المستودع الرقمى

//uquui/

تقرير الوحدة

تقرير المجموعة

 2021

 تأثيرات الضرر الميكانيكي والحرارة المنحدر من نوع على اهتزاز الحرارية السيليكون نيتريد Nanobeam على أساس الأخضر -Naghdi نظرية النوع الثاني

 Kurdi, Mohammed Hisham Saleh


//uquui/handle/20.500.12248/131062
0 التحميل
404 المشاهدات

تأثيرات الضرر الميكانيكي والحرارة المنحدر من نوع على اهتزاز الحرارية السيليكون نيتريد Nanobeam على أساس الأخضر -Naghdi نظرية النوع الثاني

عناوين أخرى : Influences of The Mechanical Damage and Ramp-Type Heat on The Vibration of Thermoelastic Silicon Nitride Nanobeam Based on Green-Naghdi Theorem Type-II
رقم الطلب : 24567
الناشر :جامعة أم القرى
مكان النشر : مكة المكرمة
تاريخ النشر : 2021 - 1442 هـ
الوصف : 77 ورقة
نوع الوعاء : ماجستير
اللغة : انجليزي
المصدر : مكتبة الملك عبدالله بن عبدالعزيز الجامعية
يظهر في المجموعات : الرسائل العلمية المحدثة

Robert Hooke is the first one who stated that "The power of any spring or elastic body is in the same proportion with the body’s extension" [1], while Cauchy who provided the governing equations of the linear theory of elasticity based on a fixed and known temperature (isothermal), and without any changes until now [2]. The problem of elasticity in a temperature transition is resolved at first by Duhamel. The conclusion deduced by Duhamel equations was repeated by Neumann, but in a different manner, it is considered the first theory of thermoelasticity, which is known as the uncoupled thermoelasticity theory. The first governing equation of this theory is the heat conduction equation (thermal equation), which is unrelated to the mechanical effect, while the second one is the equation of motion involves a known function of heat [3]. Danilovskaya was the first one who solved an actual problem based on thermoelasticity that is uncoupled with uniform heat. This hypothesis has two shortcomings. First, the hypothesis notes that the elastic body's mechanical condition has no impact on the temperature and does not conform to physical experiments. Second, the parabolic heat equation forecasts an infinite temperature spread speed, which contradicts again physical observations [3].

العنوان: تأثيرات الضرر الميكانيكي والحرارة المنحدر من نوع على اهتزاز الحرارية السيليكون نيتريد Nanobeam على أساس الأخضر -Naghdi نظرية النوع الثاني
عناوين أخرى: Influences of The Mechanical Damage and Ramp-Type Heat on The Vibration of Thermoelastic Silicon Nitride Nanobeam Based on Green-Naghdi Theorem Type-II
المؤلفون: Youssef, Hamdy M.
Alharthi, Hamzah
Kurdi, Mohammed Hisham Saleh
الموضوعات :: الهندسة الميكانيكية
تاريخ النشر :: 2021
الناشر :: جامعة أم القرى
الملخص: Robert Hooke is the first one who stated that "The power of any spring or elastic body is in the same proportion with the body’s extension" [1], while Cauchy who provided the governing equations of the linear theory of elasticity based on a fixed and known temperature (isothermal), and without any changes until now [2]. The problem of elasticity in a temperature transition is resolved at first by Duhamel. The conclusion deduced by Duhamel equations was repeated by Neumann, but in a different manner, it is considered the first theory of thermoelasticity, which is known as the uncoupled thermoelasticity theory. The first governing equation of this theory is the heat conduction equation (thermal equation), which is unrelated to the mechanical effect, while the second one is the equation of motion involves a known function of heat [3]. Danilovskaya was the first one who solved an actual problem based on thermoelasticity that is uncoupled with uniform heat. This hypothesis has two shortcomings. First, the hypothesis notes that the elastic body's mechanical condition has no impact on the temperature and does not conform to physical experiments. Second, the parabolic heat equation forecasts an infinite temperature spread speed, which contradicts again physical observations [3].
الوصف :: 77 ورقة
الرابط: http://dorar.uqu.edu.sa//uquui/handle/20.500.12248/131062
يظهر في المجموعات :الرسائل العلمية المحدثة

الملفات في هذا العنصر:
ملف الوصف الحجمالتنسيق 
24567.pdf
"   الوصول المحدود"
الرسالة الكاملة1.84 MBAdobe PDFعرض/ فتح
طلب نسخة
اضف إلى مراجعى الاستشهاد المرجعي طلب رقمنة مادة

تعليقات (0)



جميع الأوعية على المكتبة الرقمية محمية بموجب حقوق النشر، ما لم يذكر خلاف ذلك