D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2021

 AI Techniques for Document Management: The Case of Umm Al-Qura University in Saudi

 Malak, almabadi


//uquui/handle/20.500.12248/131973
Full metadata record
DC FieldValueLanguage
dc.contributor.adviserAhmad, H Alhindi-
dc.contributor.authorMalak, almabadi-
dc.date.accessioned2022-01-03T09:34:12Z-
dc.date.available2022-01-03T09:34:12Z-
dc.date.issued2021en_US
dc.identifier.urihttp://dorar.uqu.edu.sa//uquui/handle/20.500.12248/131973-
dc.description83 ورقة.en_US
dc.description.abstractClassification of the document image is an essential process in digital libraries, office automation, and various image analysis application. There is considerable diversity in classifying the document either in the problem that needs to be solved using the training data to build a class model, classification approach, and document feature. This thesis will address text document image classification for a case study at Umm Al-Qura University in Saudi. We will highlight the importance of the classifier's design, the proper feature and the feature representation, the best classifier model, and the learning mechanism. Developing a specific classifying approach is a challenging task due to the variety of the type of documents. Classify document image is an essential task and is applied in the following fields: • Help to distinguish between documents automatically • Enhance the indexing efficiency • Help in quickly retrieving the document image • Make the high-level documenting analysis more accessible and less complex because most higher-level documents depend on domain-dependent knowledge to achieve higher accuracy. Many of the available systems used to extract information are constructed for a particular document type, such as the postal address of form processing. It is essential to clarify the document first to be suitable for the analysis of the document adopted. The document images classifier system in this thesis uses the A.I. Techniques for Document Management (The Case of Umm Al-Qura University in Saudi ). Document image classification can be constructed without relying on the text feature, so we will use Hog features to train pour machine, learning models in the proposed model. The machine learning model constructed are support vector machine, k- nearest neighbor, and naïve Bayes. We will also use CNN models, which are (VGG16, InceptionV3, ResNet50, InceptionResNetV2, MobileNetV2, DenseNet121, Xception). The dataset used is to train this system is a document scanned image from Umm Al-Qura University in Saudi).en_US
dc.language.isoانجليزيen_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectEngineering Managementen_US
dc.titleAI Techniques for Document Management: The Case of Umm Al-Qura University in Saudien_US
dc.identifier.callnum245913-
dc.type.formatماجستيرen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالحاسب الآلي ونظم المعلوماتen_US
dc.type.statusمجازen_US
dc.rights.holdYesen_US
dc.rights.digitalYesen_US
dc.publisher.cityمكة المكرمةen_US
dc.date.issuedhijri1443en_US
dc.relation.depالعلوم الهندسية والتطبيقية – حاسب آليen_US
dc.rights.digitizedYesen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
24913.pdf
"   Restricted Access"
الرسالة الكاملة1.11 MBAdobe PDFView/Open
Request a copy
absa24913.pdf
"   Restricted Access"
ملخص الرسالة بالعربي78.7 kBAdobe PDFView/Open
Request a copy
cont24913.pdf
"   Restricted Access"
فهرس الموضوعات131.35 kBAdobe PDFView/Open
Request a copy
title24913.pdf
"   Restricted Access"
غلاف85.08 kBAdobe PDFView/Open
Request a copy
indu24913.pdf
"   Restricted Access"
المقدمة100.37 kBAdobe PDFView/Open
Request a copy
abse24913.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي18.36 kBAdobe PDFView/Open
Request a copy

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.