to every other node from the next layer and these connections 

represent weights that are given based on the relative importance of an input to other inputs. 

For example, the input feature 𝑥1 ∈ ℝ  that is connected to the node ℎ1  is attached to 

weight 𝑤11
(1)

∈ ℝ. Notice that the superscripts used for weights in Figure 2.8 is in the form 

𝑤𝑖𝑗
𝑘  ∈ ℝ which means that the weight is connecting the 𝑖𝑡ℎ node in the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ 

node in the 𝑘𝑡ℎ + 1 layer. 𝑏1 ∈ ℝ and 𝑏2 ∈ ℝ are the biases.  

 

Figure 2.8: A simple neural network. 
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The bias is like the intercept in a linear equation. In fact, the bias is similar to a regular 

weight, but it’s always multiplied by a constant activation which is 1. Weights and biases 

are trainable parameters that need to be tuned during the training process to get the 

prediction of the network as close as possible to the target. The reason that both weights 

and biases are needed for a successful learning will be mentioned shortly after discussing 

the activation functions. The final outputs of the network (predictions) are the activations 

of the output nodes 𝑜1and 𝑜2.  To acquire the activation of a single hidden unit such as ℎ1, 

a linear combination (weighted sum) of the inputs 𝑥1 and 𝑥2 and the weights 𝑤11
(1)

, 𝑤21
(1)

 

and the bias 𝑏1 need to be calculated, followed by a non-linearity (activation function) 𝜎1 

as shown in the following equations:  

ℎ1(𝑖𝑛) = 𝑤11
(1)

𝑥1 + 𝑤21
(1)

𝑥2 + 𝑏1                                                    (2.1) 

ℎ1(𝑜𝑢𝑡) = 𝜎1 (ℎ1(𝑖𝑛))                                                         (2.2) 

Where: 

 𝑤11
(1)

and 𝑤21
(1)

    :weights associated to the input features 𝑥1 and 𝑥2 respectively. 

𝑥1 and 𝑥2           :input features of single training example.  

𝑏1                       :bias of the hidden unit.  

ℎ1(𝑖𝑛)                  :input to the hidden unit ℎ1. 

𝜎1                       :activation function of all hidden units.  

ℎ1(𝑜𝑢𝑡)               :output of the hidden unit ℎ1 (the activation of ℎ1).  

In the same manner, the following equations describe how ℎ2 is calculated: 

ℎ2(𝑖𝑛) =  𝑤12
(1)

𝑥1 + 𝑤22
(1)

𝑥2 + 𝑏1                                 (2.3) 

ℎ2(𝑜𝑢𝑡) = 𝜎1 (ℎ2(𝑖𝑛) )                                                (2.4) 

 

Before showing how the final output of the network is acquired, it should be noted that the 

prediction of the network is usually referred to as 𝑦̂ (here, the symbol 𝑜(𝑜𝑢𝑡) will be used 
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but it is the same thing as 𝑦̂ which might be used in other places in this document). The 

target of the network is referred to usually as 𝑦. As for the first prediction of the network 

𝑦̂1 or 𝑜1(𝑜𝑢𝑡), the following formulas show how to get the first prediction:  

𝑜1(𝑖𝑛) = 𝑤11
(2)

ℎ1(𝑜𝑢𝑡) + 𝑤21
(2)

ℎ2(𝑜𝑢𝑡) + 𝑏2                           (2.5) 

 𝑜1(𝑜𝑢𝑡) = 𝜎2(𝑜1(𝑖𝑛))                                                   (2.6) 

Where: 

𝑤11
(2)

, 𝑤21
(2)

                  : weights associated to the outputs of the hidden units ℎ1 and ℎ2 

ℎ1(𝑜𝑢𝑡) , ℎ2(𝑜𝑢𝑡)         : outputs (the activations) of the hidden units 

𝑏1                              : bias of the output unit  

𝑜1(𝑖𝑛)                         : input to the output unit 

𝜎2                              : activation function of the output units 

𝑜1(𝑜𝑢𝑡)                       : first output of the neural network (the first prediction) 

Similarly, 𝑦̂2 or 𝑜2(𝑜𝑢𝑡) is given by the following equations: 

𝑜2(𝑖𝑛) = 𝑤12
(2)

ℎ1(𝑜𝑢𝑡) + 𝑤22
(2)

ℎ2(𝑜𝑢𝑡) + 𝑏2                           (2.6) 

 𝑜2(𝑜𝑢𝑡) = 𝜎2(𝑜2(𝑖𝑛))                                                  (2.7) 

 

2.4.1 Activation Functions 

Each node in the neural network involves a linear transformation  𝑤𝑥 +  𝑏 followed by a 

non-linearity 𝜎 known as the activation function. Activation functions are crucial in neural 

networks because they allow the network to learn much richer representations of input data. 

Without using activation functions to break the linearity, the network will learn only linear 

transformations of the input data and there would be no benefit from stacking more layers 

as they can’t extend the learned representations (Chollet, 2017a). Some of the most popular 

activation functions will be presented here along with their graphs, formulas and 
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derivatives. Derivatives will be given since differentiating activation functions is an 

essential step in the training process of a neural network as will be discussed in the next 

section. One of the most widely used activation function for hidden units is the Rectified 

linear unit (RELU). As presented in Figure 2.9, RELU is a simple and efficient function 

that is defined as 𝑚𝑎𝑥(0, 𝑥). It gives the output 𝑥 if it is positive, otherwise it turns it into 

0. Mathematically, RELU function is described as follows: 

 

𝑓(𝑥) =  {
0         for 𝑥 ≤ 0
 𝑥        for 𝑥 > 0

                                              (2.8) 

 

The derivative of the RELU is undefined at 0. For other values it is given below: 

 

𝑓́(𝑥) =  {
0         for 𝑥 < 0
 1        for 𝑥 > 0

                                         (2.9) 

 

Other choices of the activation function include the Sigmoid function and the hyperbolic 

tangent function Tanh. Figure 2.10 shows the plot of the Sigmoid function and the 

following formula describes the Sigmoid function mathematically:  

𝑓(𝑥) =  
1

1+𝑒−𝑥                                                    (2.10) 

 

 

 

 

 

 Figure 2.9: Rectified linear unit (RELU)  

(Amidi & Amidi). 



26 

 

 

 

 

 

 

 

 

 

As shown in Figure 2.10, the Sigmoid function takes values in the range (−∞,+∞) and 

outputs values in the range (1,0) such that 𝑓(𝑥) approaches 1 as 𝑥 approaches +∞ whereas 

𝑓(𝑥) approaches 0 as 𝑥 approaches −∞. Sigmoid has a nice derivative which is given by 

the following formula:  

𝑓́(𝑥) =  
1

1+𝑒−𝑥 ∙ (1 − 
1

1+𝑒−𝑥)                                (2.11) 

Hyperbolic tangent function (Tanh) is another function that might be used as an activation 

function to ca the hidden units to break the linearity. The plot of Tanh is shown in Figure 

2.11. Below is the equation that defines Tanh mathematically: 

𝑓(𝑥) =  
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥
                                         (2.12) 

Tanh is a rescaling of the Sigmoid, it outputs values in the range (-1, 1). Tanh derivative is 

given by the following equation: 

𝑓́(𝑥) = 1 − (
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥)
2

                                    (2.13) 

RELU is almost always used as an activation function in hidden units whereas Sigmoid 

and Tanh are less commonly used. As for the activation functions used in the output layer, 

Sigmoid is a natural choice for binary classification problems. For multi-class classification 

Figure 2.10: Sigmoid function (Amidi & Amidi). 
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problems, the Softmax function, a generalization of the Sigmoid, is used to produce a 

probability distribution in which the outputs sum to 1.  

The Softmax function is described by the following formula: 

𝑓𝑖(𝑥⃗) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

   for 𝑖 = 1,… , 𝐽                                  (2.14) 

Expectedly, the Softmax has a similar derivative to the Sigmoid as shown by the 

following formula: 

𝑓́𝑖(𝑥⃗) =  
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

∙ (1 −
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑁

𝑗=1

)    for 𝑖 = 1,… , 𝐽                        (2.15) 

However, for regression problems, usually a linear function is used as the activation of the 

output layer. Now that the notion of activation functions becomes clear, it is  appropriate to 

answer the following question: why both weights and biases are needed in a neural 

network? The reason is that changing the weights affect the activation function differently 

than changing the bias. Changing the weights will affect the steepness of the curve while 

changing the bias would shift the curve either to the right or to the left.  

 

 

 

 

 

 

 

 

Figures 2.12 and 2.13 show the effect of changing weights and biases on the Sigmoid 

function curve respectively.  

 

 

Figure 2.11: Hyperbolic tangent function (Tanh)  

(Amidi & Amidi). 
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2.4.2 Neural Networks in Action 

This section illustrates the procedure taken by a neural network during the training phase. 

The neural network in Figure 2.8 will be used as an example for this illustration. The neural 

network starts with a forward pass traversing the nodes from left to right to find the final 

outputs (the predictions). By the end of the forward pass, the predictions 𝑜1(𝑜𝑢𝑡) and 𝑜2(𝑜𝑢𝑡) 

or 𝑦̂1 and  𝑦̂2 would be calculated as shown previously in section 2.4 (equations 2.1 to 2.7).  

The network calculates the error by measuring how far its prediction is from the correct labels 

(targets) 𝑦1 and 𝑦2. This is done using a cost function. Sometimes, the cost function is referred to 

as the objective function or error function. However, the loss function term refers to the error of 

Figure 2.12: The effect of changing weights on the 

Sigmoid function curve  

(Bisht, 2018). 

Figure 2.13: The effect of changing bias on the 

Sigmoid function curve  

(Bisht, 2018). 
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one training example where the cost function refers to the average error over all training examples. 

The cost function is the average of the losses as follows: 

𝐿 =  
1

𝑛
∑  𝐿𝑖(𝑦𝑖,𝑦̂𝑖  )

𝑛
𝑖                                          (2.16) 

Where: 

𝐿   : total cost 

𝐿𝑖  : loss of the of the 𝑖𝑡ℎ example 

𝑛     : total number of examples 

𝑦𝑖    : correct label (target) of the 𝑖𝑡ℎ example 

𝑦̂𝑖     : network’s final output (prediction) of the 𝑖𝑡ℎ example 

Mean squared error or MSE, is one of the most widely used cost functions which works 

best for regression problems. MSE is given by the following equation:   

𝐿 =  
1

2𝑛
∑  (𝑦𝑖 − 𝑦̂𝑖  )

2𝑛
𝑖=1                                            (2.17) 

For classification problems, another popular cost function is used which is known as the 

cross-entropy cost function. For a binary classification problem, the cross-entropy cost 

function is given by the following equation: 

   𝐿 =  −
1

𝑛
∑  𝑦𝑖 𝑙𝑜𝑔(𝑦̂𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖) 

𝑛
𝑖=1                     (2.18) 

For the more general case of the multiclassification problems, the generalization of the 

cross-entropy function is given by the following formula:  

𝐿 =  
1

𝑛
∑ ∑  𝑦𝑖𝑗 𝑙𝑜𝑔(𝑦̂𝑖𝑗) 

𝑚
𝑗=1

𝑛
𝑖=1                                   (2.19) 

Obviously, the larger the error the worse the prediction.  At the beginning of training, the 

network is naïve and will produce large errors. In order to get the prediction of the network 
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as close to the target as possible, the cost function i.e. the error needs to be minimized and 

here comes the role of gradient descent, an iterative optimization algorithm of finding the 

minimum of a function.  

 

Gradient descent minimizes a function by iteratively following the direction of the steepest 

descent given by the negative of the gradient of that function. Figure 2.14 shows a graph 

of the cost function 𝐿(𝑤) vs the weight 𝑤 . The given cost function in Figure 2.14 is 

assumed to be a single variable function to simplify the explanation but usually cost 

functions are multivariable functions with many parameters to optimize. The goal of the 

gradient descent is to minimize the cost function 𝐿(𝑤)  through finding 𝐿́(𝑤) , the 

derivative of  𝐿(𝑤) w.r.t the weight 𝑤.  

The gradient is nothing but a generalization of the derivative where it is used for 

multivariable functions. It is a vector ∇𝐿 that points to the direction of the greatest increase 

of the function (local maxima). Intuitively, the negative of the gradient −∇𝐿 points to the 

direction of the greatest decrease (local minima). For a multivariable function 𝐿(𝑤1, …𝑤𝑛), 

the gradient ∇𝐿 is a vector where each component is a partial derivative as follows: 

 

 

 

∇𝐿 =  

[
 
 
 
 
 

𝜕𝐿

𝜕𝑤1
.
.
.

𝜕𝐿

𝜕𝑤𝑛]
 
 
 
 
 

                                                 (2.20)        
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The following are the steps of the gradient descent algorithm as shown in Figure 2.14:  

1) Start with some initial weight 𝑤0 (initialized randomly or assigned to 0). 

2) Compute the derivative of the cost function 𝑐́(𝑤0) at 𝑤0. 

3) Update the weight  𝑤𝑖 = 𝑤𝑖 −  𝛼𝐿́(𝑤𝑖) where 𝛼 is the learning rate that determines the 

size of the gradient descent step (how big the step to take). 

4) Repeat the steps until convergence or for a defined number of iterations. 

Generally, the gradient descent update step according to the notation used in Figure 2.8 is 

as follows:  

𝑤𝑖𝑗
𝑘 = 𝑤̀𝑖𝑗

𝑘 −  𝛼
𝜕𝐿

𝜕𝑤𝑖𝑗
𝑘                                           (2.21) 

Where: 

Figure 2.14: Gradient descent algorithm.  

Figure adapted from (Gradient Descent with Momentum, 2019). 
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𝑤𝑖𝑗
𝑘   : new weight that connects the 𝑖𝑡ℎ node from the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ node from    

           the 𝑘𝑡ℎ + 1 layer 

𝑤̀𝑖𝑗
𝑘   : old weight that connects the 𝑖𝑡ℎ node from the 𝑘𝑡ℎ layer to the 𝑗𝑡ℎ node from    

          the 𝑘𝑡ℎ + 1 layer 

𝐿       : cost function 

𝛼     : learning rate 

An effective way of calculating all partial derivatives in a neural network in a linear time 

– regardless the size of the network – is known as backpropagation (short for backward 

propagation of errors). It’s an implementation of the chain rule of derivatives that aims at 

calculating the gradient of the cost function w.r.t the network’s weights. The following is 

the chain rule which computes the derivative of composite functions: 

𝑑

𝑑𝑥
[𝑓(𝑔(𝑥))] =  𝑓́(𝑔(𝑥)). 𝑔́(𝑥)                                      (2.22) 

For example, to update the weight 𝑤11
(2)

in the network of Figure 2.8 the following update 

rule is used:  

 𝑤11
(2)

 =  𝑤11
(2)

−  𝛼
𝜕𝐿

𝜕 𝑤11
(2)                                     (2.23) 

Where 𝑐, is the cost function and 
𝜕𝐿

𝜕 𝑤11
(2)  is the partial derivative of the cost function w.r.t 

the weight 𝑤11
(2)

. Knowing that 𝑐 is a function of the prediction 𝑜1(𝑜𝑢𝑡) or 𝑦̂1 (the quantity 

that’s relevant to 𝑤11
(2)

), and that ℎ1(𝑜𝑢𝑡) and 𝑜1(𝑜𝑢𝑡)  or 𝑦̂1  in Figure 2.8 are given by 

equations 2.1, 2.2, 2.5 and 2.6, how to calculate  
𝜕𝐿

𝜕 𝑤11
(2)  ? Here comes the role of 

backpropagation. Using the chain rule, 
𝜕𝐿

𝜕 𝑤11
(2) is obtained as follows:  

𝜕𝐿

𝜕 𝑤11
(2) = 

𝜕𝐿

𝜕𝑜1(𝑜𝑢𝑡)
  

𝜕𝑜1(𝑜𝑢𝑡)

𝜕𝑜1(𝑖𝑛)
  

𝜕𝑜1(𝑖𝑛)

𝜕𝑤11
(2)                          (2.24) 
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By finding the quantity  
𝜕𝐿

𝜕 𝑤11
(2)  which quantifies how much a change in  𝑤11

(2)
 would affect 

the cost function 𝑐, the next step is to update 𝑤11
(2)

 accordingly as shown in equation (2.21). 

Below is a concrete example with real numbers to show how a neural network operates 

(Mazur, 2017). The notation used for this example as shown in Figure 2.15 is different than 

that used in Figure 2.8 to aid in illustration. All numbers have been rounded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 2.15: : A neural network with real numbers. 

 

The given neural network has the following information:  

Input features: 𝑥1= 0.1 and 𝑥2= 0.2 

Targets: 𝑜1= 0.5 and 𝑜2= 0.3 

Activation function for hidden layer: 𝜎 = Sigmoid - given in equation 2.10.  

Activation function for output layer: 𝜎 = Sigmoid 

Cost function: mean squared error (MSE) - given in equation 2.17. 

Learning rate: 𝛼 = 0.1 

The following are the steps taken by a network during training: 

1) Initialize weights and biases randomly.  
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2) Forward pass: traverse the nodes from left to right (from the input layer up to the 

output layer) and calculate the following quantities: 

From the input layer to the hidden layer: 

ℎ1(𝑖𝑛) = 𝑤1 ∗ 𝑥1 + 𝑤3 ∗ 𝑥2 + 𝑏1 = 0.13*(0.1) + 0.33*(0.2) + 0.22 = 0.299 

 ℎ1(𝑜𝑢𝑡) =  𝜎(0.299) = 
1

1+𝑒−0.299
 = 0.426 

ℎ2(𝑖𝑛) = 𝑤2 ∗ 𝑥1 + 𝑤4 ∗ 𝑥2 + 𝑏1 = 0.21*(0.1) + 0.41*(0.2) + 0.22 = 0.323 

ℎ2(𝑜𝑢𝑡) =  𝜎(0.323) = 0.580 

From the hidden layer to the output layer: 

𝑜1(𝑖𝑛) = 𝑤5 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤7 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2 = 0.14*(0.429) + 0.13*(0.580) + 0.91 = 

1.680 

𝑜1(𝑜𝑢𝑡) = 𝜎(1.680) = 0.843 

𝑜2(𝑖𝑛) = 𝑤6 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤8 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2 = 0.16*(0.429) + 0.71*(0.580) + 0.91 = 

1.390 

𝑜2(𝑜𝑢𝑡) = 𝜎(1.390) = 0.801 

3) Calculate the error (cost) of the network using the cost function as follows: 

The error (cost) of the first output: 

𝐿𝑜1 = 
1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡) )

2
 = 

1

2
(0.5 −  0.843)2 = 0.059 

The error (cost) of the second output: 

𝐿𝑜2 = 
1

2
(𝑦2 − 𝑜2(𝑜𝑢𝑡) )

2
 = 

1

2
(0.3 −  0.801)2 = 0.126 

The total error: 

𝐿 =  𝐿𝑜1 + 𝐿𝑜2 = 0.059 + 0.126 = 0.185 
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4) Backward pass: traverse the nodes from right to left (from output layer up to the 

input layer) to adjust the weights. This involves calculating the partial derivative of 

the cost function w.r.t each weight. The partial derivative quantifies how much a 

change in the weight affects the total error so that the weight is adjusted accordingly 

later. This is done through backpropagation which is an application of the chain 

rule in calculus. Backpropagation involves finding the following quantities:  

 

a) From the output to the hidden layer: 

 
𝜕𝐿

𝜕 𝑤5
, 

𝜕𝐿

𝜕 𝑤6
, 

𝜕𝐿

𝜕 𝑤7
 ,

𝜕𝐿

𝜕 𝑤8
 and 

𝜕𝐿

𝜕 𝑏2
.  

•  
𝝏𝑳

𝝏 𝒘𝟓
: 

𝜕𝐿

𝜕 𝑤5
= 

𝜕𝐿

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗

𝜕𝑜1(𝑖𝑛)

𝜕 𝑤5
  

𝐿 =  
1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡) )

2
+

1

2
(𝑦2 − 𝑜2(𝑜𝑢𝑡) )

2
 

𝜕𝐿

𝜕 𝑜1(𝑜𝑢𝑡)
= 2 ∗

1

2
(𝑦1 − 𝑜1(𝑜𝑢𝑡) )

2−1
 ∗ (0 − 1) + 0 =  −(𝑦1 − 𝑜1(𝑜𝑢𝑡) ) 

=  𝑜1(𝑜𝑢𝑡) − 𝑦1 =  0.843 − 0.5 = 0.343  

Knowing that: 𝑜1(𝑜𝑢𝑡) =
1

1+𝑒
−𝑜1(𝑖𝑛)

, it follows that: 

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
= 

1

1+𝑒
−𝑜1(𝑖𝑛)

∗ (1 − 
1

1+𝑒
−𝑜1(𝑖𝑛)

) = 𝑜1(𝑜𝑢𝑡) ∗ (1 − 𝑜1(𝑜𝑢𝑡))    

=  0.843 ∗  (1 − 0.843) = 0.132  

Knowing that: 𝑜1(𝑖𝑛) = 𝑤5 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤7 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2, it follows that: 

𝜕𝑜1(𝑖𝑛)

𝜕 𝑤5
= 1 ∗ ℎ1(𝑜𝑢𝑡) + 0 = ℎ1(𝑜𝑢𝑡) =  0.426  

𝜕𝐿

𝜕 𝑤5
=  0.343 ∗  0.132 ∗   0.426 = 0.019   
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•  
𝝏𝑳

𝝏 𝒘𝟔
: 

𝜕𝐿

𝜕 𝑤6
=

𝜕𝐿

𝜕 𝑜2(𝑜𝑢𝑡)
∗

𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
∗

𝜕𝑜2(𝑖𝑛)

𝜕 𝑤6
  

𝜕𝐿

𝜕 𝑜2(𝑜𝑢𝑡)
= 𝑜2(𝑜𝑢𝑡) − 𝑦2 =  0.801 − 0.3 = 0.501  

𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
= 𝑜2(𝑜𝑢𝑡) ∗ (1 − 𝑜2(𝑜𝑢𝑡)) = 0.801 ∗ (1 − 0.801) =  0.159 

Knowing that: 𝑜2(𝑖𝑛) = 𝑤6 ∗ ℎ1(𝑜𝑢𝑡) + 𝑤8 ∗ ℎ2(𝑜𝑢𝑡) + 𝑏2, it follows that: 

𝜕𝑜2(𝑖𝑛)

𝜕 𝑤6
= ℎ1(𝑜𝑢𝑡) =  0.426  

𝜕𝐿

𝜕 𝑤6
=  0.501 ∗ 0.159 ∗ 0.426 = 0.0339 

• 
𝝏𝑳

𝝏 𝒘𝟕
: 

𝜕𝐿

𝜕 𝑤7
=  0.0263 

• 
𝝏𝑳

𝝏 𝒘𝟖
: 

𝜕𝐿

𝜕 𝑤8
=  0.0462 

𝜕𝐿

𝜕 𝑏2
=

𝜕𝐿𝑜1

𝜕 𝑏2
+ 

𝜕𝐿𝑜2

𝜕 𝑏2
  

𝜕𝐿𝑜1

𝜕 𝑏2
= 

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗
𝜕𝑜1(𝑖𝑛)

𝜕 𝑏2
=  0.343 ∗  0.132 ∗ 1 = 0.0453  

𝜕𝐿𝑜2

𝜕 𝑏2
= 0.501 ∗ 0.159 ∗ 1 = 0.0797 

𝜕𝑐

𝜕 𝑏2
=  0.0453 +  0.0797 = 0.125   
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b) From hidden layer to input layer: 
𝜕𝐿

𝜕 𝑤1
, 

𝜕𝐿

𝜕 𝑤2
, 

𝜕𝐿

𝜕 𝑤3
 ,

𝜕𝐿

𝜕 𝑤4
 and 

𝜕𝐿

𝜕 𝑏1
   

•  
𝝏𝑳

𝝏 𝒘𝟏
: 

𝜕𝐿

𝜕 𝑤1
=

𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
∗  

𝜕ℎ1(𝑜𝑢𝑡)

𝜕 ℎ1(𝑖𝑛)
∗  

𝜕ℎ1(𝑖𝑛)

𝜕 𝑤1
 

Each of the three quantities comprising 
𝜕𝐿

𝜕 𝑤1
 will be found separately: 

• Quantity (1) 
𝝏𝑳

𝝏 𝒉𝟏(𝒐𝒖𝒕)
: 

𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
=  

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
+ 

𝜕𝐿𝑜2

𝜕 ℎ1(𝑜𝑢𝑡)
 

𝝏𝒄𝟏

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 : 

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
=  

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗  

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)
 

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗  

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
=  0.343 ∗  0.132 = 0.0453  

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)
=  𝑤5 = 0.14 

𝜕𝐿𝑜1

𝜕 ℎ1(𝑜𝑢𝑡)
=  0.0453 ∗  0.14 = 0.006  

 
𝝏𝑳𝒐𝟐

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 : 

𝜕𝐿𝑜2

𝜕 ℎ1(𝑜𝑢𝑡)
= 0.501 ∗ 0.159 ∗ 0.16 = 0.012 

 
𝝏𝑳

𝝏 𝒉𝟏(𝒐𝒖𝒕)
 : 
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𝜕𝐿

𝜕 ℎ1(𝑜𝑢𝑡)
=  0.006 +  0.012 = 0.018  

• Quantity (2) 
𝝏𝒉𝟏(𝒐𝒖𝒕)

𝝏 𝒉𝟏(𝒊𝒏)
: 

As shown previously:  ℎ1(𝑜𝑢𝑡) =
1

1+𝑒
ℎ1(𝑖𝑛)

  

 
𝜕ℎ1(𝑜𝑢𝑡)

𝜕 ℎ1(𝑖𝑛)
=  

1

1+𝑒
ℎ1(𝑖𝑛)

 ∗ (1 − 
1

1+𝑒
ℎ1(𝑖𝑛)

 ) =  ℎ1(𝑜𝑢𝑡) ∗ (1 − ℎ1(𝑜𝑢𝑡))  

=  0.426 ∗ (1 − 0.426) =  0.245   

• Quantity (3) 
𝝏𝒉𝟏(𝒊𝒏)

𝝏 𝒘𝟏
 : 

𝜕ℎ1(𝑖𝑛)

𝜕 𝑤1
= 𝑥1  = 0.1 

• Now we can find 
𝝏𝑳

𝝏 𝒘𝟏
: 

𝜕𝐿

𝜕 𝑤1
= 0.018 ∗  0.245 ∗ 0.1 = 0.000441        

Other quantities can be found following the same approach: 

𝜕𝐿

𝜕 𝑤2
=   0.063 ∗ 0.244 ∗ 0.1 = 0.0015372        

𝜕𝐿

𝜕 𝑤3
= 0.018 ∗ 0.245 ∗ 0.2 = 0.000882            

𝜕𝐿

𝜕 𝑤4
=  0.063 ∗  0.244 ∗ 0.2 =  0.0030744       

𝜕𝐿

𝜕 𝑏1
=  

𝜕𝐿𝑜1

𝜕 𝑏1
+ 

𝜕𝐿𝑜2

𝜕 𝑏1
 

𝜕𝐿𝑜1

𝜕 𝑏1
=

𝜕𝐿𝑜1

𝜕 𝑜1(𝑜𝑢𝑡)
∗

𝜕𝑜1(𝑜𝑢𝑡)

𝜕 𝑜1(𝑖𝑛)
∗  

𝜕𝑜1(𝑖𝑛)

𝜕 ℎ1(𝑜𝑢𝑡)
∗
𝜕 ℎ1(𝑜𝑢𝑡)

𝜕  ℎ1(𝑖𝑛)
∗  

𝜕 ℎ1(𝑖𝑛)

𝜕  𝑏1
 

= 0.343 ∗  0.132 ∗  0.14 ∗  0.245 ∗ 1 = 0.00156 
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𝜕𝐿𝑜2

𝜕 𝑏1
=

𝜕𝐿𝑜2

𝜕 𝑜2(𝑜𝑢𝑡)
∗
𝜕𝑜2(𝑜𝑢𝑡)

𝜕 𝑜2(𝑖𝑛)
∗  

𝜕𝑜2(𝑖𝑛)

𝜕 ℎ2(𝑜𝑢𝑡)
∗
𝜕 ℎ2(𝑜𝑢𝑡)

𝜕  ℎ2(𝑖𝑛)
∗  

𝜕 ℎ2(𝑖𝑛)

𝜕  𝑏1
 

= 0.501 ∗ 0.159 ∗ 0.71 ∗ 0.2436 ∗ 1 = 0.0138 

𝜕𝐿

𝜕 𝑏1
=  0.0016 +  0.0138 = 0.0154  

5) Update the weights using the formula: 𝑤 = 𝑤̀ − 𝛼
𝜕𝐿

𝜕 𝑤
 as shown previously in 

equation 2.19.  

 𝑤1 =   0.13 − 0.1 ∗ 0.000441     = 0.130          

 𝑤2 =  0.21 − 0.1 ∗ 0.0015372   = 0.210        

 𝑤3 = 0.33 − 0.1 ∗  0.000882      = 0.330             

 𝑤4  =  0.41 − 0.1 ∗ 0.0030744   = 0.410        

 𝑤5 = 0.14 − 0.1 ∗  0.019             = 0.1381  

 𝑤6 = 0.16 − 0.1 ∗  0.0339          = 0.1566 

 𝑤7 = 0.13 − 0.1 ∗  0.0263          = 0.1274  

 𝑤8 = 0.71 − 0.1 ∗  0.0462          = 0.7054   

 𝑏1 = 0.22 − 0.1 ∗  0.01533         = 0.2185 

 𝑏2 = 0.91 − 0.1 ∗  0.125              = 0.8975  
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2.4.3 Vectorization in Neural Networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vectorization means to implement an algorithm so that a vector of values is processed at 

once rather than processing a single value at a time. In its essence, vectorization is the 

process of eliminating for loops and replacing them with matrix operations. In practice, 

vectorization is adopted when implementing neural networks since it allows the use of 

matrix operations that exploit parallelization capabilities of modern CPUs and GPUs 

resulting in a much faster implementation than the case of using for loops. A simple neural 

network like previously shown networks is given in Figure 2.16 and will be used to 

illustrate vectorization concept in neural networks. For one training example, the 

vectorized forward propagation step is as follows: 

• From the input layer to the hidden layer: 

ℎ(𝑜𝑢𝑡) =  𝜎

(

   

[
 
 
 𝑤11

(1) 𝑤21
(1) 𝑤31

(1) 𝑤41
(1)

𝑤12
(1) 𝑤22

(1) 𝑤32
(1) 𝑤42

(1)

𝑤13
(1) 𝑤23

(1) 𝑤33
(1) 𝑤43

(1)
]
 
 
 

∗  [

𝑥1
𝑥2

𝑥3
𝑥4

] +

[
 
 
 
𝑏1

𝑏1

𝑏1

𝑏1]
 
 
 

)

 =  𝜎( [
ℎ1(𝑖𝑛)

ℎ2(𝑖𝑛)

ℎ3(𝑖𝑛)

] ) =  [
ℎ1(𝑜𝑢𝑡)

ℎ2(𝑜𝑢𝑡)

ℎ3(𝑜𝑢𝑡)

]  

Figure 2.16: A simple neural network 
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Which can be represented as follows: 

ℎ(𝑖𝑛) = 𝑊(1) ∗ 𝑋 + 𝑏1                                                 (2.23) 

ℎ(𝑜𝑢𝑡) =  𝜎(ℎ(𝑖𝑛) )                                                    (2.24) 

 

Where: 

 

𝑊(1) ∈  ℝℎ×𝑛
    : weight matrix from the input to the hidden layer 

𝑋 ∈  ℝ𝑛×1
        : input features vector 

𝑏1 ∈  ℝ𝑛×1
        : bias vector from the input layer to the hidden layer 

ℎ(𝑖𝑛) ∈  ℝℎ×1
    : input vector to the hidden unit  

ℎ(𝑜𝑢𝑡) ∈  ℝℎ×1
  : output vector of the hidden unit  

𝜎                     : activation function 

𝑛                     : number of input features 

ℎ                     : number of hidden units 

• From the hidden layer to the output layer: 

 

𝑜(𝑜𝑢𝑡) =  𝜎(  [
𝑤11

(2)
𝑤21

(2)
𝑤31

(2)

𝑤12
(2)

𝑤22
(2)

𝑤32
(2)

] ∗  [

ℎ1(𝑜𝑢𝑡)

ℎ2(𝑜𝑢𝑡)

ℎ3(𝑜𝑢𝑡)

] + [

𝑏2

𝑏2

𝑏2

]) =  𝜎 ( [
𝑜1(𝑖𝑛)

𝑜2(𝑖𝑛)
] ) =    [

𝑜1(𝑜𝑢𝑡)

𝑜2(𝑜𝑢𝑡)
] 

 

Which can be represented as follows: 

 

𝑜(𝑖𝑛) = 𝑊(2) ∗ ℎ(𝑜𝑢𝑡) + 𝑏2                                           (2.25) 

𝑜(𝑜𝑢𝑡) =  𝜎(𝑜(𝑖𝑛) )                                                   (2.26) 
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Where: 

 

𝑊(2) ∈  ℝ𝑞×ℎ
    : weight matrix from the hidden to the output layer 

ℎ(𝑜𝑢𝑡) ∈  ℝℎ×1
  : output vector of the hidden unit  

𝑏2 ℝ
ℎ×1

            : bias vector from the hidden layer to the output layer 

𝑜(𝑖𝑛) ∈  ℝ𝑞×1
    : input vector to the output unit 

𝑜(𝑜𝑢𝑡) ∈  ℝ𝑞×1
  : output vector of the output unit 

𝜎                     : activation function 

𝑛                     : number of input features 

ℎ                     : number of hidden units 

𝑞                     : number of output units 
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Chapter 3  

RECURRENT NEURAL NETWORKS 

3.1  Introduction 

A human reader processes a sentence word by word while keeping memories – internal 

model or state – of what has been seen so far. The internal state is built from past 

information and is constantly updated as new information is being processed. This 

incremental processing of a sequence – a sentence in this case – results in a robust 

representation of the meaning conveyed by the sentence (Chollet, 2017a). Similarly, 

Recurrent neural networks (RNNs) use the same strategy, though in a much simpler 

fashion. They process sequences element by element through an internal loop while 

keeping a state of what has been processed so far as shown in Figure 3.1.  

 

Feed-forward neural networks (FNNs) make a blind assumption about the data to be 

processed, i.e. FNNs assume that the data is independently and identically distributed. 

However, this assumption doesn’t hold in most cases. This text is an example of a 

sequential data in which words are written in some order. When these words are permuted 

randomly, it would be impossible to interpret the meaning of the text. The audio signal of 

a speech, image frames in a video and stock prices are some examples of sequential data 

that FNNs fail to deal with. Moreover, the task at hand may not only take a sequence as 

input but rather may require completing the sequence such as predicting the stock market 

(Zhang et al., 2019). To overcome FNNs shortcomings, RNNs were designed with the aim 

of handling sequential data. RNNs achieved promising results in many tasks specifically 

those with variable input and output lengths such as machine translation, image captioning 

and handwriting recognition (Lipton, 2015; Chung et al., 2014). Specifically, RNNs are a 

rich class of neural networks specialized for processing sequential data that is often of 

variable lengths. They can process much longer sequences than other neural network 

architectures (Goodfellow et al., 2016).  
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According to (Graves, 2013), RNNs are dynamic models that can generate sequences of 

music, text and motion capture data. Moreover, RNNs have shown good performance is 

motion prediction (Martinez et al., 2017). 

 

 

 

 

 

 

 

 

 

 

RNN extends the standard FNN to handle variable length sequences by using a recurrent 

hidden state. At any timestep, the activation of the hidden state depends on the activation 

of hidden state at the previous timestep (Chung et al., 2014).  

 

RNNs operate on a sequence of values 𝑥(1), … , 𝑥(𝑇). This sequence is a vector 𝑥(𝑡) where 

𝑡  is the timestep index ranging from 1 to 𝑇 . The timestep index does not necessarily 

represent the time as in the real world but rather it may represent merely a position in the 

sequence. RNNs employ the principle of parameter sharing. As the name indicates, 

parameter sharing means sharing parameters or weights across several timesteps. Equation 

3.1 describes an RNN generally (Goodfellow et al., 2016).  

𝑎(𝑡) =  𝑓(𝑎(𝑡−1), 𝑥(𝑡);𝑊)                                         (3.1) 

Where:  

𝑎(𝑡)        : state of the network at time step 𝑡 (current activation) 

 𝑎(𝑡−1)   : state of the network at the previous time step 𝑡 − 1 (old activation) 

Figure 3.1: A recurrent network   with a loop.  

Figure adapted from (Chollet, 2017a). 
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𝑥(𝑡)       : input at the current time step 𝑡 

𝑊         : set of weights or parameters  

𝑓           : a non-linear activation function that can be as simple as Sigmoid or as complex     

               as long short-term memory unit (LSTM) which will be discovered later in this  

               chapter (Cho K. , et al., 2014b).  

Clearly as indicated by equation 3.1, the state 𝑎(𝑡) (current activation) encodes information 

about the complete past sequence because it’s calculated using the state of the previous 

time step 𝑎(𝑡−1)  (previous activation) which in turn encodes information about the 

sequence from earlier time steps. Additionally, equation 3.1 is recursive (recurrent) as 𝑎(𝑡) 

points back to 𝑎(𝑡−1) . The principle of parameter sharing means that the same set of 

parameters 𝑊 is used across several time steps. An illustration of the equation is shown in 

Figure 3.2 where the network is depicted from two perspectives. To the left of the figure is 

the circuit diagram of an RNN that uses an input 𝑥 to calculate the state 𝑎 which is passed 

forward through time. The black box represents a single time step. To the right of the figure 

is the unfolded version of the same RNN where each node represents an instance of a single 

time step. Typically, RNNs would have an output layer to use the state 𝑎  to make 

predictions (Goodfellow et al., 2016). Figure 3.2 represents an RNN universally without 

specifying neither the output of the network nor the choice of activation function for hidden 

units.  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: RNN with no outputs. (left) a circuit diagram of the RNN.  

(right) the same RNN but unfolded.  
Figure adapted fron Goodfellow et al., (2016). 
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Figure 3.3: Traditional RNN.  

Figure adapted from (Olah, Understanding LSTM Networks, 2015). 

 

Figure 3.3 gives more detailed representation of a traditional RNN (vanilla RNN) where 

𝑎(𝑡) is the activation at time step t, 𝑥(𝑡) is the input at time step t and 𝑜(𝑡)  is the output at 

time step t. 𝑎(𝑡) and 𝑜(𝑡) are calculated as described by equations 3.2 and 3.3 respectively 

(Amidi & Amidi).  

  𝑎(𝑡) = 𝑔1 (𝑊𝑎𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡) + 𝑏𝑎)                            (3.2) 

𝑜(𝑡) = 𝑔2(𝑊𝑦𝑎(𝑡) + 𝑏𝑦)                                     (3.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Vanilla RNN block.  
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Where: 

𝑏                             : number of examples in the mini-batch 𝑥(𝑡) (batch size) 

𝑛                             : number of features 

ℎ                             : number of hidden units 

𝑞                             : number of output units 

 𝑥(𝑡) ∈ ℝ𝑏×𝑛         : mini-batch input at current time step t 

𝑎(𝑡) ∈ ℝ𝑏×ℎ          : hidden state (activation) at current time step t 

𝑎(𝑡−1) ∈ ℝ𝑏×ℎ      : hidden state (activation) at previous time step t-1 

𝑜(𝑡)  ∈ ℝ𝑏×𝑞         : output at time step t 

𝑊𝑎  ∈ ℝℎ×ℎ, 𝑊𝑥  ∈ ℝ𝑛×ℎ and 𝑊𝑦 ∈ ℝℎ×𝑞 : weight matrices 

𝑏𝑎  ∈ ℝ1×ℎ and 𝑏𝑦  ∈ ℝ1×𝑞 : biases 

𝑔1 and 𝑔2    : activation functions 

 

3.2  RNN Activation Functions 

RELU Sigmoid Tanh 

𝜎(𝑥) = max(0, 𝑥) 𝜎(𝑥) =  
1

1 +  𝑒−𝑥
 𝜎(𝑥) =  

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 
  

            Table 1: Common choices of activation functions used in RNNs.  

       (Amidi & Amidi). 
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Common choices of activation functions are shown in Table 1. Figures 3.2 and 3.3 depict 

RNN units as a black box. The calculations carried out by an RNN unit as described by 

equations 3.2 and 3.3 are illustrated visually in Figure 3.4.   

 

3.3  RNN Loss Function 

Generally, the loss function is a measure of how close a neural network is to the ideal 

weights. RNN loss function is defined as the sum of losses over all time steps as shown in 

the following equation:   

𝐿𝑡𝑜𝑡𝑎𝑙(𝑦̂, 𝑦) =  ∑ 𝐿𝑡(𝑦̂
(𝑡), 𝑦𝑡)

𝑇𝑦

𝑡=1                                    (3.4) 

 

3.4  RNNs in Action  

 

 

 

 

 

 

 

 

 

 

This section shows a simple example of an RNN in action including one forward pass 

followed by a backward pass (Khuong, 2019; Chen, 2016). As shown previously, RNNs 

can be viewed either as a circuit diagram or as an unfolded diagram as shown below.  

Figure 3.5 shows a simple RNN, also known as vanilla RNN where the blue blocks are the 

hidden states which can be thought of as an activation function that acts on each circle 

Figure 3.5: Rolled RNN diagram vs unrolled RNN diagram.  

(left): rolled version or circuit diagram of a vanilla RNN. (right): unrolled version or unfolded 

diagram of the same vanilla RNN. Figure adapted from (Chen G. , 2016).   
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inside the block that is the hidden node. ℎ𝑖
(𝑡)

 is the 𝑖𝑡ℎ hidden node at timestep 𝑡. Each 

hidden node performs a linear calculation then an activation function 𝑔1 is applied to all 

nodes to get a vector of activations 𝑎(𝑡). At each timestep 𝑡, the RNN takes the output of 

the hidden state at the previous timestep 𝑡 − 1 along with the input vector 𝑥(𝑡)  at the 

current timestep 𝑡 . This allows the RNN to accumulate information about the whole 

sequence and thus keep a memory of what it has seen before. However, at timestep 0, there 

is no previous hidden state, therefore 𝑎(0) would be a vector of 0s. As pointed out earlier, 

RNNs use the concept of parameter sharing meaning that all weight matrices are shared 

across several timesteps. i.e. 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 are the same throughout the whole sequence. 

The following equations describe Figure 3.5 mathematically: 

 

𝑎(𝑡) = 𝑔1(𝑊𝑎 𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡))                                           (3.5) 

𝑜(𝑡) = 𝑔2(𝑊𝑜𝑎
(𝑡))                                                     (3.6) 

Where: 

𝑛                    : number of input features (length of input vector 𝑥(𝑡)) 

ℎ                    : number of hidden nodes (length of activation vector 𝑎(𝑡)) 

𝑞                    : number of output nodes (length of output vector 𝑦̂(𝑡)) 

𝑎(𝑡) ∈  ℝℎ         : vector of activation values at the current timestep 𝑡 − 1 (the output   

                          of the hidden state at the current timestep) 

𝑎(𝑡−1)  ∈  ℝℎ    : vector of activation values at the previous timestep 𝑡 − 1 (the output   

                          of the hidden state at the previous timestep) 

𝑥(𝑡) ∈  ℝ𝑛         : vector of input features at the current timestep 𝑡 

𝑜(𝑡)  ∈  ℝ𝑞        : output vector (prediction) at timestep 𝑡 

𝑎(𝑡)  ∈  ℝℎ        : vector of activation values at the current timestep 𝑡 (the output   

                           of the hidden state of the current timestep).   
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𝑊𝑎 ∈ ℝℎ×ℎ       : weight matrix multiplied by 𝑎(𝑡−1) to get 𝑎(𝑡) 

𝑊𝑥 ∈ ℝℎ×𝑛       : weight matrix multiplied by 𝑥(𝑡) to get 𝑎(𝑡) 

𝑊𝑜  ∈ ℝ𝑞×ℎ      : weight matrix multiplied by 𝑎(𝑡) to get 𝑦̂(𝑡) 

𝑔1                     : activation function of hidden nodes  

𝑔2                     : activation function of output nodes  

 

N i c e 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

                           Table 2: One-hot encoding for categorical variables. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: A simple RNN that is to be trained to predict the last letter “e” from the 

word “Nice” given the previous three letters. 
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Below is given a superficial example of an RNN. The goal is to train the RNN to predict 

the last letter of the word “Nice” given the previous three letters. As shown in Figure 3.6, 

The given RNN has 3 hidden nodes. It’s a multi-classification problem since there are only 

4 letters to predict “N”, “i”, “c” and “e”. Of course, Neural networks can deal with 

numerical values only and hence each letter is represented as a one-hot encoded vector.  

This means that each letter is assigned a vector of length that equals the number of classes, 

4 in this case where one element of that vector is 1 and the rest are 0s. One-hot encoding 

is used to convert categorical variables to a form that can be passed to neural networks. 

Categorical variables are those that represent names or labels and don’t have a specific 

ordering or ranking associated with them. Table 2 illustrates how each letter is represented 

with one-hot encoding. 

 

Generally, the training phase of the given RNN would look like the following: 

• Initialize weight matrices 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 randomly. 

• Make a forward pass to find the predictions. 

• Calculate the loss for each timestep and then the cost for all timesteps. 

• Make a backward pass to find the gradients. 

•  Update the weights according to the gradients. 

• Repeat the steps until convergence or for a defined number of iterations. 

One forward pass could be described mathematically as follows: 

𝑎𝑡 = 𝑔1

(

  
 

[

𝑤𝑎,11 𝑤𝑎,12 𝑤𝑎,13

𝑤𝑎,21 𝑤𝑎,22 𝑤𝑎,23

𝑤𝑎,31 𝑤𝑎,32 𝑤𝑎,33

] [

𝑎1
(𝑡−1)

𝑎2
(𝑡−1)

𝑎3
(𝑡−1)

] + [

𝑤𝑥,11 𝑤𝑥,12 𝑤𝑥,13 𝑤𝑥,14

𝑤𝑥,21 𝑤𝑥,22 𝑤𝑥,23 𝑤𝑥,24

𝑤𝑥,31 𝑤𝑥,32 𝑤𝑥,32 𝑤𝑥,34

]

[
 
 
 
 
 𝑥1

(𝑡)

𝑥2
(𝑡)

𝑥3
(𝑡)

𝑥4
(𝑡)

]
 
 
 
 
 

)

  
 

 

= [

𝑎1
(𝑡)

𝑎2
(𝑡)

𝑎3
(𝑡)

]                                                     (3.7) 
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𝑜𝑡 = 𝑔2 ([

𝑤𝑜,11 𝑤𝑜,12 𝑤𝑜,13

𝑤𝑜,21 𝑤𝑜,22 𝑤𝑜,23

𝑤𝑜,31 𝑤𝑜,32 𝑤𝑜,33

𝑤𝑜,41 𝑤𝑜,42 𝑤𝑜,43

] [

𝑎1
(𝑡)

𝑎2
(𝑡)

𝑎3
(𝑡)

]) =

[
 
 
 
 
 𝑜1

(𝑡)

𝑜2
(𝑡)

𝑜3
(𝑡)

𝑜4
(𝑡)

]
 
 
 
 
 

                          (3.8) 

After the forward pass, the loss for each timestep is computed followed by the cost which 

is the sum of all losses. Since the task at hand is a multiclassification problem, the used 

loss would be the cross-entropy. The cross-entropy loss at timestep t is as follows: 

𝐿(𝑡)(𝑦(𝑡), 𝑜(𝑡)) = − 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡))                                           (3.9) 

Whereas the cross-entropy cost of all timesteps is as follows: 

𝐿(𝑦, 𝑜) = − ∑ 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡))𝑡=𝑇
𝑡=1                                           (3.10) 

Now it’s the time of the backward pass which aims at calculating the gradients using 

backpropagation through time BPTT. BPTT is an application of backpropagation that is 

used in RNNs (Zhang et al., 2019). It’s trickier than usual backpropagation since the 

sequence might be too long and hence the dependencies of weights span over the whole 

sequence. This is true due to the principle of parameter sharing where the same weight 

matrices are used over several timesteps. When calculating the gradients of the weights 

w.r.t the cost function, the weight dependencies are the same length as the sequence itself 

which makes it a tricky and computationally intensive task, especially for long sequences.    

The gradients of 𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 w.r.t to the cost function are as follows:  

1. 
𝜕𝐿

𝜕 𝑤𝑜
∶ 

Knowing that: 

𝐿𝑡(𝑦𝑡, 𝑜𝑡) = − 𝑦𝑡𝑙𝑜𝑔(𝑜𝑡)   

𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡))  

It follows that: 

𝜕𝐿(𝑡)

𝜕 𝑤𝑜
= 

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑤𝑜
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𝜕𝐿

𝜕 𝑤𝑜
= 

𝜕𝐿(1)

𝜕 𝑤𝑜
+ 

𝜕𝐿(2)

𝜕 𝑤𝑜
+ 

𝜕𝐿(3)

𝜕 𝑤𝑜
= ∑

𝜕𝐿(𝑡)

𝜕 𝑤𝑜

𝑡=𝑇

𝑡=1

 

2. 
𝜕𝐿

𝜕 𝑤𝑎
∶ 

Knowing that: 

 𝐿(𝑡)(𝑦(𝑡), 𝑜(𝑡)) = − 𝑦(𝑡)𝑙𝑜𝑔(𝑜(𝑡))  

 𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡))  

 𝑎(𝑡) = 𝜎1(𝑊𝑎 𝑎(𝑡−1) + 𝑊𝑥𝑥
(𝑡)) 

It follows that: 

𝜕𝐿(𝑡)

𝜕 𝑤𝑜
= 

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑊𝑎
 

But 𝑎(𝑡−1) also contains 𝑊𝑎 and hence the chain rule is applied to 𝑎(𝑡−1) recursively until 

reaching 𝑎(0) 

𝜕𝐿
(𝑡)

𝜕 𝑤𝑎
= 

𝜕𝐿
(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑊𝑎
+ 

𝜕𝐿
(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑡−1)

𝜕𝑎(𝑡−1)

𝜕  𝑊𝑎
+.. 

+
𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(0)

𝜕𝑎(0)

𝜕  𝑊𝑎
 

𝜕𝐿

𝜕 𝑤𝑎
= ∑ ∑

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑘)

𝜕𝑎(𝑘)

𝜕  𝑊𝑎

𝑘=𝑡

𝑘=0

𝑡=𝑇

𝑡=1

 

Similarly, 
𝜕𝐿

𝜕 𝑤𝑥
 is: 

𝜕𝐿

𝜕 𝑤𝑥
= ∑ ∑

𝜕𝐿(𝑡)

𝜕𝑜(𝑡)

𝜕𝑜(𝑡)

𝜕 𝑎(𝑡)

𝜕𝑎(𝑡)

𝜕 𝑎(𝑘)

𝜕𝑎(𝑘)

𝜕𝑊𝑥

𝑘=𝑡

𝑘=0

𝑡=𝑇

𝑡=1

 

 Finally, to update weights proportionally to the gradients, the following update rule is 

applied:  
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𝑊𝑖 = 𝑊𝑖 −  𝛼
𝜕𝐿

𝜕𝑊𝑖
                                        (3.11) 

Where: 

𝑊𝑖   : weight matrices  𝑊𝑎, 𝑊𝑥 and 𝑊𝑜 

𝛼     : learning rate 

 

3.5  Vanishing and Exploding Gradients 

Although RNNs have impressive achievements in many areas, almost none of them were 

achieved by vanilla RNNs. Rather they were achieved by RNNs that use sophisticated 

recurrent units. It has been reported that training vanilla RNNs to capture long-term 

dependencies is hard due to the vanishing and exploding gradients problem (Chung et al., 

2014). In practice, vanilla RNNs experience the problem of vanishing or exploding 

gradients which occurs during backpropagation in which gradients become extremely 

small or extremely large. Both cases affect learning because vanishing gradients (very 

small gradients) would rather lead to a model that barely if not at all learns during training 

whereas exploding gradients (very large gradients) would crash the model and produce lots 

of not-a-numbers (NaNs) (Trask, 2019). The problem of vanishing and exploding gradients 

is not limited to RNNs, it occurs in a very deep traditional feed-forward neural networks 

as well (Chollet, 2017a). The problem is rooted in the fact that computing gradients in 

RNNs involves repetitive matrix multiplication. To understand the effect of repetitive 

multiplication, imagine what would happen if some weight 𝑤 is multiplied by itself several 

times. Depending on the magnitude of 𝑤 , the product will either explode or vanish 

(Goodfellow et al., 2016). The question then arises, why doesn’t forward propagation - 

which involves repetitive matrix multiplication - suffer from that problem? Unlike 

backpropagation, forward propagation uses activation functions forcing the values to stay 

within a specific range (Trask, 2019). In his book, “Grokking Deep Learning”, Trask 

provides a synthesized example to show the results of a backpropagation loop for Sigmoid 

and RELU functions when used as activation functions. The example shows how the 

gradients become extremely small and extremely large for Sigmoid and RELU 
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respectively. For RELU, the reason for the gradient explosion is matrix multiplication 

whereas for Sigmoid the reason for the gradient vanishing is because the derivative of the 

Sigmoid is very flat at the tails of the function (Trask, 2019, p. 273).  

Generally, this issue was tackled by researchers from two different perspectives. One 

perspective is concerned with improving the learning algorithm itself such as using 

gradient clipping technique, a simple solution to the exploding gradient problem which 

been in use by practitioners (Goodfellow et al., 2016). Gradient clipping will be explored 

further in section 3.7. The other perspective is concerned with modifying the architecture 

of the network itself either by designing more sophisticated recurrent units such long short-

term memory (LSTM) and gated recurrent unit (GRU), or by using residual connections 

between layers. LSTM and GRU layers were invented to conquer the vanishing/exploding 

gradient problem (Chollet, 2017a). Section 3.6 is devoted to LSTM and GRU. The residual 

connections will be covered in section 3.7.   

 

3.6   Gated RNNs 

Backpropagation in RNNs involves propagating gradients over many timesteps causing the 

gradients to either vanish in most cases or explode occasionally but with severe damage to 

the optimization. Gated RNNs are the most effective sequence models in use today 

including long short-term memory (LSTM) and gated recurrent unit (GRU) (Goodfellow 

et al., 2016).  

 

3.6.1 Long Short-Term Memory - LSTM 

Introduced by Hochreiter and Schmidhuber back in 1997, LSTM aims at modeling long 

sequences by providing a remedy to the vanishing gradient problem. LSTM has been 

improved by many others ever since. Essentially, what LSTM does is that it provides a way 

of saving information for later use (Chollet, 2017a).  Both vanilla RNN and LSTM have a 

hidden state which is denoted by 𝑎(𝑡). However, LSTM differs from vanilla RNN in the 

presence of the memory cell or cell state - the part surrounded by the orange dashed line in 

Figure 3.8. The memory cell is the core of LSTM which acts as a long-term memory that 
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captures long-term dependencies. It is analogs to a conveyer belt that runs beside the 

sequence to carry relevant information at any timestep to be used in later timesteps as 

needed (Chollet, 2017a). In its essence, LSTM is designed to capture relevant information 

that is useful for later timesteps. To appreciate the ability of LSTM to capture only relevant 

information in long sequences, suppose that the task at hand is to classify a movie review 

as positive or negative and then rank the movie based on that review. To excel in such a 

task, the most informative and expressive words - even if they appear early in the sequence 

- need to be captured as they provide a strong clue about the sentiment of the review while 

insignificant neutral words need to be discarded as they don’t hold precious information 

that may help in the classification. In addition to the memory cell, there are different gates 

in the LSTM module that regulate the flow of information by deciding which relevant 

information to be kept and thus to be taken to the conveyer belt (memory cell) for later use 

and which irrelevant information to be thrown.  

 

 

 

 

 

 

 

 

 

 

 

 

These gates can be thought of as real gates that could be fully opened, partially opened or 

closed meaning that these gates control not only the kind of information to be kept or 

thrown but also how much of information should be remembered or forgotten (“A 

numerical example of LSTMs,” 2017).  

Mainly, LSTM gates have control over the memory cell from which they can add or remove 

information (Olah, Understanding LSTM Networks, 2015). These gates are learned during 

training to become successful at capturing relevant information needed later for prediction 

and throwing irrelevant information (Nguyen, 2019). Usually, LSTM has three gates as 

shown in Figure 3.8. Every gate consists of a fully connected layer with a Sigmoid 

Figure 3.7: Traditional RNN module - vanilla RNN.  

Figure adapted from (Olah, Understanding LSTM Networks, 2015). 
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activation followed by an element-wise multiplication (“A numerical example of LSTMs,” 

2017). As mentioned earlier, Sigmoid function produces values between 0 and 1 where 0 

indicates pass nothing through the gate and 1 indicates pass everything through the gate.   

     

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

To summarize, the memory cell in LSTM represents the long-term memory which is 

getting updated first through the forget gate where irrelevant information is removed, and 

second through the input gate where new information is added. 𝑎(𝑡) represents the working 

memory (short-term memory) where LSTM keeps only the immediately useful information 

from the memory cell (Chen E. , 2017). Notice that 𝑎(𝑡) usually is referred to as the hidden 

state. Below, each gate is presented briefly. 

Forget gate: As the name indicates, this is the part of LSTM responsible for deciding 

which irrelevant information to be abandoned (and by how much).  

Figure 3.8: Long-short term memory (LSTM).  

Figure adapted from (Olah, Understanding LSTM Networks, 2015; Nguyen, 2019).   
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The following formula shows the output 𝐹(𝑡)  of the forget gate (Olah, Understanding 

LSTM Networks, 2015): 

𝐹(𝑡) =  𝜎(𝑊𝑓 . [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑓)                                         (3.12) 

Where:  

𝜎                      : Sigmoid function 

𝑊𝑓                    : weight matrix of the forget gate 

𝑎(𝑡−1)               : activation vector of the previous timestep t-1 (output of the previous   

                         timestep) 

𝑥(𝑡)                  : input vector of the current timestep t 

[𝑎(𝑡−1), 𝑥(𝑡)]    : concatenation of the two vectors 

𝑏𝑓                     : bias vector 

By looking at 𝑎(𝑡−1) and 𝑥(𝑡) then applying Sigmoid, the forget gate outputs a number in 

the range 0 - 1 for every number in 𝑐(𝑡−1), the old memory cell (long-term memory). Doing 

so, the forget gate discards irrelevant information from 𝑐(𝑡−1) where 0 indicates forgetting 

entirely while 1 indicates the opposite (Olah, Understanding LSTM Networks, 2015). After 

calculating 𝐹(𝑡) as shown above, 𝐹(𝑡) is getting multiplied by the old memory cell 𝑐(𝑡−1). 

represents element-wise multiplication (Hadamard product) in which This symbol 

every element in the first matrix or vector is getting multiplied by the corresponding 

element in the second matrix or vector as shown in the following equation: 

[
𝑎1 𝑎2

𝑎3 𝑎4
] ° [

𝑏1 𝑏2

𝑏3 𝑏4
] =  [

𝑎1. 𝑏1 𝑎2. 𝑏2

𝑎3. 𝑏3 𝑎4. 𝑏4
]                                   (3.13) 

 

Input gate: This gate consists of two parts. The first part shown in Figure 3.9 is the one 

responsible for creating new candidate values vector 𝑐̃(𝑡) learned from the input vector 𝑥(𝑡) 

which can be added to the new memory cell 𝑐(𝑡) to become a part of the long-term memory 

(Chen E. , 2017). This part of the input gate is represented mathematically by the following 

equation (Olah, Understanding LSTM Networks, 2015): 

° 
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𝑐̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑐. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑐)                                  (3.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other part shown in Figure 3.10 is responsible for determining which values of the 

candidate vector 𝑐̃(𝑡) worth to be added to the new memory cell (long-term memory) 𝑐(𝑡) 

(Chen E. , 2017). The following equation describes this part of the input gate 

mathematically (Olah, Understanding LSTM Networks, 2015):  

 

𝐼(𝑡) =  𝜎(𝑊𝑖. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑖)                                            (3.15) 

Finally, these two parts of the input gate are getting combined through element-wise 

multiplication as shown in Figure 3.11.  

 

 

 

 

Figure 3.9: First part of the input 

gate.  

Figure 3.10: Second part of the 

input gate.  



60 

 

 

 

 

 

 

 

 

 

 

 

 

As shown previously, the forget gate determines which irrelevant information that is no 

longer needed to be memorized and thus need to be dropped from the memory cell.  This 

is achieved through multiplying 𝐹(𝑡)  with the old memory cell 𝑐(𝑡−1) . After forgetting 

irrelevant information from the old memory cell, the following step of updating the 

memory cell is to multiply 𝐼(𝑡) with 𝑐̃(𝑡). This means that the new candidate values 𝑐̃(𝑡) are 

getting scaled by 𝐼(𝑡) according to their importance. Finally, to finish updating the memory 

cell, the input gate and the forget gate are getting combined as follows (Olah, 

Understanding LSTM Networks, 2015):  

𝑐(𝑡) = 𝐹(𝑡) ° 𝑐(𝑡−1) + 𝐼(𝑡) ° 𝑐̃(𝑡)                                          (3.16) 

Output gate: This part outputs the activation 𝑎(𝑡) of the LSTM cell. 𝑎(𝑡) be thought of as 

the working memory (short-term memory) of LSTM. The output gate learns to focus on 

the parts of the long-term memory that are immediately useful (Chen E. , 2017). The 

following equations illustrate how 𝑎(𝑡) is obtained (Olah, Understanding LSTM Networks, 

2015): 

𝑂(𝑡) =  𝜎(𝑊𝑜 . [𝑎
(𝑡−1), 𝑥(1)] + 𝑏𝑜)                                       (3.17) 

𝑎(𝑡) = 𝑂(𝑡) ° 𝑡𝑎𝑛ℎ ( 𝑐(𝑡))                                             (3.18) 

3.6.2 Gated Recurrent Unit – GRU 

More recently, gated recurrent unit (GRU) was proposed in 2014 (Cho et al., 2014b). 

Figure 3.11: The two parts of the input 

gate combined through element-wise 

multiplication. 
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Compared with LSTM, GRU doesn't have separate memory cells. Moreover, GRU uses 

two gates instead of three. Although GRU has a simpler structure than LSTM, the former 

has outperformed the latter empirically in some cases (Chung et al., 2014). Figure 3.12 is 

an illustration of a GRU cell that consists of two gates, a reset gate and an update gate. At 

every timestep, the GRU cell takes the current input 𝑥(𝑡) and the old activation of the 

previous timestep  𝑡 − 1, that is 𝑎(𝑡−1) as an input to produce the new activation 𝑎(𝑡) of the 

current timestep t. The reset gate controls how much of the old activation 𝑎(𝑡−1) should be 

included in the candidate activation  𝑎̃(𝑡). Afterward, the update gate decides the amount 

in which the old activation 𝑎(𝑡−1) and the candidate activation  𝑎̃(𝑡) should participate in 

the calculation of the new activation 𝑎(𝑡). Below, a brief illustration of the GRU gates is 

given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reset gate 𝐑(𝐭): The role of the reset gate is to control how much of the old activation 

𝑎(𝑡−1) should be forgotten. i.e. how much of the old activation 𝑎(𝑡−1) should be included 

when calculating the candidate activation 𝑎̃(𝑡). When 𝑅(𝑡) ≈  0, it means forget the old 

activation 𝑎(𝑡−1) and look at 𝑥(𝑡) only to form the candidate activation  𝑎̃(𝑡). When 𝑅(𝑡) ≈

Figure 3.12: Gated Recurrent Unit (GRU).  

Figure adapted from (Nguyen, 2019; Drakos, 2019). 
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 1, it means remember the old activation 𝑎(𝑡−1) and use it beside 𝑥(𝑡) to form the candidate 

activation  𝑎̃(𝑡) (Chung et al., 2014). Below is the equation of the reset gate (Drakos, 2019): 

𝑅(𝑡) =  𝜎(𝑊𝑟. [𝑎
(𝑡−1), 𝑥(𝑡)] + 𝑏𝑟)                                        (3.19) 

Update gate 𝐔(𝐭): The update gate controls the amount of the update that should be made 

to the new activation. i.e. 𝑈(𝑡) decides the amount of which the old activation 𝑎(𝑡−1) and 

the candidate activation  𝑎̃(𝑡) should participate in the calculation of the new activation 

𝑎(𝑡) . When 𝑈(𝑡) ≈  0 , it means keep the old activation 𝑎(𝑡−1)  and use it as the new 

activation 𝑎(𝑡) while discarding the candidate activation  𝑎̃(𝑡). When 𝑈(𝑡) ≈  1, it means 

discard the old activation 𝑎(𝑡−1) and use the candidate activation as the new activation 𝑎(𝑡). 

All gates shown previously have similar formulas with different weights and biases and 

the reset gate is no exception as shown below (Drakos, 2019):    

𝑈(𝑡) =  𝜎(𝑊𝑢. [𝑎(𝑡−1), 𝑥(𝑡)] + 𝑏𝑢)                                        (3.18) 

Two quantities are involved in the calculation of the candidate activation 𝑎̃(𝑡), one of them 

is 𝑥(𝑡) and the other one is 𝑎(𝑡−1) which is controlled by 𝑅(𝑡) as shown below (Drakos, 

2019):  

𝑎̃(𝑡) = 𝑡𝑎𝑛ℎ(𝑊𝑎. [𝑅(𝑡) ° 𝑎(𝑡−1), 𝑥(𝑡)] + 𝑏𝑎)                                (3.20) 

The final output of the GRU is the new activation 𝑎(𝑡)  which is a linear interpolation 

between two values  𝑎(𝑡−1) and  𝑎̃(𝑡) (Chung et al., 2014).  

The following equation shows how 𝑎(𝑡) is obtained (Drakos, 2019): 

𝑎(𝑡) = (1 − 𝑈(𝑡) ) °  𝑎(𝑡−1) + 𝑈(𝑡) ° 𝑎̃(𝑡)                                (3.21) 

3.7  Residual Connections  

The idea of residual connections, also known as skip connections, was used by Lin et al., 

(1996) following the work of Lang & Hinton, (1988) about delays in FNNs. (Goodfellow 
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et al., 2016). Later, a Microsoft research team won the 1st place on the ILSVRC 2015 

classification task using residual nets with 125 layers depth. Afterward, the team has 

published a technical report of their experiments on the ImageNet test set. (He et al., 2015). 

Their work provided a piece of empirical evidence that the use of residual connections has 

improved the performance of very deep convolutional neural networks. Specifically, the 

authors have observed that stacking more layers doesn’t improve performance, on the 

contrary, it leads to higher training and testing errors, which is counter-intuitive since a 

deeper model is supposedly able to learn the representations learned by the shallower 

model, i.e. the former is expected to have, at least, the same error as the latter.  

 

 

 

 

 

 

 

 

 

The abovementioned problem is not caused by overfitting since the training error of the  

deeper model is higher than that of the shallower model. Therefore, the work of He et al., 

(2015) introduced the residual connections as a solution to this problem. The reason behind 

the success of the residual connections is unclear but it’s empirically evident. A residual 

connection is a connection that skips one or more layers. Figure 3.14 shows a residual block 

with a residual connection that bypasses every two layers  

 

In Figure 3.14, the connection takes the output of a previous layer 𝑥 and adds it to the 

output of the next two layers 𝑓(𝑥). The output of the residual block is 𝑓(𝑥) + 𝑥 . The 

connection is nothing more than an identity mapping in which 𝑥 passes unchanged.  

Figure 3.13: (left) training error (right) testing error.  

The plots show training and testing errors of 20 layers (yellow curve) and 56 layers (red curve) convolutional 

networks without residual connections on CIFAR-10. Deeper network has higher training and testing errors (He et 

al., 2015). 
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Let’s say that the two layers are supposed to learn a mapping ℎ, i.e. the original mapping 

to be learned is ℎ. Hence, 𝑥 is the input and ℎ(𝑥) is the output of these layers.  

However, by introducing the residual connection as shown in Figure 3.14, the desired 

mapping to be learned by the layers is no longer ℎ(𝑥), rather, its 𝑓(𝑥).  

Hence, it follows logically that: 

1) Desired mapping is 𝑓(𝑥) = ℎ(𝑥) − 𝑥.  

2) Original mapping is ℎ(𝑥) = 𝑓(𝑥) + 𝑥.  

The authors hypothesized that learning the residual mapping 𝑓(𝑥) is easier than learning 

the original mapping ℎ(𝑥) by providing the following example:  

If the original mapping to be learned were the identity mapping, i.e. ℎ(𝑥) = 𝑥, then it is 

easier to push the residual  𝑓(𝑥) to 0 than to let the stacked layers learn the identity 

mapping without a residual connection. To elaborate on the example, when the original 

mapping is the identity, ℎ(𝑥) = 𝑥 then it follows that, with the presence of the residual 

connection, the desired mapping is 𝑓(𝑥) = ℎ(𝑥) − 𝑥 = 𝑥 − 𝑥 = 0. Hence, the layers will try 

to push 𝑓(𝑥) towards 0 rather than trying to learn the identity mapping. 

 

 

 

 

Figure 3.14: The residual block used by He et al., (2015). 
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3.8  Gradient Clipping  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: The effect of using gradient clipping. 

(left): Without gradient clipping, gradient descent step moves from the valley to the wall (it 

moves suddenly from a low error region to a high error region) resulting in a high gradient 

that updates the parameters with new values outside the axes of the plot. (right): With 

gradient clipping, even though the gradient descent step ascends the wall, the step size isn’t 

too big to update the parameters with values far away from the solution (Goodfellow et al., 

2016). 

 

Figure 3.15: Cost function surface of highly non-linear models. 

The cost function 𝐽(𝑤, 𝑏) is plotted as a function of its parameters 𝑤 and 𝑏 showing the 

error surface with a wall that indicates an abrupt change in the error. In RNNs, Repetitive 

multiplication of weights results in exremely steep regions (walls) as shown here in the 

error surface of the cost function 𝐽(𝑤, 𝑏). These When approached by gradient descent 

during optimization, these walls may cause the gradient descent to update the parameters 

with values very far from the optimal solution (Goodfellow et al., 2016). 
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Usually, highly nonlinear models such as RNNs and deep FNNs have cost functions with 

very steep regions (walls) as shown in Figure 3.15. These regions result from repeated 

multiplication of parameters (weights) thus have large gradients. Avoiding steep regions 

is essential since getting close to them during optimization my cause the gradient descent 

to make an update of the parameters leading them to a region far away from the desired 

solution and thus losing the progress that have been made so far (Goodfellow et al., 2016).  

Gradient clipping is a simple mechanism to deal with exploding gradient problem. Two 

variations of gradient clipping were suggested with minor differences between them 

(Pascanu et al., 2012; Uení et al., 2012). Figure 3.7 shows the effect of using gradient 

clipping. When the gradient is large, the update of the parameters may lead to a region 

where the cost function is larger. Therefore, the step size must be small enough to prevent 

the update from taking a big step upward the wall. As illustrated in figure 3.7, gradient 

clipping prevents gradient descent from overshooting the minima by keeping the gradient 

less than some threshold as follows (Pascanu et al., 2012): 

 If   ‖𝑔‖  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   then: 

 𝑔 =  
𝑔×𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

‖𝑔‖
                                               (3.12) 

Where, ‖𝑔‖ is the norm of the gradient vector 𝑔 which can be possibly the L-1 norm of 

𝑔, that is ‖𝑔‖1 or the L-2 norm of 𝑔, that is ‖𝑔‖2. 

Simply, The L-1 norm of a vector 𝑥 ∈  ℝ𝑛
 with elements  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛 ) is the 

sum of its elements magnitudes as follows: 

‖𝑥‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1                                          (3.14) 

The L-2 norm is the Euclidean distance and is expressed mathematically as follows: 

‖𝑥‖2 = √∑ 𝑥𝑖
2𝑛

𝑖=1                                         (3.13) 



67 

 

3.9 RNN Architectures 

RNN may have different architectures, each of which fulfills the need of a specific 

application. The variations of RNNs input and output sizes in different applications led to 

the emergence of a rich family of RNNs architectures. Below is a brief presentation of 

RNNs architectures.  

One-to-one neural network: 𝑇𝑥  = 𝑇𝑜  = 1. As illustrated in Figure 3.15, 𝑎(0)  is the 

activation at time step 0, 𝑥 and 𝑜 are the input and output vectors respectively. This is the 

vanilla mode of processing where no RNN is used. One-to-one network takes one input 

vector 𝑥 and generates one output vector 𝑜. This architecture is used in diverse applications 

such as image classification.  

One-to-many RNN: 𝑇𝑥 = 1 and 𝑇𝑜 > 1. Music generation is an example of one-to-many 

RNN where the task is to generate original musical compositions that humans expect to 

hear. Another application is image captioning in which a single image is processed, and 

the output is an annotation of that image. Figure 3.16 demonstrates One-to-many RNN 

architecture where the RNN takes one input which is image for image captioning 

application or maybe nothing as the case of music generation and generates output at each 

time step.  

Many-to-one RNN: 𝑇𝑥 > 1 and 𝑇𝑦 = 1. This architecture is useful for the task of sentiment 

classification where a sentence is classified as conveying negative or positive sentiment. 

For example, a text review is given as an input and the output is supposed to be an integer 

that represents the rating of the reviewed item according to the written review. One-to-one 

RNN is shown in Figure 3.17. The RNN takes input at each time step (a word in sentiment 

classification) and generates a single output (the rating).  

Many-to-many RNN (input and output have the same length): 𝑇𝑥 = 𝑇𝑜. A well-known 

application that uses this architecture is Named-entity recognition or NER. As the name 

suggests, NER seeks to locate named entities in a text and classify these names into a set 

of predefined categories such as organizations, person names, locations etc.  

The output would be the same input text where named entities are highlighted and 

annotated (Wikipedia, 2019). Figure 3.18 shows many-to-many RNN where the input is 

the same size as the output.  
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Figure 3.16: One-to-one RNN.  

Figure adapted from (Amidi & 

Amidi). 

 

 

Figure 3.17: One-to-many RNN.  

Figure adapted from (Amidi & Amidi). 

 

 

Figure 3.18: Many-to-one RNN. 

Figure adapted from (Amidi & Amidi). 

 

Figure 3.19: Many-to-many RNN, 𝑻𝒙 =  𝑻𝒐.  

Figure adapted from (Amidi & Amidi). 
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Many-to-many RNN (input and output have variable lengths): 𝑇𝑥 ≠  𝑇𝑜. The task of 

machine translation is one of the most famous applications that uses this architecture. A 

sentence is translated from the source language to the target language. Clearly, input and 

output sequences would not be of the same length. This architecture is illustrated in Figure 

2.19.   

 

 

 

 

 

 

 

 

 

 

 

 

3.10 Bidirectional Recurrent Neural Networks                                                                                       

All previously presented architectures process information in one direction, meaning that 

the hidden state 𝑎(𝑡) at any time step 𝑡  encapsulates information about the past 

𝑥(1), … , 𝑥(𝑡−1) and the present 𝑥(𝑡). However, some applications might need to process the 

whole sequence to output a prediction  𝑜(𝑡)  (Goodfellow et al., 2016). Consider the 

following example, which is taken from (Zhang et al., 2019). 

 

1. I am _____ 

2. I am _____ very hungry. 

3. I am _____ very hungry, I could eat three chickens. 

 

If the task were to fill the blanks, we might choose different words such as ‘happy’, ‘not’ 

and ‘very’. Apparently, the end of the sentence provides important information about 

which word to choose. A model that doesn’t make use of such information will lose its’ 

Figure 3.20: Many-to-many RNN, 𝑻𝒙 ≠  𝑻𝒐.  

Figure adapted from (Amidi & Amidi). 
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predictive power. Named-entity recognition NER is another example where longer-range 

context is critical (e.g. does Brown refer to a person or to the color?). To address the need 

of processing the whole sequence, Bidirectional RNNs (BRNNs) were invented (Schuster 

& Paliwal, 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

BRNNs have proven to be successful in many applications including handwriting 

recognition, speech recognition and bioinformatics (Goodfellow et al., 2016). Figure 4.8 

shows a BRNN. Unlike traditional RNN, BRNNs constitute of two RNNs. One is a forward 

RNN that processes the sequence in the forward direction and computes a forward state. 

The other is a backward RNN that processes the sequence in the backward direction and 

computes a backward state. Thus, BRNN computes two hidden states, forward and 

backward hidden states at each time step t.  For a given time step t, the mini-batch input is 

𝑥(𝑡) ∈ ℝ𝑏×𝑛 where 𝑏 refers to the number of examples in the mini-batch (batch size) and 

𝑛 refers to the number of features. Forward and backward hidden states are 𝑎→
(𝑡)

∈ ℝ𝑏×ℎ 

and 𝑎←
(𝑡)

∈ ℝ𝑏×ℎ where ℎ refers to the number of hidden units. At time step 𝑡, forward 

and backward hidden states (activations) are computed as follows: 

𝑎→
(𝑡)

= 𝜎1 (𝑊𝑎
𝑓
𝑎(𝑡−1) + 𝑊𝑥

𝑓
𝑥(𝑡) + 𝑏𝑎

𝑓
)                              (3.14) 

Figure 3.21 Bidirectional RNN. 
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𝑎←
(𝑡)

= 𝜎1 (𝑊𝑎
𝑏𝑎(𝑡−1) + 𝑊𝑥

𝑏𝑥(𝑡) + 𝑏𝑎
𝑏)                              (3.15) 

Where: 

 𝑥(𝑡) ∈ ℝ𝑏×𝑛       : mini-batch input at current time step t 

𝑎(𝑡) ∈ ℝ𝑏×ℎ       : hidden state (activation) at current time step t 

𝑎(𝑡−1) ∈ ℝ𝑏×ℎ    : hidden state (activation) at previous time step t-1 

𝑎→
(𝑡)

 ∈ ℝ𝑏×ℎ      : forward hidden state at current time step t 

𝑎←
(𝑡)

 ∈ ℝ𝑏×ℎ      : backward hidden state at current time step t 

𝑊𝑎
𝑓
 ∈ ℝ𝑛×ℎ , 𝑊𝑥

𝑓
 ∈ ℝℎ×ℎ ,  𝑊𝑎

𝑏 ∈ ℝ𝑛×ℎ and 𝑊𝑥
𝑏 ∈ ℝℎ×ℎ  : the weight matrices  

𝑏𝑎
𝑓

∈ ℝ1×ℎ and 𝑏𝑎
𝑏 ∈ ℝ1×ℎ  : the biases 

𝜎1 : activation function 

𝑏 : number of examples in the input mini-batch 𝑥(𝑡) (batch size)  

𝑛  : number of features 

ℎ  : number of hidden units 

𝑞  : number of output units  

Afterwards, forward and backward hidden states, 𝑎→
(𝑡)

 and 𝑎←
(𝑡)

 are concatenated to form 

𝑎(𝑡) ∈ ℝ𝑏×2ℎ.  

Finally, the output is computed as in traditional RNNs:  

𝑜(𝑡) = 𝜎2(𝑊𝑜𝑎
(𝑡) + 𝑏𝑜)                                     (3.16) 

Where:  
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 𝑜(𝑡) ∈ ℝ𝑏×𝑞   : output at time step t  

𝑊𝑜 ∈ ℝ2ℎ×𝑞    : weight matrix 

 𝑏𝑜 ∈ ℝ1×𝑞       : bias 

𝜎2                    : activation function 

  

3.11 Encoder-Decoder Sequence-to-Sequence Architecture  

Many applications involve processing sequences of variable lengths. Machine translation, 

video captioning, speech recognition, and question answering among many others may 

have input and output sequences of different lengths (Goodfellow et al., 2016). Two 

pioneering works were first to propose an RNN architecture that maps two sequences of 

variable-lengths, Cho K. et al., (2014b) and Sutskever et al., (2014).  

The authors of both works referred to the proposed architecture as encoder-decoder or 

sequence-to-sequence respectively (Goodfellow et al., 2016). Generally, a sequence-to-

sequence (Seq2Seq) or encoder-decoder model aims at learning to convert an input 

sequence from one domain (e.g. source language) to an output sequence from another 

domain (e.g. target language) (Chollet, 2017b). 

A (Seq2Seq) model is composed of two RNNs:   

a) An encoder that takes the input sequence element by element and produce a fixed-

length vector, namely the context vector 𝐶 . Typically, the last hidden state of the 

encoder is used as the context vector (Goodfellow et al., 2016). 

b) A decoder that uses the context vector 𝐶  either as its initial hidden state or by 

connecting it to the hidden units at each timestep. Both ways can be used in 

combination (Goodfellow et al., 2016). 
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In fact, the encoder-decoder architecture is a many-to-many RNN where the length of the 

input sequence doesn’t necessarily match that of the output sequence, 𝑇𝑥  ≠  𝑇𝑜 . The 

encoder is a regular RNN that processes the input sequence 𝑥 sequentially and updates its 

hidden state (activation) 𝑎𝑑
(𝑡)

 at each timestep t as follows (Cho K. , et al., 2014b):  

 

𝑎𝑒
(𝑡)

=  𝑓(𝑎𝑒
(𝑡−1)

, 𝑥(𝑡))                                           (3.18) 

 

When the encoder scans the whole input sequence, the activation of the last timestep t 

represents the context vector 𝐶. Ideally, the context vector summarizes the entire input 

sequence (Cho K. , et al., 2014b). However, the decoder’s activation is slightly different, 

since its activation 𝑎𝑑
(𝑡)

 at timestep t depends on the previous activation 𝑎𝑑
(𝑡−1)

, the previous 

output 𝑜(𝑡−1), and the context vector 𝐶 as follows (Cho K. , et al., 2014b): 

 

𝑎𝑑
(𝑡)

=  𝑓(𝑎𝑑
(𝑡−1)

, 𝑜(𝑡−1), 𝐶)                                (3.19) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Encoder-decoder architecture. 

Figure adapted from (Goodfellow et al., 2016). 
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3.12 Attention Mechanism  

The notion of attention has gained popularity in diverse learning applications. In the 

context of machine translation, the work of Bahdanau et al., (2015) was the first to exploit 

the power of attention (Luong et al., 2015). Authors of Bahdanau et al., (2015) argue that 

the use of a fixed-length context vector in Seq2Seq models is a bottleneck, especially for 

long sequences. Instead of putting the burden on the context vector alone to encode the 

entire input sequence, the attention allows the decoder at every step of decoding to 

selectively focus on (attend to) different parts of the input sequence that are more relevant 

to predicting the current part of the output sequence.  

Unlike attention decoder, classic decoder ignores all hidden states of the encoder and uses 

the last hidden state (context vector) alone during decoding which is obviously a waste of 

precious information about the input sequence encoded by the overlooked hidden states. 

However, attention decoder takes all hidden states into consideration. Based on the 

architecture used by Bahdanau et al., (2015), the work of Luong et al., (2015) suggested a 

simpler version of attention which has achieved the state-of-the-art results in the neural 

machine translation task. Below is an illustration the attention mechanism as described in 

Luong et al., (2015). 

At every decoding step 𝑡: 

1) Calculate energy  𝑒(𝑗): 

𝑒(𝑗) = 𝑓1(𝑎𝑑
(𝑡−1)

, 𝑎𝑒
(𝑗)

)                                       (3.20) 

Where: 

𝑒(𝑗)        :  𝑗𝑡ℎ energy 

𝑎𝑑
(𝑡−1)

    : previous decoder’s activation 

𝑎𝑒
(𝑗)

        :  𝑗𝑡ℎ encoder’s activation 

𝑓1           : a linear layer 

2) Calculate attention weights 𝑎𝑤(𝑗) by taking the Softmax of the 𝑗𝑡ℎ energy 𝑒(𝑗) over 

all energies: 

𝑎𝑤(𝑗) = 
𝑒𝑥𝑝 (𝑒(𝑗))

∑ 𝑒𝑥𝑝(𝑒(𝑘))𝑇
𝑘=1

                                         (3.21) 

Where: 
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𝑇   : length of the source sequence 

3) Calculate the context vector 𝑐: 

𝑐 =  ∑ 𝑎𝑤(𝑗)𝑎𝑒
(𝑗)𝑇

𝑗=1                                            (3.22) 

4) Calculate the current decoder’s activation 𝑎𝑑
(𝑡)

: 

𝑎𝑑
(𝑡)

   =  𝑟𝑛𝑛(𝑎𝑑
(𝑡−1)

, 𝑜𝑑
(𝑡−1)

, 𝑐)                                     (3.23)     

Where: 

𝑎𝑑
(𝑡−1)

  : previous decoder’s activation 

𝑜𝑑
(𝑡−1)

  : previous decoder’s output 

𝑐          : current context vector 

𝑟𝑛𝑛     : RNN function 

5) Calculate the decoder’s current output 𝑜𝑑
(𝑡)

 depends on 3 quantities as follows: 

𝑜𝑑
(𝑡) = 𝑓2(𝑜𝑑

(𝑡−1)
, 𝑎𝑑

(𝑡)
, 𝑐)                                                 (3.20) 

Where: 

𝑓2   : a linear layer 
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Chapter 4  

MATERIALS AND METHODS 

4.1  Materials  

4.1.1 Human3.6 Dataset  

As mentioned earlier, Human3.6 dataset was used in the experimentation of this work as 

in previous works. Currently, Human3.6 is the largest publicly available motion dataset 

with 3.6 million 3D human poses (Ionescu et al., 2011; Ionescu et al., 2014). It has 50Hz 

framerate - 50 frames per second (fps) and it provides motion data for 7 professional actors 

(subjects) performing 15 different activities. Human3.6 uses an articulated skeleton with 

32 joints. Furthermore, Human3.6 provides motion data in several formats including image 

data, time-of-flight data, scanner data, and pose data. Primarily, pose data includes two 

parametrizations, joint positions and joint angles. As the adopted dataset in this work comes 

in pose data format, this format will be explored in more detail in the next section. 

4.1.2 Human3.6 Pose Parametrizations 

Motion data parametrization is the task of converting motion data raw format to a 

numerical format suitable for data analysis (Du, Manns, Herrmann, & Fischer, 2016).  

Originally, Human3.6 dataset is available in two parametrizations, relative 3D joint 

positions (R3DJP) and Kinematic representation (KR). These representations are common 

in the literature, each one has its own strengths and weaknesses. (R3DJP) representation 

uses the 3D cartesian positions directly to represent the joints of the skeleton. This 

representation doesn’t preserve the skeleton structure and thus it requires constraints to be 

imposed on the skeleton (bone-length constraints) to make sure that the distances between 

joints remain fixed throughout the animation (Komura, Habibie, Schwarz, & Holden, 2017; 

Du et al., 2016).  
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Imposing these constraints comes with its own cost as it requires non-linear optimization 

(Komura et al., 2017). On the other hand, (KR) representation depends on the angles of the 

joints rather than their positions. Specifically, (KR) uses the translation (position) and 

orientation of the root joint as well as the relative orientations of other joints (Du et al., 

2016). (KR) connects joints through a parent-child relationship to form an articulated 

skeleton. The movement of a joint is relative to its parent. (KR) requires forward 

kinematics to obtain 3D joints positions which involves non-linear transformations and 

trigonometric functions (Komura et al., 2017). Unlike (R3DJP), (KR) preserves the 

structure of the skeleton and thus it is most commonly used in motion analysis tasks. Also, 

it is the standard representation for most (MOCAP) datasets (Du et al., 2016). The dataset 

adopted in this work uses (KR) representation.  

4.1.3 Human3.6 Preprocessing 

Following earlier works (Jain et al., 2016; Martinez et al., 2017; Fragkiadaki et al., 2015; 

Pavllo et al., 2019), this work uses a preprocessed version of H3.6 dataset provided by (Jain 

et al., 2016). The preprocessing of the dataset follows the approach of (Taylor et al., 2007) 

in which the original raw angles were converted from Euler angle to exponential maps 

representation alongside with a special preprocessing applied to the root joint. The 

preprocessed H3.6 dataset provides motion data for 7 professional actors or subjects 

performing 15 different activities including: walking, eating, smoking, discussion, 

directions, greeting, phoning, posing, purchases, sitting, sitting down, taking photo, 

waiting, walking dog and walking together. The motion data of every subject contains 15 

actions where each action contains 2 sub-actions, i.e. the same action is performed twice 

by the subject resulting in 30 actions for each subject. The dataset is arranged as shown in 

Figure 4.1. The motion data for each subject is stored in a folder such that the name of the 

folder consists of a capital “S” followed by the number of the subject. For example, the 

folder of the 1st subject has the name “S1”. Other folders are given names in the same 

manner.  
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Figure 4.1: Preprocessed H3.6 dataset arrangement.   

 

Figure 4.2: Part of a motion data file from the adopted dataset.    
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           Table 3: Joints of Human3.6 skeleton.  

             The ID, name, parent and children of each joint are shown. 

 

ID Name parent Children 

0 Hips 0 1, 6, 11 

1 Right Up Leg 0 2 

2 Right Leg 1 3 

3 Right Foot 2 4 

4 Right Toe Base 3 5 

5 Site 4 - 

6 Left Up Leg 0 7 

7 Left Leg 6 8 

8 Left Foot 7 9 

9 Left Toe Base 8 10 

10 Site 9 - 

11 Spine 0 12 

12 Spine 1 11 13, 16, 24 

13 Neck 12 14 

14 Head 13 15 

15 Site 14 - 

16 Left Shoulder 12 17 

17 Left Arm 16 18 

18 Arm 17 19 

19 Left Hand 18 20, 22 

20 Left Hand Thumb 19 21 

21 Site 20 -  

22 Left wrist End 19 23 

23 Site 22 - 

24 Right Shoulder 12 25 

25 Right Arm 24 26 

26 Right Fore Arm 25 27 

27 Right Hand 26 28, 30 

28 Right Hand Thumb 27 29 

29 Site 28 - 

30 Right wrist End 27 31 

31 Site 30 - 
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Following previous works, subjects 1, 6, 7, 8, 9 and 11 were used for training and subject 

5 was used for testing. As mentioned before, every subject has 2 sub-actions for the same 

action. For example, subject 1 has two files for the “directions” action, directions_1.txt and 

directions_2.txt. Figure 2.4 shows part of a motion data in the adopted dataset. For any 

motion data file in the dataset, “directions_1.txt” for example, the rows represent the 

number of frames of motion which vary from one file to another whereas the columns 

represent joint angles in exponential maps representation. The file resembles the comma-

separates-values (CSV) format in which the comma is used as a delimiter. Every 3 elements 

in a row is related to a single joint except the first 3 elements, i.e. the first 3 elements 

Figure 4.3: : H3.6 skeleton where joints are numbered according to their IDs given 

in Table 3. 
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represent 3D position information of the root joint “Hips”, the next 4 elements represent 

3D joint angle information of the root joint and the next 4 elements represent 3D joint angle 

information of the next joint in the hierarchy “Right Up Leg” and so forth. The order in 

which joint angles appear corresponds to the order of joints in Table 3. As the angles are 

given in exponential maps representation, the total number of columns is 69 for all files. 

This is because the total number of joints is 32 where each joint angle is represented by 3 

elements thus the total number of columns is the number of joints multiplied with 3 in 

addition to the first 3 elements of the root 3D position, i.e. (number of joint = 32) * 

(exponential maps elements = 3) + (root 3D position =3) = 69. In this work, Human3.6 

dataset is down sampled by 2 as in previous works i.e. frame rate becomes 25 fps instead 

of 50 fps. 

 

4.2 Methods 

Before breaking down the architecture into its constituting building blocks, it is useful to 

introduce some important ideas as a preface to the incoming material. Some important 

terminologies are given below. 

• Sequence: A set of sequential frames of motion.  

• Source sequence (input sequence): The sequence that will be provided as input to the 

encoder during training and testing.  

• Target sequence (output sequence): The sequence that the decoder will predict. 

• Teacher forcing: Training the decoder by feeding the ground-truth at every decoding 

step (the ground-truth of the decoder’s output of the previous timestep is fed as input 

to the next timestep).  

• Sampling: Training the decoder by feeding its own predictions at every decoding step 

(the decoder’s output of the previous timestep is fed as input to the next timestep).   

• Scheduled sampling: A combination of teacher forcing and sampling in which the 

decoder is fed the ground-truth at some steps and its own predictions at other steps. 

• Time major: The data is time major when its 0th dimension is the length of the sequence 

be it the source or target sequence. It’s called time major because the length of the 

sequence represents the number of timesteps.  
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• Batch major: The data is time major when its 0th dimension is the batch size.  

Since the motion dataset is down sampled to 25 frames/second, feeding 50 frames to the 

model is equivalent to feeding 2 seconds of motion and predicting 10 frames is equivalent 

to predicting 400 milliseconds. 

 

 

 

 

 

 

 

 

 

 

During training, the Seq2Seq model needs 3 sequences which are extracted from the 

dataset. The extraction of theses sequences is illustrated in Figure 4.4. These sequences are 

as follows: 

a) encoder-inputs: The sequence that is fed to the encoder during training as well as 

testing. All frames of the source sequence are taken as encoder-inputs except the last 

frame which is fed to the decoder at the first step of decoding. Hence, encoder-inputs 

is 1 frame less than the source sequence.  

b) decoder-inputs: The sequence that is fed as input to the decoder. During training, this 

sequence will be always the ground-truth if pure teacher forcing is used. If pure 

sampling is used, it will be always decoder’s predictions. However, if scheduled 

sampling is used, decoder-inputs is either the ground-truth or the decoder’s predictions. 

Figure 4.4: The division of encoder-inputs, decoder-inputs and decoder-

outputs sequences. 

Number of encoder-inputs frames = (input-sequence length) - 1. Number of 

decoder-inputs frames = output-sequence length. Number of decoder-outputs 

frames = output-sequence length. The decoder-outputs sequence is shifted one 

timestep ahead of the decoder-inputs. 
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This is applicable only during training, during testing however, decoder-inputs is 

always decoder’s predictions. decoder-inputs has the same length of the target 

sequence. 

c) decoder-outputs: The decoder’s desired output (ground-truth) that the decoder’s 

prediction will be compared against. decoder-outputs length is the same as the source 

sequence length. decoder-outputs sequence is shifted one timestep ahead of the 

decoder-inputs. 

The abovementioned sequences namely encoder-inputs, decoder-inputs, and decoder-

outputs are supplied to the model ahead of training. During testing, encoder-inputs is only 

the sequence to be supplied to the model. 

4.2.1 Model Architecture 

This work uses a Seq2Seq model with an encoder and a decoder as shown Figure 4.5. The 

encoder can be either a unidirectional RNN or a bidirectional RNN as shown in Figures 

4.6 and 4.7 respectively. However, the decoder is always a unidirectional RNN with 

attention which either uses teacher forcing or sampling during training as shown in Figures 

4.8 and 4.9 respectively.  
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At every iteration, the Seq2Seq model starts training by supplying the encoder with the 

source sequence (encoder-inputs) which is shown as green skeletons in Figure 4.5. At 

every step of encoding, the encoder will consume the provided sequence frame by frame 

and produce a hidden state (activation) at each step. Upon finishing the encoding of the 

source sequence, the encoder provides two outputs; the encoder-outputs which comprises 

the hidden states of all steps and the hidden which is the hidden state of the last step. Since 

this Seq2Seq model uses an attention decoder, both hidden and encoder-outputs are 

needed. However, when a classic decoder is used (one that doesn’t employ any form of 

attention), only hidden is needed for decoding hence encoder-outputs is discarded. 

At first step of decoding, the attention decoder takes 3 input sequences namely encoder-

outputs, hidden and the last frame of the source sequence (serves as decoder-inputs). The 

hidden is used to initialize the hidden state of the decoder thus, the decoder is conditioned 

on the source sequence since hidden is supposed to encode the whole source sequence. In 

the subsequent steps of decoding, the hidden state of the decoder is updated, and decoder-

inputs becomes either the previous prediction (sampling) or the ground-truth of the 

previous output (teacher forcing). The role of encoder-outputs is to obtain attention 

weights which will be illustrated in detail later.  

4.2.2 Encoder 

As mentioned earlier, this work has experimented with a unidirectional encoder and its 

bidirectional counterpart to assess their performance quantitatively. Both encoder’s 

architectures used in this work have a single GRU layer and both will be explored in this 

section. Figure 4.6 illustrates a unidirectional encoder, its inputs (encoder-inputs), and its 

outputs (encoder-outputs and hidden). The dimensions of inputs and outputs are shown in 

time major format where S is the length of source sequence, B is the batch size and H is he 

hidden size. Since the unidirectional encoder processes the source sequence in one 

direction, it produces a single hidden state for the last step (hidden) and a single hidden 

state for every step (encoder-outputs).  

Figure 4.5: The Seq2Seq architecture used in this work. 
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However, the hidden of the bidirectional encoder shown in Figure 4.7 contains 2 hidden 

states; the last step’s hidden state of the forward RNN (blue blocks in Figure 4.7), and the 

first step’s hidden state of the backward RNN (purple blocks in Figure 4.7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: A unidirectional encoder. 

 S = length of source sequence, B = batch size, H = hidden size, and N = input size 

(No. of features). 

Figure 4.7: A bidirectional encoder.  

S = length of source sequence, B = batch size, H = hidden size, and N = input size 

(No. of features). 



86 

 

The forward RNN processes the source sequence in the original order and the backward 

RNN processes the sequence in the reversed order. Ultimately, forward and backward 

hidden states (blue and purple squares) are combined (added) and the last dimension of 

hidden is reduced consequently to become like that of the unidirectional encoder. The same 

is true for encoder-outputs produced by the bidirectional encoder. Reducing the 

dimensions of the bidirectional encoder’s outputs is crucial since the unidirectional 

decoder expects the dimensions of hidden and encoder-outputs to be like those of the 

unidirectional encoder. 

4.2.3 Decoder 

 The decoder used in the Seq2Seq model of this work is a unidirectional attention decoder. 

Figures 4.8 and 4.9 show the same attention decoder. The blue diamond represents the 

steps of attention which will be illustrated later whereas the red trapezoid represents a 

projection layer that projects the output of the GRU cell from hidden size back to input 

size. Figure 4.8 shows the attention decoder when trained with teacher forcing approach 

for a single iteration where the decoder is fed the ground-truth (green skeleton) at every 

decoding step. Figure 4.9 shows the same attention decoder when trained with sampling 

approach for a single iteration where the decoder is fed the ground-truth (green skeleton) 

at the first step of decoding only and is fed its own predictions (blue skeleton) at the 

remaining steps.  

Pure teacher forcing is when the attention decoder sees ground-truth in all training 

iterations whereas pure sampling is when the attention decoder sees its own predictions in 

all training iterations. Scheduled sampling is when the decoder sees the ground-truth in 

some iterations and its own predictions in others. It is possible for the decoder that uses 

scheduled sampling to have different probabilities for teacher forcing  and  sampling e.g. 

60% of teacher forcing and 40% of sampling.  
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Figure 4.8: Attention decoder with sampling.  

T = length of target sequence, B = batch size, H = hidden size, and N = input size (No. of features). 

Figure 4.9: Attention decoder with sampling.  

T = length of target sequence, B = batch size, H = hidden size, and N = input size (No. of features). 
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4.2.4 Model Implementation  

4.2.4.1  High-level overview of the implementation 

The data preprocessing part is mostly adopted from Martinez et al., (2017) whereas the 

attention implementation is adopted from (Robertson, 2019). Below are the steps of the 

human motion prediction task as implemented in this work.   

1. Hyperparameters initialization 

Since the Seq2Seq model requires a predefined set of hyperparameters, the following 

variables are defined upfront creating the model:   

• Length of the source sequence: number of frames to feed into the encoder. 

• Length of the target sequence: number of frames that the decoder must predict. 

• Size of the hidden layer: number of hidden units for each layer. 

• Number of hidden layers. 

• Maximum L-2 norm: threshold after which the gradient is clipped. 

• Batch size. 

• Learning rate. 

• Learning decay factor: multiplicative factor to decay the learning rate. 

• Learning rate decay step: number of steps after which to decay the learning rate. 

• Teacher forcing ratio: 0 means the decoder uses pure sampling for training, 0.5 means 

it uses scheduled sampling and 1 means it uses pure teacher forcing.   

• Number of iterations: number of training iterations.  

• Evaluate step: number of iterations to after which evaluation takes place.  

Usually, it is useful to reduce the learning rate as the training progresses. This is known as 

learning rate decay or scheduling. The intuition behind this idea is that as the training 

progresses, the model optimizes its parameters and becomes closer to the optimal solution 

thus reducing the learning rate prevents overshooting the minima and helps the model to 

converge. The decay takes place every (Learning rate decay step) according to the 

following equation: 

 𝛼 =  𝛼̀𝛾  (4.1) 
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Where: 

𝛼         : new learning rate 

𝛼̀         : old learning rate 

𝛾         : learning rate decay factor 

 

 

 

 

 

 

 

 

 

 

 

2. Data preprocessing 

The same preprocessing is applied to data during training and testing. The steps of the 

preprocessing are highlighted in Figure 4.10. These steps are presented in more detail 

below.  

 

• Load data: Convert data from (CSV) format to float Numpy array. 

• Down-sample data by 2: Take even rows and discard odd rows.  

• Add one-hot encoding: Append the one-hot encoding to the data.  

Figure 4.10: Data preprocessing stages. 
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• Compute normalization statistics: Find the mean and the standard deviation (std) of 

the whole dataset.  

• Ignore dimensions with very small 𝒔𝒕𝒅: Columns with 𝑠𝑡𝑑 <  1𝑒 − 4 will not be 

used in the training since they don’t provide helpful information. 

• Normalize data: Subtract the mean and divide by the std.  

 

3. Extract encoder-outputs of SRNN seeds 

The same ground truth sequences that were used for evaluation and testing by Jain et al., 

(2016) in their proposed architecture, that is the structural recurrent neural network 

(SRNN), are un-normalized and converted to Euler angles to be used in evaluation and 

testing later. This will ensure that the results are comparable to previous researches. i.e. 

this stage will reproduce the same SRNN’s seed sequences (the ground truth of the 

expected output sequences) taken from the testing set, i.e. subject 5. As mentioned before, 

subject 5 was used in previous works for testing. This stage constitutes of the following 

steps:  

a) Extract SRNN seed sequences: 

For each action of subject 5, the total number of seed sequences is 8, in which 4 sequences 

are taken from sub-action 1 and the other 4 are taken from sub-action 2. Figure 4.11 shows 

how the seed sequences are extracted from any sub-action of subject 5. Each seed sequence 

is then assigned to encoder-inputs, decoder-inputs and decoder-outputs as shown 

previously in Figure 4.4. At this point, only decoder-outputs are needed as they will be 

used in evaluation later to be compared against the model predictions.   

b) Un-normalize SRNN decoder-outputs 

The decoder-outputs will be un-normalized so that it can be used in evaluation.  

Un-normalization recover original data from the normalized data as follows: 

• Recover the ignored dimensions. 

• Multiply by the standard deviation of motion data 

• Add the mean of motion data 
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c) Convert SRNN decoder-outputs to Euler angle representation 

SRNN decoder-outputs are converted from exponential maps to Euler angles. 

 

4. Start the training loop 

Before starting the training loop, the following steps are executed: 

 

1. Get a random batch from the training set consisting of encoder-inputs, decoder-inputs 

and decoder-outputs. These sequences follow the same pattern shown in Figure 4.5. 

The dimensionality of each sequence is given below: 

 encoder-inputs =  

    (batch size, input sequence length – 1, number of normalized of joint angles). 

Figure 4.11: The extraction of SRNN sequences. 

The blue block is any sub-action of subject 5. The purple block starts at frame number = SEED and ends at frame 

number = SEED + (input sequence length). The yellow block starts at frame number = SEED + (input sequence length) 

+ 1 and ends at frame number = SEED + (input sequence length) + 1 + (output sequence). 
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       decoder-inputs =  

    (batch size, output sequence length   ,  number of normalized of joint angles). 

       decoder-outputs =  

    (batch size, output sequence length   ,   number of normalized of joint angles). 

 

Figures 4.12 and 4.13 illustrate the dimensionality of the abovementioned sequences. 

The decoder-outputs is shifted one timestep ahead of the decoder-inputs as shown 

previously in Figure 4.11.  

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs. 

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden state of 

the last step). 

4. If the random number < teacher forcing ratio: 

1. For every element in target-sequence: 

❖ Pass encoder-outputs, decoder-hidden and decoder-inputs (will be always 

the ground-truth since it uses teacher forcing). 

❖ Perform attention steps as shown in Figure 4.12 

❖ Get prediction and updated decoder-hidden 

❖ Add prediction to previous predictions 

 

5. else: 

2. For every element in target-sequence: 

❖ Feed the decoder with encoder-outputs, decoder-hidden and decoder-

inputs (it will be the ground-truth only at 1st steps but for other steps it will 

be the prediction since the decoder uses sampling). 

❖ Perform attention steps as shown in Figure 4.12 

❖ Get prediction and updated decoder-hidden 

❖ Add prediction to previous predictions 

 

6. step-loss = (predictions – decoder-outputs)2 

7. step-loss = mean(step-loss) 

8. Backward propagate step-loss 

9. Perform optimizer step for encoder and decoder 
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10. Print the step loss every k steps. 

11. Do learning decay every l steps. 

 

If this is a validation step (current step % m == 0): 

• Validate on random sequences: 

1. Get a random batch exactly as done previously under the training step but this 

time the batch is taken from testing data i.e. subject 5. 

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs. 

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden 

state of the last step). 

4. For every element in target-sequence: 

❖ Feed the decoder with encoder-outputs, decoder-hidden and decoder-

inputs (it will be the ground-truth only at 1st steps but for other steps it will 

be the prediction since the decoder uses sampling). 

❖ Perform attention steps as shown in Figure 4.12 

❖ Get prediction and updated decoder-hidden 

❖ Add prediction to previous predictions  

5. step-loss = (predictions – decoder-outputs)2 

6. step-loss = mean(step-loss) 

7. validation-loss = step-loss 

 

• Validate on SRNN sequences: 

For every action: 

1. Get the 8 SRNN seed sequences as done previously in step 3 of the training 

phase, but this time encoder-inputs, decoder-inputs and decoder-outputs are 

needed.  

2. Feed the encoder with encoder-inputs, decoder-inputs and decoder-outputs. 

3. Get encoder-outputs (hidden states of all steps) and encoder-hidden (hidden 

state of the last step) 

4. For every element in target-sequence: 
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❖ Feed the decoder encoder-outputs, decoder-hidden and decoder-inputs (it 

will be the ground-truth only at 1st steps but for other steps it will be the 

prediction since the decoder uses sampling) 

❖ Perform attention steps as shown in Figure 4.14 

❖ Get prediction and updated decoder-hidden 

❖ Add prediction to previous predictions 

5. step-loss = (predictions  –   decoder-outputs)2 

6. step-loss = mean(step-loss) 

7. SRNN-loss = step-loss 

8. Return the 8 predictions of the model. 

9. Un-normalize the predictions. 

10. Convert the predictions from exponential maps to Euler angles. 

11. Obtain the mean-squared-error between the ground truth and the predictions 

as shown in Figure 4.15. 

o For every sequence, compute the squared sum of errors for every 

frame (each sequence will have 1 value for every frame). 

o Compute the mean of the squared sums for all the 8 sequences. 

 

5. Print the results 

The following information are printed to the screen: 

For every n steps: 

• Current step. 

• Current step loss (training loss). 

For every m steps: 

• Global step. 

• Learning rate. 

• Step time in milliseconds (total steps time / number of steps). 

• Average training loss(training loss / number of steps). 

• SRNN loss. 
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Figure 4.12: encoder-inputs dimensions 

Figure 4.13: decoder-inputs and decoder-outputs 

dimensions. 
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Figure 4.14: Attention steps. 
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Figure 4.15: Finding the error between the ground truth and the prediction for a single action. 

 



98 

 

Chapter 5  

EXPERIMENTS AND RESULTS 

5.1  Experimental Setup 

5.1.1 Environmental Specifications of the Experiment  

a) Hardware 

The experiments were conducted using Google Collaboratory, a research project of Google 

based on Jupyter notebook environment that’s connected to a cloud-base runtime with a 

Tesla GPU. Table 4 shows environmental specifications of the experiment.       

Hardware Specifications 

GPU 1xTesla K80, compute 3.7, having 2496 CUDA cores, 12GB GDDR5 

VRAM 

CPU 2xsingle core hyper threaded Xeon Processors @2.3Ghz  

RAM ~12.6 GB Available 

Disk ~33 GB Available 
  Table 4: Hardware specifications. 

 

b) Software 

Table 5 presents software specifications of the experimentations.   

Software Description Version 

Python General-purpose programming 

language 

3.6.9 

PyTorch (Paszke, et al., 2019) Deep learning framework 1.4.0 
Table 5: Software specifications. 
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5.1.2 Experimentations of this Work 

This work explores quantitatively the performance of the following 4 variations of the 

Seq2Seq model: 

• Uni-Enc-50: Unidirectional encoder and attention decoder with 50% teacher forcing 

(the decoder sees ground-truth 50% of the time – scheduled sampling). 

• Bi-Enc-50: Bidirectional encoder and attention decoder with 50% teacher forcing 

(the decoder sees ground-truth 50% of the time – scheduled sampling). 

• Uni-Enc-0: Unidirectional encoder and attention decoder with 0% teacher forcing 

(the decoder sees its own predictions all the time – sampling). 

• Uni-Enc-100: Unidirectional encoder and attention decoder with 100% teacher 

forcing (the decoder sees ground-truth all the time – teacher forcing).  

 

One of this work’s models namely Bi-Enc-50, uses a bidirectional encoder while other 

models use unidirectional encoders. However, common to all models is the architecture of 

the attention decoder. The abovementioned models differ in the way the decoder is trained. 

The number appended to the name of each model signifies the probability that the decoder 

is fed ground-truth or its own predictions during training. During training, the decoder in 

Uni-Enc-50 and Bi-Enc-50 models is fed the ground-truth 50% of the time and its own 

predictions 50% of the time. This is approach is known as scheduled sampling. For Uni-

Enc-0 model, the decoder is never fed the ground-truth, instead, it is fed its own predictions 

all the time which is a pure sampling approach. However, the decoder of Uni-Enc-100 

model is fed the ground-truth all the time i.e. it is trained through teacher forcing approach. 

The motivation behind changing the percentages is to test the impact of different 

approaches of training including teacher forcing, scheduled sampling, and sampling on the 

performance. According to Martinez et al., (2017), training the decoder with pure teacher 

forcing may lead a network that is unable to recover from its own mistakes. Surprisingly, 

the findings of the experimentations done by this work are neutral and don’t signify any 

difference between these approaches.  
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a) Hyperparameters 

For all models, the hyperparameters used in the experimentations are given in Table 6. 

These are supplied by the user.   

b) Architecture and algorithm implementation details 

All experiments are conducted using a Seq2Seq architecture with a single GRU layer for 

the encoder and the decoder. The optimization algorithm is the Stochastic gradient descent 

(SGD) and the cost function is the Mean squared error (MSE). During training, the  

 

Hyperparameter Value 

Learning rate 0.005 

Learning rate decay factor 0.95 

Number of steps after which the learning rate is decayed 10.000 

Maximum L-2 norm after which the gradient is clipped 5 

Batch size 16 

Number of iterations 100.000 

Number of hidden units 1024 

Number of layers 1 

Length of the input sequence - number of frames to be fed to 

the encoder 

50 

Length of the output sequence – number of frames to be 

predicted by the decoder 

25 

Table 6: Model’s hyperparameters.  
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Architecture Seq2Seq 

Encoder Unidirectional  or bidirectional RNN 

Decoder Unidirectional RNN with attention 

RNN cell Gated recurrent unit (GRU) 

Additional techniques Residual connections 

Cost function Mean squared error (MSE) 

Optimization algorithm  Stochastic gradient descent (SGD) 

Table 7: Model’s architectural and algorithmic details. 

  

5.1.3 Results  

Following previous works, mean errors are shown in Euler angles after 80ms, 160ms, 

320ms and 400ms of motion. i.e. after 2, 4, 8 and 10 frames since the frame rate is 25 fps. 

Furthermore, the errors of this works models are also shown after 560ms and 1000ms i.e. 

after 14 and 25 frames respectively. The models of this work are compared against the 

following models: 

• ERD: Encoder-Recurrent-Decoder by Fragkiadaki et al., (2015). 

• LSTM-3LR:  3-layer long short-term memory network by Fragkiadaki et al., (2015). 

• SRNN: Structural recurrent neural network by Jain et al., (2016). 

• Res. sup.: Residual decoder with a unidirectional encoder by (Martinez et al., 2017). 

• AGED w/ adv+geo: Adversarial geometry-aware encoder-decoder with frame-wise 

geodesic loss by Gui wt al., (2018). 

Tables 8 and 9 show errors of all abovementioned models on walking, eating, smoking, 

and discussion actions. Tables 10, 11, 12, 13, 14, and 15 show errors for last two models 

since earlier models have not been tested on the remaining actions. The lowest error is 

shown in bold and the second lowest error is shown underlined. Table 15 shows average 

errors on all actions.  
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 Walking Eating 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

ERD 0.93 1.18 1.59 1.78 - - 1.27 1.45 1.66 1.80 - - 

LSTM-3LR 0.77 1.00 1.29 1.47 - - 0.89 1.09 1.35 1.46 - - 

SRNN 0.81 0.94 1.16 1.30 - - 0.97 1.14 1.35 1.46 - - 

Res. sup. 0.27 0.47 0.67 0.73 - - 0.23 0.39 0.62 0.78 - - 

AGED w/ 

adv+geo 
0.22 0.36 0.55 0.67 - - 0.17 0.28 0.51 0.64 - - 

Uni-Enc-50 0.22 0.21 0.24 0.24 0.22 0.24 0.25 0.23 0.20 0.21 0.20 0.25 

Bi-Enc-50 0.22 0.21 0.23 0.24 0.23 0.24 0.19 0.20 0.20 0.19 0.19 0.23 

Uni-Enc-0 0.22 0.22 0.25 0.26 0.25 0.25 0.22 0.21 0.20 0.20 0.19 0.25 

Uni-Enc-100 0.23 0.21 0.23 0.23 0.23 0.23 0.21 0.19 0.18 0.19 0.18 0.24 

Table 8: Mean squared errors in Euler angles of discussion and smoking actions. 

  

 Smoking Discussion 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

ERD 1.66 1.95 2.35 2.42 - - 2.27 2.47 2.68 2.76 - - 

LSTM-3LR 1.34 1.65 2.04 2.16 - - 1.88 2.12 2.25 2.23 - - 

SRNN 1.45 1.68 1.94 2.08 - - 1.22 1.49 1.83 1.93 - - 

Res. sup. 0.32 0.59 0.99 1.09 - - 0.33 0.61 1.05 1.15 - - 

AGED w/ 

adv+geo 
0.27 0.43 0.82 0.84 - - 0.27 0.56 0.76 0.83 - - 

Uni-Enc-50 0.33 0.34 0.40 0.30 0.30 0.36 0.23 0.29 0.24 0.25 0.24 0.23 

Bi-Enc-50 0.29 0.29 0.38 0.26 0.24 0.35 0.25 0.31 0.25 0.26 0.25 0.23 

Uni-Enc-0 0.28 0.32 0.38 0.28 0.27 0.36 0.29 0.33 0.29 0.29 0.24 0.22 

Uni-Enc-100 0.31 0.34 0.41 0.30 0.27 0.35 0.27 0.27 0.24 0.24 0.25 0.24 

Table 9: Mean squared errors in Euler angles of discussion and smoking actions. 
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 Directions Greeting 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.26 0.47 0.72 0.84 - - 0.75 1.17 1.74 1.83 - - 

AGED w/ 

adv+geo 
0.23 0.39 0.63 0.69 - - 0.56 0.81 1.30 1.46 - - 

Uni-Enc-50 0.25 0.23 0.23 0.20 0.21 0.21 0.28 0.27 0.29 0.30 0.40 0.33 

Bi-Enc-50 0.25 0.22 0.24 0.20 0.20 0.22 0.31 0.25 0.25 0.30 0.40 0.33 

Uni-Enc-0 0.24 0.23 0.22 0.19 0.21 0.20 0.31 0.26 0.27 0.29 0.40 0.32 

Uni-Enc-100 0.24 0.23 0.22 0.19 0.22 0.22 0.31 0.26 0.27 0.28 0.36 0.31 

Table 10: Mean squared errors in Euler angles of directions and greeting actions. 

 Phoning Posing 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.23 0.43 0.69 0.82 - - 0.36 0.71 1.22 1.48 - - 

AGED w/ 

adv+geo 
0.19 0.34 0.50 0.68 - - 0.31 0.58 1.12 1.34 - - 

Uni-Enc-50 0.52 0.42 0.86 0.86 0.41 0.30 0.42 0.37 0.36 0.33 0.44 0.35 

Bi-Enc-50 0.54 0.48 0.88 0.90 0.44 0.32 0.40 0.34 0.31 0.32 0.37 0.36 

Uni-Enc-0 0.53 0.47 0.87 0.88 0.43 0.32 0.38 0.35 0.33 0.34 0.39 0.37 

Uni-Enc-100 0.58 0.48 0.87 0.88 0.42 0.30 0.40 0.36 0.30 0.30 0.40 0.36 

Table 11: Mean squared errors in Euler angles of phoning and posing actions. 
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 Purchases Sitting 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.51 0.97 1.07 1.16 - - 0.41 1.05 1.49 1.63 - - 

AGED w/ 

adv+geo 
0.46 0.78 1.01 1.07 - - 0.41 0.76 1.05 1.19 - - 

Uni-Enc-50 0.42 0.38 0.34 0.34 0.37 0.41 0.49 0.45 0.48 0.44 0.46 0.44 

Bi-Enc-50 0.39 0.33 0.32 0.29 0.30 0.36 0.42 0.45 0.44 0.43 0.45 0.41 

Uni-Enc-0 0.38 0.32 0.30 0.28 0.32 0.37 0.43 0.40 0.42 0.41 0.40 0.40 

Uni-Enc-100 0.36 0.32 0.28 0.28 0.31 0.37 0.46 0.43 0.44 0.43 0.43 0.39 

Table 12: Mean squared errors in Euler angles of purchases and sitting actions.  

 Sitting down Taking photo 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.39 0.81 1.40 1.62 - - 0.24 0.51 0.90 1.05 - - 

AGED w/ 

adv+geo 
0.33 0.62 0.98 1.10 - - 0.23 0.48 0.81 0.95 - - 

Uni-Enc-50 0.55 0.60 0.53 0.49 0.50 0.53 0.24 0.28 0.26 0.25 0.22 0.24 

Bi-Enc-50 0.56 0.61 0.55 0.50 0.52 0.56 0.24 0.26 0.23 0.22 0.22 0.22 

Uni-Enc-0 0.61 0.63 0.51 0.48 0.50 0.56 0.24 0.30 0.25 0.24 0.22 0.22 

Uni-Enc-100 0.65 0.67 0.55 0.52 0.50 0.55 0.26 0.27 0.24 0.23 0.24 0.22 

Table 13: Mean squared errors in Euler angles of sitting down and taking photo actions. 
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5.1.4 Discussion 

This work implemented 4 models namely Uni-Enc-50, Bi-Enc-50, Uni-Enc-0, and Uni-

Enc-100.  

 Waiting Walking dog 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.28 0.53 1.02 1.14 - - 0.56 0.91 1.26 1.40 - - 

AGED w/ 

adv+geo 
0.24 0.50 1.02 1.13 - - 0.50 0.81 1.15 1.27 - - 

Uni-Enc-50 0.32 0.33 0.30 0.29 0.38 0.30 0.37 0.42 0.38 0.33 0.34 0.35 

Bi-Enc-50 0.29 0.28 0.27 0.27 0.37 0.28 0.38 0.38 0.32 0.31 0.32 0.37 

Uni-Enc-0 0.27 0.29 0.26 0.26 0.36 0.29 0.36 0.43 0.35 0.32 0.35 0.33 

Uni-Enc-100 0.30 0.30 0.27 0.28 0.36 0.29 0.37 0.43 0.36 0.33 0.34 0.34 

Table 14: Mean squared errors in Euler angles of waiting and walking dog actions. 

 Walking together Average 

milliseconds 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res. sup. 0.31 0.58 0.87 0.91 - - 0.36 0.67 1.02 1.15 - - 

AGED w/ 

adv+geo 
0.23 0.41 0.56 0.62 - - 0.31 0.54 0.85 0.97 - - 

Uni-Enc-50 0.24 0.23 0.22 0.22 0.24 0.28 0.34 0.34 0.36 0.34 - - 

Bi-Enc-50 0.22 0.21 0.22 0.22 0.24 0.28 0.33 0.32 0.34 0.33 - - 

Uni-Enc-0 0.22 0.21 0.22 0.22 0.23 0.28 0.33 0.33 0.34 0.33 - - 

Uni-Enc-100 0.22 0.21 0.20 0.21 0.23 0.26 0.34 0.33 0.34 0.33 - - 

Table 15: Mean squared errors in Euler angles of walking together action and the average mean 

square errors for all actions. 
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All models use the same attention decoder but with varying probabilities of teacher forcing 

i.e. how much the decoder sees its own predictions as opposed to seeing ground-truths 

during training. Specifically, Uni-Enc-50 and Bi-Enc-50 use attention decoders that see 

ground-truth 50% of the time during training. Uni-Enc-0 and Uni-Enc-100 use attention 

decoders that see ground-truth 0% and 100% of the time during training respectively. 

Moreover, the work has experimented with two models, Uni-Enc-50 and Bi-Enc-50, that 

use different versions of encoders, that is unidirectional and bidirectional respectively.  

 

As it is evident from the results, errors after 80ms of this work’s models are comparable to 

those of Res. sup. and AGED w/ adv+geo. However, as the time of prediction increases, 

the errors of earlier models deteriorate progressively unlike models of this work which 

show very stable prediction performance. The models used by this work have beaten earlier 

models on all actions except phoning where earlier models have lower prediction errors as 

shown in Table 11. Nevertheless, the errors produced by this work’s models on phoning 

action have reduced noticeably after 560ms and 1000ms. Furthermore, this work’s models’ 

performance on all actions stays high even after 560ms and 1000ms, which is a strong 

indicator of the suitability of attention decoders not only for motion prediction (<500ms), 

but also for motion generation (>500ms). On average, models of this work have beaten 

earlier models with a large margin as shown in Table 4. According to the experimentations 

of this work, changing the percentage of teacher forcing (the probability that the decoder 

sees ground-truth during training) has no real impact on the results. Moreover, the use of a 

bidirectional encoder has no added benefit over its unidirectional counterpart. On the 

contrary of [2] and [5], residual connections and Quaternions have not improved the results 

but rather make them worse. 

5.1.5  Conclusion 

Learning a model that can generalize to different categories of human motion is a super-

intensive task since human motion is highly variable and complex by nature. Nonetheless, 

many researchers are approaching the task relentlessly. Recent works have achieved good 

results on the task using deep learning methods. However, at the time of writing, the general 
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model that can learn all kinds of human motion is still beyond the reach. For the first time, 

this work employs a bidirectional encoder to model human motion with an attention 

decoder to make predictions such that both are trained jointly on 15 different actions from 

the Human3.6 dataset. Prediction results after 80ms are comparable to those of previous 

works, however, after 160ms, models used by this work have much lower errors on all 

periodic and non-periodic actions except phoning. Even though, errors after 560ms and 

1000ms on phoning action have reduced significantly and become less than those of 

previous works. According the findings of this work, the use of attention decoder has 

achieved state-of-the-art of human motion prediction after 160ms of motion prediction with 

very stable performance that doesn’t deteriorate even after 1000ms of motion prediction 

which is not the case with earlier works. However, using a bidirectional encoder has no 

advantage over its unidirectional counterpart. Moreover, varying the percentages of teacher 

forcing i.e. training the decoder with 100%, 50%, or 0% of teacher forcing has no effect 

either. 

 

5.1.6 Future work 

Future work may include validating the predicted motion qualitatively, experimenting with 

different forms of attention, comparing the performance of LSTM against GRU, and using 

larger datasets of human motion. 
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