المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2020

 Event Detection in Social Media Within the Arabic Language

 حموي، بتول محمد ماهر


//uquui/handle/20.500.12248/117065
0 التحميل
1038 المشاهدات

Event Detection in Social Media Within the Arabic Language

عناوين أخرى : الكشف عن الأحداث في وسائل التواصل الإلجتماعي باستخدام اللغة العربية
رقم الطلب : 23684
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2020 - 1441 هـ
الوصف : 74 ورقة.
نوع الوعاء : ماجستير
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

The rise of social media platforms makes it a valuable information source of recent events and users’ perspective towards them. Social media platforms have been recently exploited as a valuable source of information for event detection. Event detection, one of the information extraction aspects, involves identifying specified types of events in the text. The recent increase of real-world events number that is disseminated over Twitter, which is one of the most important communication platforms in recent years; has attracted researchers to utilize tweets for the event detection system. In this research, we introduce FloDusTA, Flood, Dust Storm, Traffic Accident Saudi Event which is a dataset of tweets that we have built for the purpose of developing an event detection system. The dataset contains tweets written in both Modern Standard Arabic and Saudi dialect. We focus on the flood, dust storm, and traffic accident events according to their significant influence on human life and economy in Saudi Arabia. FloDusTA, are built based on three main steps, data collection, data cleaning and filtering, and data labeling process. The tweets are labeled with four labels: flood, dust storm, traffic accident, and non-event. The necessity to detect flood, dust storm and traffic accident events effectively and extract events from highly noise tweet content is paramount importance. For such events, it is crucial to obtain good result for the task of detecting events tweets from non-related events tweets. To this aim, we investigate the effectiveness of dividing the problem of event detection into two classification steps. This study explores a two-step approach of performing event and non-event classification on FloDusTA and then classifying the resulted events into specific types of events. Two-step approach compares with one-step approach of doing one multiclass classification for detecting flood, dust storm, and traffic accident event. The experimental evaluation shows that the two-step event detection approach is promising.

العنوان: Event Detection in Social Media Within the Arabic Language
عناوين أخرى: الكشف عن الأحداث في وسائل التواصل الإلجتماعي باستخدام اللغة العربية
المؤلفون: المطيري، خالد حاتم
مارس، مراد صالح
حموي، بتول محمد ماهر
الموضوعات :: البيانات تحليل
شبكات التواصل الاجتماعي
تاريخ النشر :: 2020
الناشر :: جامعة أم القرى
الملخص: The rise of social media platforms makes it a valuable information source of recent events and users’ perspective towards them. Social media platforms have been recently exploited as a valuable source of information for event detection. Event detection, one of the information extraction aspects, involves identifying specified types of events in the text. The recent increase of real-world events number that is disseminated over Twitter, which is one of the most important communication platforms in recent years; has attracted researchers to utilize tweets for the event detection system. In this research, we introduce FloDusTA, Flood, Dust Storm, Traffic Accident Saudi Event which is a dataset of tweets that we have built for the purpose of developing an event detection system. The dataset contains tweets written in both Modern Standard Arabic and Saudi dialect. We focus on the flood, dust storm, and traffic accident events according to their significant influence on human life and economy in Saudi Arabia. FloDusTA, are built based on three main steps, data collection, data cleaning and filtering, and data labeling process. The tweets are labeled with four labels: flood, dust storm, traffic accident, and non-event. The necessity to detect flood, dust storm and traffic accident events effectively and extract events from highly noise tweet content is paramount importance. For such events, it is crucial to obtain good result for the task of detecting events tweets from non-related events tweets. To this aim, we investigate the effectiveness of dividing the problem of event detection into two classification steps. This study explores a two-step approach of performing event and non-event classification on FloDusTA and then classifying the resulted events into specific types of events. Two-step approach compares with one-step approach of doing one multiclass classification for detecting flood, dust storm, and traffic accident event. The experimental evaluation shows that the two-step event detection approach is promising.
الوصف :: 74 ورقة.
الرابط: https://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117065
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
23684.pdf
"   الوصول المحدود"
الرسالة الكاملة2.16 MBAdobe PDFعرض/ فتح
طلب نسخة
title23684.pdf
"   الوصول المحدود"
غلاف383.72 kBAdobe PDFعرض/ فتح
طلب نسخة
indu23684.pdf
"   الوصول المحدود"
المقدمة384.04 kBAdobe PDFعرض/ فتح
طلب نسخة
cont23684.pdf
"   الوصول المحدود"
فهرس الموضوعات206.6 kBAdobe PDFعرض/ فتح
طلب نسخة
abse23684.pdf
"   الوصول المحدود"
ملخص الرسالة بالإنجليزي175.41 kBAdobe PDFعرض/ فتح
طلب نسخة
absa23684.pdf
"   الوصول المحدود"
ملخص الرسالة بالعربي224.33 kBAdobe PDFعرض/ فتح
طلب نسخة
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك