D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2021

 الاكتشاف التلقائي لمعادلة مقررات الطلاب باستخدام التعلم الآلي

 Al-Qahtani, Awatif Mohammed


//uquui/handle/20.500.12248/132256
Full metadata record
DC FieldValueLanguage
dc.contributor.adviserAlhakami, Hosam-
dc.contributor.authorAl-Qahtani, Awatif Mohammed-
dc.date.accessioned2022-02-15T08:30:52Z-
dc.date.available2022-02-15T08:30:52Z-
dc.date.issued2021en_US
dc.identifier.urihttp://dorar.uqu.edu.sa//uquui/handle/20.500.12248/132256-
dc.description110 ورقةen_US
dc.description.abstractComparing the educational curricula of different courses across various universities and educational institutes is a complicated and difficult task. However, technological and digital tools can help develop new and effective methods to equate educational courses. Hence, the researcher of this study aimed to discuss the models that have been implemented in this context in the past and developed a new model with greater effectiveness than the previous ones. The developed model addresses the problems within traditional course equivalence methods by using a supervised machine learning (SML) algorithms. The study used a specific dataset to compare courses at Najran University and Umm Al-Qura University. The dataset contains 965 rows and 18 columns and applied SML algorithms in Orange tool. The results were measured based on several criteria, including area under ROC curve (AUC), classification accuracy (CA), F1 measure, precision, and recall. The results showed that based on AUC, the best algorithms are support vector machines (SVM), while based on CA they are SVM, K- nearest neighbors (KNN), and random forest. Additionally, based on precision, recall, and F1 measure the best algorithms are SVM, KNN, random forest, and logistic regression.en_US
dc.language.isoانجليزيen_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectالحاسب الآليen_US
dc.subjectنظم المعلوماتen_US
dc.titleالاكتشاف التلقائي لمعادلة مقررات الطلاب باستخدام التعلم الآليen_US
dc.title.alternativeAutomatic Detection of Students Courses Equivalence Using Machine Learningen_US
dc.identifier.callnum24745-
dc.type.formatماجستيرen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالحاسب الآلي ونظم المعلوماتen_US
dc.type.statusمجازen_US
dc.rights.holdYesen_US
dc.rights.digitalYesen_US
dc.publisher.cityمكة المكرمةen_US
dc.date.issuedhijri1442en_US
dc.relation.depالحاسب الآليen_US
dc.rights.digitizedYesen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
24745.pdf
"   Restricted Access"
الرسالة الكاملة2.25 MBAdobe PDFView/Open
Request a copy
absa24745.pdf
"   Restricted Access"
ملخص الرسالة بالعربي89.51 kBAdobe PDFView/Open
Request a copy
abse24745.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي87.52 kBAdobe PDFView/Open
Request a copy
cont24745.pdf
"   Restricted Access"
فهرس الموضوعات95.04 kBAdobe PDFView/Open
Request a copy
indu24745.pdf
"   Restricted Access"
المقدمة116.21 kBAdobe PDFView/Open
Request a copy
title24745.pdf
"   Restricted Access"
غلاف9.83 kBAdobe PDFView/Open
Request a copy

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.