D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2020

 Event Detection in Social Media Within the Arabic Language

 حموي، بتول محمد ماهر


//uquui/handle/20.500.12248/117065
Full metadata record
DC FieldValueLanguage
dc.contributor.adviserالمطيري، خالد حاتمen_US
dc.contributor.adviserمارس، مراد صالحen_US
dc.contributor.authorحموي، بتول محمد ماهرen_US
dc.date.accessioned2020-04-16T00:27:21Z-
dc.date.available2020-04-16T00:27:21Z-
dc.date.issued2020en_US
dc.identifier.urihttps://dorar.uqu.edu.sa/uquui/handle/20.500.12248/117065-
dc.description74 ورقة.en_US
dc.description.abstractThe rise of social media platforms makes it a valuable information source of recent events and users’ perspective towards them. Social media platforms have been recently exploited as a valuable source of information for event detection. Event detection, one of the information extraction aspects, involves identifying specified types of events in the text. The recent increase of real-world events number that is disseminated over Twitter, which is one of the most important communication platforms in recent years; has attracted researchers to utilize tweets for the event detection system. In this research, we introduce FloDusTA, Flood, Dust Storm, Traffic Accident Saudi Event which is a dataset of tweets that we have built for the purpose of developing an event detection system. The dataset contains tweets written in both Modern Standard Arabic and Saudi dialect. We focus on the flood, dust storm, and traffic accident events according to their significant influence on human life and economy in Saudi Arabia. FloDusTA, are built based on three main steps, data collection, data cleaning and filtering, and data labeling process. The tweets are labeled with four labels: flood, dust storm, traffic accident, and non-event. The necessity to detect flood, dust storm and traffic accident events effectively and extract events from highly noise tweet content is paramount importance. For such events, it is crucial to obtain good result for the task of detecting events tweets from non-related events tweets. To this aim, we investigate the effectiveness of dividing the problem of event detection into two classification steps. This study explores a two-step approach of performing event and non-event classification on FloDusTA and then classifying the resulted events into specific types of events. Two-step approach compares with one-step approach of doing one multiclass classification for detecting flood, dust storm, and traffic accident event. The experimental evaluation shows that the two-step event detection approach is promising.en_US
dc.language.isoانجليزيen_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectالبيانات تحليلen_US
dc.subjectشبكات التواصل الاجتماعيen_US
dc.titleEvent Detection in Social Media Within the Arabic Languageen_US
dc.title.alternativeالكشف عن الأحداث في وسائل التواصل الإلجتماعي باستخدام اللغة العربيةen_US
dc.identifier.callnum23684-
dc.type.formatماجستيرen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالحاسب الآلي ونظم المعلوماتen_US
dc.type.statusمجازen_US
dc.publisher.cityمكة المكرمةen_US
dc.date.issuedhijri1441en_US
dc.relation.depعلوم الحاسب الآليen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
23684.pdf
"   Restricted Access"
الرسالة الكاملة2.16 MBAdobe PDFView/Open
Request a copy
title23684.pdf
"   Restricted Access"
غلاف383.72 kBAdobe PDFView/Open
Request a copy
indu23684.pdf
"   Restricted Access"
المقدمة384.04 kBAdobe PDFView/Open
Request a copy
cont23684.pdf
"   Restricted Access"
فهرس الموضوعات206.6 kBAdobe PDFView/Open
Request a copy
abse23684.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي175.41 kBAdobe PDFView/Open
Request a copy
absa23684.pdf
"   Restricted Access"
ملخص الرسالة بالعربي224.33 kBAdobe PDFView/Open
Request a copy

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.