D-Library Repositry

//uquui/

Reports Community

Annual Report Collection

 2021

 تقنية اكتشاف خارجية مستحدثة للأتمتة الذكية للإرشاد الأكاديمي

 Alshehri, Eman Mohammad


//uquui/handle/20.500.12248/132255
Full metadata record
DC FieldValueLanguage
dc.contributor.adviserAlhakami, Hosam-
dc.contributor.authorAlshehri, Eman Mohammad-
dc.date.accessioned2022-02-15T08:30:45Z-
dc.date.available2022-02-15T08:30:45Z-
dc.date.issued2021en_US
dc.identifier.urihttp://dorar.uqu.edu.sa//uquui/handle/20.500.12248/132255-
dc.description82 ورقةen_US
dc.description.abstractNowadays, statistical and data mining tools are used to find patterns and relationships when dealing with a large dataset. One of the essential data extracted from large sets is the outliers. It is categorized as a sample or event that is irregular with the rest of the data. Recently, an urgent need has emerged to study and understand one of the essential stages in preprocessing data mining, a detection phase of outliers’. Outlier detection techniques can analyze large amounts of data in a relatively short amount of time. Thus, that could reduce the risk of missing any outliers that could indicate helpful information. This research should detect the outliers of students’ data whether the outliers are good or bad. This thesis aims to use one of the data mining techniques, outliers’ detection, to analyze the students’ performance using R tool. The analysis depends on taking into consideration four parameters which are semester GPA, earned hours, number of courses that are taken during the semester, and percentage of those who passed. The dataset used in this research consists of 705 female students and 241 male students enrolled in the Computer Science Department at Umm Al-Qura University. This study has addressed outliers’ observations as a descriptive approach, which is one of the data analytics types. Data was visualized graphically to provide information about the parameters in a dataset, represent the data distribution, and highlight potential outliers easily.en_US
dc.language.isoانجليزيen_US
dc.publisherجامعة أم القرىen_US
dc.relation.isformatofمكتبة الملك عبدالله بن عبدالعزيز الجامعيةen_US
dc.subjectالحاسب الآلي برامجen_US
dc.titleتقنية اكتشاف خارجية مستحدثة للأتمتة الذكية للإرشاد الأكاديميen_US
dc.title.alternativeA Novel Outlier Detection Technique for Smart Automation of Academic Advisingen_US
dc.identifier.callnum24747-
dc.type.formatماجستيرen_US
dc.publisher.countryالمملكة العربية السعوديةen_US
dc.relation.collageالحاسب الآلي ونظم المعلوماتen_US
dc.type.statusمجازen_US
dc.rights.holdYesen_US
dc.rights.digitalYesen_US
dc.publisher.cityمكة المكرمةen_US
dc.date.issuedhijri1442en_US
dc.relation.depالحاسب الآليen_US
dc.rights.digitizedYesen_US
Appears in Collections :الرسائل العلمية المحدثة

Files in This Item :
File Description SizeFormat 
24747.pdf
"   Restricted Access"
الرسالة الكاملة1.63 MBAdobe PDFView/Open
Request a copy
absa24747.pdf
"   Restricted Access"
ملخص الرسالة بالعربي64.07 kBAdobe PDFView/Open
Request a copy
abse24747.pdf
"   Restricted Access"
ملخص الرسالة بالإنجليزي47.28 kBAdobe PDFView/Open
Request a copy
cont24747.pdf
"   Restricted Access"
فهرس الموضوعات53.21 kBAdobe PDFView/Open
Request a copy
indu24747.pdf
"   Restricted Access"
المقدمة84.87 kBAdobe PDFView/Open
Request a copy
title24747.pdf
"   Restricted Access"
غلاف94.21 kBAdobe PDFView/Open
Request a copy

Comments (0)



Items in D-Library are protected by copyright, with all rights reserved, unless otherwise indicated.