- Communities& Collections
- Browse Items by:
- Issue Date
- Author
- Title
- Subject
الاكتشاف التلقائي لمعادلة مقررات الطلاب باستخدام التعلم الآلي
تعتبر مقارنة المقررات التعليمية في مختلف الجامعات والمعاهد التعليمية مهمة معقدة وصعبة. ومع ذلك، يمكن أن تساعد الأدوات التكنولوجية والرقمية في تطوير أساليب جديدة وفعالة للمساواة بين المقررات التعليمية. ومن هنا هدفت الباحثة في هذه الدراسة إلى مناقشة النماذج التي تم تنفيذها في هذا السياق في الماضي وطوّرت نموذجًا جديدًا ذا فاعلية أكبر من سابقاتها. يعالج النموذج المطور المشكلات الموجودة في طرق معادلة المقررات التقليدية باستخدام خوارزميات التعلم الآلي الخاضعة للإشراف (SML). استخدمت الدراسة مجموعة بيانات محددة لمقارنة المقررات في جامعة نجران وجامعة أم القرى. تحتوي مجموعة البيانات على 965 صفًا و18 عمودًا وخوارزميات SML مطبقة في أداة ال Orange. وتم قياس النتائج بناءً على عدة معايير، بما في ذلك المنطقة الواقعة تحت منحنى ROCتدعى بال (AUC)، ودقة التصنيف (CA)، وقياس F1، والدقة، والاستدعاء. أظهرت النتائج أنه بناءً على AUC، فإن أفضل الخوارزميات هي آلة المتجهات الداعمة (SVM)، بينما بناءً على مقياس CA، فأن الأفضل خوارزمية الجار الأقرب (KNN)، الغابة العشوائية، وSVM. بالإضافة إلى ذلك، بناءً على الدقة والاستدعاء وقياس F1، فإن أفضل الخوارزميات هي KNN والانحدار اللوجستي والغابة العشوائية وSVM.
Title: | الاكتشاف التلقائي لمعادلة مقررات الطلاب باستخدام التعلم الآلي |
Other Titles: | Automatic Detection of Students Courses Equivalence Using Machine Learning |
Authors: | Alhakami, Hosam Al-Qahtani, Awatif Mohammed |
Subjects :: | هندسة الحاسب |
Issue Date :: | 2021 |
Publisher :: | جامعة أم القرى |
Abstract: | تعتبر مقارنة المقررات التعليمية في مختلف الجامعات والمعاهد التعليمية مهمة معقدة وصعبة. ومع ذلك، يمكن أن تساعد الأدوات التكنولوجية والرقمية في تطوير أساليب جديدة وفعالة للمساواة بين المقررات التعليمية. ومن هنا هدفت الباحثة في هذه الدراسة إلى مناقشة النماذج التي تم تنفيذها في هذا السياق في الماضي وطوّرت نموذجًا جديدًا ذا فاعلية أكبر من سابقاتها. يعالج النموذج المطور المشكلات الموجودة في طرق معادلة المقررات التقليدية باستخدام خوارزميات التعلم الآلي الخاضعة للإشراف (SML). استخدمت الدراسة مجموعة بيانات محددة لمقارنة المقررات في جامعة نجران وجامعة أم القرى. تحتوي مجموعة البيانات على 965 صفًا و18 عمودًا وخوارزميات SML مطبقة في أداة ال Orange. وتم قياس النتائج بناءً على عدة معايير، بما في ذلك المنطقة الواقعة تحت منحنى ROCتدعى بال (AUC)، ودقة التصنيف (CA)، وقياس F1، والدقة، والاستدعاء. أظهرت النتائج أنه بناءً على AUC، فإن أفضل الخوارزميات هي آلة المتجهات الداعمة (SVM)، بينما بناءً على مقياس CA، فأن الأفضل خوارزمية الجار الأقرب (KNN)، الغابة العشوائية، وSVM. بالإضافة إلى ذلك، بناءً على الدقة والاستدعاء وقياس F1، فإن أفضل الخوارزميات هي KNN والانحدار اللوجستي والغابة العشوائية وSVM. |
Description :: | 110 |
URI: | http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/130977 |
Appears in Collections : | الرسائل العلمية المحدثة |
File | Description | Size | Format | |
---|---|---|---|---|
24745.pdf " Restricted Access" | الرسالة الكاملة | 2.25 MB | Adobe PDF | View/OpenRequest a copy |
absa24745.pdf " Restricted Access" | ملخص الرسالة بالعربي | 89.51 kB | Adobe PDF | View/OpenRequest a copy |
abse24745.pdf " Restricted Access" | ملخص الرسالة بالإنجليزي | 87.52 kB | Adobe PDF | View/OpenRequest a copy |
cont24745.pdf " Restricted Access" | فهرس الموضوعات | 95.04 kB | Adobe PDF | View/OpenRequest a copy |
indu24745.pdf " Restricted Access" | المقدمة | 116.21 kB | Adobe PDF | View/OpenRequest a copy |
title24745.pdf " Restricted Access" | غلاف | 9.83 kB | Adobe PDF | View/OpenRequest a copy |
Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.
Comments (0)