- Communities& Collections
- Browse Items by:
- Issue Date
- Author
- Title
- Subject
تطبيق التحسين الحديث في تحديد المعلمات المثلى للبوليمر المنحل بالكهرباء غشاء خلايا الوقود
In the current research, a moth flame optimization algorithm (MFOA) is used to identify the best parameters of proton exchange membrane fuel cell (PEMFC). Two different PEMFCs: NedStack PS6, 6 kW, and SR-12 PEM 500W are used to demonstrate the accuracy of the MFOA. Throughout the optimization process, the seven unidentified parameters (℥1, ℥2, ℥3, ℥4, λ, ℛ, and B) of PEMFC are appointed to be decision variables. While the fitness function that needed to be minimum is represented by the root mean squared error (RMSE) between the calculated voltage of PEMFC and the experimental dataset. The attained results by MFOA are compared with the sine cosine algorithm (SCA) and particle swarm optimization (PSO). The main findings verified the supremacy of the MFOA in estimating the best parameters of the PEMFC model in comparison with PSO and SCA.
Title: | تطبيق التحسين الحديث في تحديد المعلمات المثلى للبوليمر المنحل بالكهرباء غشاء خلايا الوقود |
Other Titles: | Application of Modern Optimization in Determining the Optimal Parameters of Polymer Electrolyte Membrane Fuel Cell |
Authors: | Korrany, Mohamed Alhaddad, Ahmed Abdullah S. Fathi, Ahmed |
Subjects :: | الهندسة الميكانيكية |
Issue Date :: | 2021 |
Publisher :: | جامعة أم القرى |
Abstract: | In the current research, a moth flame optimization algorithm (MFOA) is used to identify the best parameters of proton exchange membrane fuel cell (PEMFC). Two different PEMFCs: NedStack PS6, 6 kW, and SR-12 PEM 500W are used to demonstrate the accuracy of the MFOA. Throughout the optimization process, the seven unidentified parameters (℥1, ℥2, ℥3, ℥4, λ, ℛ, and B) of PEMFC are appointed to be decision variables. While the fitness function that needed to be minimum is represented by the root mean squared error (RMSE) between the calculated voltage of PEMFC and the experimental dataset. The attained results by MFOA are compared with the sine cosine algorithm (SCA) and particle swarm optimization (PSO). The main findings verified the supremacy of the MFOA in estimating the best parameters of the PEMFC model in comparison with PSO and SCA. |
Description :: | 63 ورقة |
URI: | http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/131067 |
Appears in Collections : | الرسائل العلمية المحدثة |
File | Description | Size | Format | |
---|---|---|---|---|
24555.pdf " Restricted Access" | الرسالة الكاملة | 2.02 MB | Adobe PDF | View/OpenRequest a copy |
absa24555.pdf " Restricted Access" | ملخص الرسالة بالعربي | 296.54 kB | Adobe PDF | View/OpenRequest a copy |
abse24555.pdf " Restricted Access" | ملخص الرسالة بالإنجليزي | 406.66 kB | Adobe PDF | View/OpenRequest a copy |
cont24555.pdf " Restricted Access" | فهرس الموضوعات | 269.36 kB | Adobe PDF | View/OpenRequest a copy |
ind24555.pdf " Restricted Access" | المقدمة | 1.02 MB | Adobe PDF | View/OpenRequest a copy |
titel24555.pdf " Restricted Access" | غلاف | 249.62 kB | Adobe PDF | View/OpenRequest a copy |
Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.
Comments (0)