D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2021

 تطبيق التحسين الحديث في تحديد المعلمات المثلى للبوليمر المنحل بالكهرباء غشاء خلايا الوقود

 Alhaddad, Ahmed Abdullah S.


//uquui/handle/20.500.12248/131067
0 Downloads
464 Visits

تطبيق التحسين الحديث في تحديد المعلمات المثلى للبوليمر المنحل بالكهرباء غشاء خلايا الوقود

Alternative : Application of Modern Optimization in Determining the Optimal Parameters of Polymer Electrolyte Membrane Fuel Cell
Call Number : 24555
Publisher :جامعة أم القرى
Pub Place : مكة المكرمة
Issue Date : 2021 - 1442 H
Description : 63 ورقة
Format : مشروع تخرج
Language : انجليزي
Is format of : مكتبة الملك عبدالله بن عبدالعزيز الجامعية

In the current research, a moth flame optimization algorithm (MFOA) is used to identify the best parameters of proton exchange membrane fuel cell (PEMFC). Two different PEMFCs: NedStack PS6, 6 kW, and SR-12 PEM 500W are used to demonstrate the accuracy of the MFOA. Throughout the optimization process, the seven unidentified parameters (℥1, ℥2, ℥3, ℥4, λ, ℛ, and B) of PEMFC are appointed to be decision variables. While the fitness function that needed to be minimum is represented by the root mean squared error (RMSE) between the calculated voltage of PEMFC and the experimental dataset. The attained results by MFOA are compared with the sine cosine algorithm (SCA) and particle swarm optimization (PSO). The main findings verified the supremacy of the MFOA in estimating the best parameters of the PEMFC model in comparison with PSO and SCA.

Title: تطبيق التحسين الحديث في تحديد المعلمات المثلى للبوليمر المنحل بالكهرباء غشاء خلايا الوقود
Other Titles: Application of Modern Optimization in Determining the Optimal Parameters of Polymer Electrolyte Membrane Fuel Cell
Authors: Korrany, Mohamed
Alhaddad, Ahmed Abdullah S.
Fathi, Ahmed
Subjects :: الهندسة الميكانيكية
Issue Date :: 2021
Publisher :: جامعة أم القرى
Abstract: In the current research, a moth flame optimization algorithm (MFOA) is used to identify the best parameters of proton exchange membrane fuel cell (PEMFC). Two different PEMFCs: NedStack PS6, 6 kW, and SR-12 PEM 500W are used to demonstrate the accuracy of the MFOA. Throughout the optimization process, the seven unidentified parameters (℥1, ℥2, ℥3, ℥4, λ, ℛ, and B) of PEMFC are appointed to be decision variables. While the fitness function that needed to be minimum is represented by the root mean squared error (RMSE) between the calculated voltage of PEMFC and the experimental dataset. The attained results by MFOA are compared with the sine cosine algorithm (SCA) and particle swarm optimization (PSO). The main findings verified the supremacy of the MFOA in estimating the best parameters of the PEMFC model in comparison with PSO and SCA.
Description :: 63 ورقة
URI: http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/131067
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
24555.pdf
"   Restricted Access"
الرسالة الكاملة2.02 MBAdobe PDFView/Open
Request a copy
absa24555.pdf
"   Restricted Access"
ملخص الرسالة بالعربي296.54 kBAdobe PDFView/Open
Request a copy
abse24555.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي406.66 kBAdobe PDFView/Open
Request a copy
cont24555.pdf
"   Restricted Access"
فهرس الموضوعات269.36 kBAdobe PDFView/Open
Request a copy
ind24555.pdf
"   Restricted Access"
المقدمة1.02 MBAdobe PDFView/Open
Request a copy
titel24555.pdf
"   Restricted Access"
غلاف249.62 kBAdobe PDFView/Open
Request a copy
Add to Auditors PDF citation Digitization Request

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.