D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2020

 Using Machine Learning to Improve Evolutionary Multi-Objective Optimization

 ALotaibi, Rakan Saad


//uquui/handle/20.500.12248/117157
Full metadata record
DC FieldValueLanguage
dc.contributor.adviserAlhindi, Ahmaden_US
dc.contributor.authorALotaibi, Rakan Saaden_US
dc.date.accessioned2020-05-09T19:35:07Z-
dc.date.available2020-05-09T19:35:07Z-
dc.date.issued2020en_US
dc.identifier.urihttps://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117157-
dc.description66 paperen_US
dc.description.abstractMultiobjective optimization problems (MOPs) arise in many real-world applications. MOPs involve two or more objectives with the aim to be optimized. With these problems im- provement of one objective may led to deterioration of another. The primary goal of most multiobjective evolutionary algorithms (MOEA) is to generate a set of solutions for approx- imating the whole or part of the Pareto optimal front, which could provide decision makers a good insight to the problem.Over the last decades or so, several different and remarkable multiobjective evolutionary algorithms, have been developed with successful applications. However, MOEAs are still in their infancy. The objective of this research is to study how to use and apply machine learning (ML) to improve evolutionary multiobjective opti- misation (EMO). The EMO method is the multiobjective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D has become one of the most widely used algo- rithmic frameworks in the area of multiobjective evolutionary computation and won has won an international algorithm contest.en_US
dc.language.isoانجليزيen_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectMachine Learningen_US
dc.subjectMulti-Objective Evolutionary Algorithmen_US
dc.titleUsing Machine Learning to Improve Evolutionary Multi-Objective Optimizationen_US
dc.identifier.callnum23775-
dc.type.formatماجستيرen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالحاسب الآلي ونظم المعلوماتen_US
dc.type.statusمجازen_US
dc.publisher.cityمكة المكرمةen_US
dc.date.issuedhijri1441en_US
dc.relation.depعلوم الحاسب الآليen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
23775.pdf
"   Restricted Access"
الرسالة الكاملة1.07 MBAdobe PDFView/Open
Request a copy
absa23775.pdf
"   Restricted Access"
ملخص الرسالة بالعربي65.66 kBAdobe PDFView/Open
Request a copy
abse23775.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي156.25 kBAdobe PDFView/Open
Request a copy
indu23775.pdf
"   Restricted Access"
المقدمة597.11 kBAdobe PDFView/Open
Request a copy
cont23775.pdf
"   Restricted Access"
فهرس الموضوعات240.34 kBAdobe PDFView/Open
Request a copy
title23775.pdf
"   Restricted Access"
غلاف51.03 kBAdobe PDFView/Open
Request a copy

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.