D-Library Repositry


Reports Community

Annual Report Collection


 دراسة كمية ونوعية لأداء المبادلات الحرارية ثنائية الأنابيب باستخدام السوائل النانوية القائمة على الماء

 Alsahil, Muath Ibrahim Mohammed

Full metadata record
DC FieldValueLanguage
dc.contributor.adviserOreijah, Mowffaq Mohammed-
dc.contributor.authorAlsahil, Muath Ibrahim Mohammed-
dc.description96 ورقةen_US
dc.description.abstractHeat exchangers are very important equipment for cooling and heating processes in different industrial fields and applications. The heat transfer performance of base fluids is greatly improved with suspended nanoparticles in a variety of applications such as solar collectors, heat pipes, nuclear reactors, cooling systems, automotive radiators, and more. In the present thesis, the problem of flow of nanofluids with forced convection is studied in detail in three cases, under constant mass flow rates (Case 1), under optimized mass flow rates with two different geometric configuration scenarios of the heat exchangers, N-shaped pipe heat exchanger (Case 2) and M-shaped pipe heat exchanger (Case 3). Numerical results in the previous works, as obtained for water–Al2O3 mixture, have been demonstrated that of nanoparticles into the base fluids fluid led to a significant increase of the heat transfer coefficient, which clearly increases with an increase in particle concentration. However, those particles also caused drastic effects on the wall shear stress that increases correspondingly with the particle loading. Therefore, in the current study, the full performance of the different heat exchanger designs will be investigated numerically under the effect of different particle concentrations and different nano materials such as Al2O3, CuO, TiO2 and SiO2. Additionally, the Computational Fluid Dynamics (CFD) single-phase model is adopted for predicting the heat transfer performance in fluent using ANSYS. Therefore, the results show enhancement in heat transfer for the heat exchanger is due to increased volume fraction, and a direct correlation between overall heat transfer effectiveness and volume fraction percentage of nanofluids, while CuO was proven most effective amongst considered nano particles and has reached an optimum overall heat transfer effectiveness estimated around 89% under 4.5% volume fraction percentage. Besides, adjusting the geometry into an M-shaped pipe had resulted in an enhanced heat transfer effectiveness. en_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectالهندسة الميكانيكيةen_US
dc.titleدراسة كمية ونوعية لأداء المبادلات الحرارية ثنائية الأنابيب باستخدام السوائل النانوية القائمة على الماءen_US
dc.title.alternativeQuantitative and Qualitative Study of Double-Pipe Heat Exchangers Performance Using Water Based Nanofluidsen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالهندسة والعمارة الإسلاميةen_US
dc.publisher.cityمكة المكرمةen_US
dc.relation.depالهندسة الميكانيكيةen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
"   Restricted Access"
الرسالة الكاملة3.89 MBAdobe PDFView/Open
Request a copy
"   Restricted Access"
ملخص الرسالة بالعربي146.43 kBAdobe PDFView/Open
Request a copy
"   Restricted Access"
ملخص الرسالة بالإنجليزي81.34 kBAdobe PDFView/Open
Request a copy
"   Restricted Access"
فهرس الموضوعات104.62 kBAdobe PDFView/Open
Request a copy
"   Restricted Access"
المقدمة97.29 kBAdobe PDFView/Open
Request a copy
"   Restricted Access"
غلاف89.87 kBAdobe PDFView/Open
Request a copy

Comments (0)

Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.