المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2020

 Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

 ALotaibi, Rakan Saad


//uquui/handle/20.500.12248/117157
0 التحميل
1358 المشاهدات

Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

المؤلفون : ALotaibi, Rakan Saad
رقم الطلب : 23775
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2020 - 1441 هـ
الوصف : 66 paper
نوع الوعاء : ماجستير
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

Multiobjective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems im- provement of one objective may led to deterioration of another. The primary goal of most multiobjective evolutionary algorithms (MOEA) is to generate a set of solutions for approx- imating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem.Over the last decades or so, several different and remarkable multiobjective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multiobjective opti- misation (EMO). The EMO method is the multiobjective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algo- rithmic frameworks in the area of multiobjective evolutionary computation and won has won an international algorithm contest.

العنوان: Using Machine Learning to Improve Evolutionary Multi-Objective Optimization
المؤلفون: Alhindi, Ahmad
ALotaibi, Rakan Saad
الموضوعات :: Machine Learning
Multi-Objective Evolutionary Algorithm
تاريخ النشر :: 2020
الناشر :: جامعة أم القرى
الملخص: Multiobjective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems im- provement of one objective may led to deterioration of another. The primary goal of most multiobjective evolutionary algorithms (MOEA) is to generate a set of solutions for approx- imating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem.Over the last decades or so, several different and remarkable multiobjective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multiobjective opti- misation (EMO). The EMO method is the multiobjective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algo- rithmic frameworks in the area of multiobjective evolutionary computation and won has won an international algorithm contest.
الوصف :: 66 paper
الرابط: https://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117157
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
23775.pdf
"   الوصول المحدود"
الرسالة الكاملة1.07 MBAdobe PDFعرض/ فتح
طلب نسخة
absa23775.pdf
"   الوصول المحدود"
ملخص الرسالة بالعربي65.66 kBAdobe PDFعرض/ فتح
طلب نسخة
abse23775.pdf
"   الوصول المحدود"
ملخص الرسالة بالإنجليزي156.25 kBAdobe PDFعرض/ فتح
طلب نسخة
indu23775.pdf
"   الوصول المحدود"
المقدمة597.11 kBAdobe PDFعرض/ فتح
طلب نسخة
cont23775.pdf
"   الوصول المحدود"
فهرس الموضوعات240.34 kBAdobe PDFعرض/ فتح
طلب نسخة
title23775.pdf
"   الوصول المحدود"
غلاف51.03 kBAdobe PDFعرض/ فتح
طلب نسخة
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك