المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2021

 University Student Courses Timetable Management: An Optimization Algorithm

 الغامدي, حياة


//uquui/handle/20.500.12248/132472
0 التحميل
641 المشاهدات

University Student Courses Timetable Management: An Optimization Algorithm

المؤلفون : الغامدي, حياة
رقم الطلب : 25182
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2021 - 1443 هـ
الوصف : 74 ورقة.
نوع الوعاء : ماجستير
الموضوعات : Computer engineering ؛
اللغة : عربي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

Nowadays, universities are looking to solve the timetabling problem for scheduling the data in line with complex constraints on the existing resources in the environments, such as the subjects, lecturers, students, and classroom specifications. This thesis aims to develop a framework for optimizing resource allocation to university timetabling problems for generating schedules. Systematic literature investigations are conducted into university course timetabling, and deep reinforcement learning to the timetabling problems to help for decision making to the proposed techniques and algorithms. This study focuses on the lecturer’s schedules based on soft and hard constraints with existing resources using reinforcement learning with a multiagent system. This thesis conducted the experimental methodology using a dataset from Umm Al-Qura University, which had a number of specific soft and hard constraints based on its environment analyses. These constraints are used in Q-learning, having a Q-table to find the best reward through a sequential iteration on the states to get the actions through a number of agents to reach the better optimization to the course timetabling for lecturers’ scheduling.

العنوان: University Student Courses Timetable Management: An Optimization Algorithm
المؤلفون: الحكمي, حسام
الغامدي, حياة
الموضوعات :: Computer engineering
تاريخ النشر :: 2021
الناشر :: جامعة أم القرى
الملخص: Nowadays, universities are looking to solve the timetabling problem for scheduling the data in line with complex constraints on the existing resources in the environments, such as the subjects, lecturers, students, and classroom specifications. This thesis aims to develop a framework for optimizing resource allocation to university timetabling problems for generating schedules. Systematic literature investigations are conducted into university course timetabling, and deep reinforcement learning to the timetabling problems to help for decision making to the proposed techniques and algorithms. This study focuses on the lecturer’s schedules based on soft and hard constraints with existing resources using reinforcement learning with a multiagent system. This thesis conducted the experimental methodology using a dataset from Umm Al-Qura University, which had a number of specific soft and hard constraints based on its environment analyses. These constraints are used in Q-learning, having a Q-table to find the best reward through a sequential iteration on the states to get the actions through a number of agents to reach the better optimization to the course timetabling for lecturers’ scheduling.
الوصف :: 74 ورقة.
الرابط: http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/132472
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
25182.pdf
"   Restricted Access"
الرسالة الكاملة1.81 MBAdobe PDFView/Open
Request a copy
title25182.pdf
"   Restricted Access"
غلاف48.52 kBAdobe PDFView/Open
Request a copy
absa25182.pdf
"   Restricted Access"
ملخص الرسالة بالعربي75.16 kBAdobe PDFView/Open
Request a copy
abse25182.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي94 kBAdobe PDFView/Open
Request a copy
indu25182.pdf
"   Restricted Access"
المقدمة185.21 kBAdobe PDFView/Open
Request a copy
cont25182.pdf
"   Restricted Access"
فهرس الموضوعات143.79 kBAdobe PDFView/Open
Request a copy
Add to Auditors PDF citation Digitization Request

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.