المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2021

 AI Techniques for Document Management: The Case of Umm Al-Qura University in Saudi

 Malak, almabadi


//uquui/handle/20.500.12248/131973
0 التحميل
405 المشاهدات

AI Techniques for Document Management: The Case of Umm Al-Qura University in Saudi

المؤلفون : Malak, almabadi
رقم الطلب : 245913
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2021 - 1443 هـ
الوصف : 83 ورقة.
نوع الوعاء : ماجستير
الموضوعات : Engineering Management ؛
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

Classification of the document image is an essential process in digital libraries, office automation, and various image analysis application. There is considerable diversity in classifying the document either in the problem that needs to be solved using the training data to build a class model, classification approach, and document feature. This thesis will address text document image classification for a case study at Umm Al-Qura University in Saudi. We will highlight the importance of the classifier's design, the proper feature and the feature representation, the best classifier model, and the learning mechanism. Developing a specific classifying approach is a challenging task due to the variety of the type of documents. Classify document image is an essential task and is applied in the following fields: • Help to distinguish between documents automatically • Enhance the indexing efficiency • Help in quickly retrieving the document image • Make the high-level documenting analysis more accessible and less complex because most higher-level documents depend on domain-dependent knowledge to achieve higher accuracy. Many of the available systems used to extract information are constructed for a particular document type, such as the postal address of form processing. It is essential to clarify the document first to be suitable for the analysis of the document adopted. The document images classifier system in this thesis uses the A.I. Techniques for Document Management (The Case of Umm Al-Qura University in Saudi ). Document image classification can be constructed without relying on the text feature, so we will use Hog features to train pour machine, learning models in the proposed model. The machine learning model constructed are support vector machine, k- nearest neighbor, and naïve Bayes. We will also use CNN models, which are (VGG16, InceptionV3, ResNet50, InceptionResNetV2, MobileNetV2, DenseNet121, Xception). The dataset used is to train this system is a document scanned image from Umm Al-Qura University in Saudi).

العنوان: AI Techniques for Document Management: The Case of Umm Al-Qura University in Saudi
المؤلفون: Ahmad, H Alhindi
Malak, almabadi
الموضوعات :: Engineering Management
تاريخ النشر :: 2021
الناشر :: جامعة أم القرى
الملخص: Classification of the document image is an essential process in digital libraries, office automation, and various image analysis application. There is considerable diversity in classifying the document either in the problem that needs to be solved using the training data to build a class model, classification approach, and document feature. This thesis will address text document image classification for a case study at Umm Al-Qura University in Saudi. We will highlight the importance of the classifier's design, the proper feature and the feature representation, the best classifier model, and the learning mechanism. Developing a specific classifying approach is a challenging task due to the variety of the type of documents. Classify document image is an essential task and is applied in the following fields: • Help to distinguish between documents automatically • Enhance the indexing efficiency • Help in quickly retrieving the document image • Make the high-level documenting analysis more accessible and less complex because most higher-level documents depend on domain-dependent knowledge to achieve higher accuracy. Many of the available systems used to extract information are constructed for a particular document type, such as the postal address of form processing. It is essential to clarify the document first to be suitable for the analysis of the document adopted. The document images classifier system in this thesis uses the A.I. Techniques for Document Management (The Case of Umm Al-Qura University in Saudi ). Document image classification can be constructed without relying on the text feature, so we will use Hog features to train pour machine, learning models in the proposed model. The machine learning model constructed are support vector machine, k- nearest neighbor, and naïve Bayes. We will also use CNN models, which are (VGG16, InceptionV3, ResNet50, InceptionResNetV2, MobileNetV2, DenseNet121, Xception). The dataset used is to train this system is a document scanned image from Umm Al-Qura University in Saudi).
الوصف :: 83 ورقة.
الرابط: http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/131973
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
24913.pdf
"   الوصول المحدود"
الرسالة الكاملة1.11 MBAdobe PDFعرض/ فتح
طلب نسخة
absa24913.pdf
"   الوصول المحدود"
ملخص الرسالة بالعربي78.7 kBAdobe PDFعرض/ فتح
طلب نسخة
cont24913.pdf
"   الوصول المحدود"
فهرس الموضوعات131.35 kBAdobe PDFعرض/ فتح
طلب نسخة
title24913.pdf
"   الوصول المحدود"
غلاف85.08 kBAdobe PDFعرض/ فتح
طلب نسخة
indu24913.pdf
"   الوصول المحدود"
المقدمة100.37 kBAdobe PDFعرض/ فتح
طلب نسخة
abse24913.pdf
"   الوصول المحدود"
ملخص الرسالة بالإنجليزي18.36 kBAdobe PDFعرض/ فتح
طلب نسخة
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك