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 :(Abstractملخص البحث )

تطرررةب جالرررة ىجفتعررر  جملم رررتةبوتجةفتعررر  جملم م ررر جيقرررةاج  رررمجفلاوكررروةج   رررلأجم  ررر م جةاعلررر ج  رررمج طرررةب ج لويررروتجفررريجةرررتمجمعتلارررثجقللررروجف

ج ررر  ج لويررروتجمف رررر  جمتالررروعيجفررريجمتجرررةم ثجمتخطمرررتة.جيتلثررر جمعللررررة ىجملمق رررتحجفررريجف يرررلأجفتعررر  ةجملم ررررتةبوتج
(
م خرررو جمعقررر م جأة ةفو يعيرررو

ررروجف م ةجمع ررروةنجمععرررواجعلجمرررة جةمع ررروة يوتجمع    يرررلأجفونرررتخ ماجاهررر جمعللت رررلأجمعقويلرررلأج  رررمجمف ررر م ج م ررر جمعتيرررروتجملمتخمرررتةج يلوفيعي)

اعياررلأجمتج ميررقذجةمضز  ررواذجىترر .جيُلارروكيجمعللررة ىجملمًةارروتذجةمعتخمررتمتجمع رروة يلأجمع   يررلأجةمعاررةمة جفرريجمعررلامجملمعقرر ةج م رر جمتجمررة ج

ورررلأجفررريججمعهويورررلأجمعارررتج تلثررر جفررريجملمصرررومنجفررريجملممرررا جمتجررر ما.ج  رررمجة ررر 
ّ
معتلا يررر جقللررروجفتطتيرررقجمعللرررة ىجملمق رررتحج  رررمجى م ةجمتجمرررة جملمتلث

ج
(
ملمصرررومنجفررريجمعطررروفقجمععورررة جعلجررر اجملمًررريجمعمررر بفج)نرررط جمتجررر ا(.جنررريقةاجمعللرررة ىجملمق رررتحجفتةعيررر جف  ررر ييجفرررمنجمتجمرررة ج يلوفيعيرررو

ي.جةامل جمفةو جفتع  جمضنرتخ مفوتجملمترو اجم نونريلأجة لعيج لويلأجمعتةعي جةتهجفيج ةعي ج وقوديجعوق م متجملمثوعيلأجعلأ  م جملماوة ب

ج  رمج   رلأجمتجمررة .جيلق رمجالرة ىجنررل جمعقر م جفريجفلاوكرروةج   رلأجمتالهرة جىاررمجث ثرلأجف رتةبوت:جمنرر تم يايلأج
(
طترقج ررو ة

ُ
عوللت رلأجمعارتج 

ضجيررررتمج قرررر يمجأ جفعوةفرررروتج ررررة ججة عتيعيرررلأجة مررررخيويلأ.جيررررتمج نررررمجمتخطررررلأجةةررر  هوجمع  رررروديجفرررريجملم ررررتة جمضنرررر تم ي ي.جفرررريجةرررتمجملم ررررتة ذ

ل رررتج ليررر جم  مرررطلأجعع رررهي جمتخطرررلأجملمةضرررة لأ.جيعلررروة جةرررتمجملم رررتة جمعقررر م متجقصرررمتةج
ُ
معاررر ةبجمتجقيقيرررلأ.جفررريجملم رررتة جمعتعتيًررريذج 

مجىامجفعوةفوتج  ي ة.جيعلوة جملم تة جمععمخي يجمف ر م متجةم  مرطلأجمعت  ايرلأجمعارتجم   جفث ج البجمععقتوتجأةج خيمتجمتخططجمنعلو )

 ررررمج طةب ةرررروج  ررررمجملم ررررتة جمعتعتيًرررري.جمعهرررر بجفرررريجةررررتمجمعتلاررررثجةررررةجفلاوكرررروةجمع رررروة يوتجةمعاررررةمة جمتجقيقيررررلأجف قررررلأجفلرررروجي ررررل جفو خررررو ج

قرر م متجفطررة ةجعتلا رررمنج لويررلأجى م ةجمتجمرررة جملمعقرر ةجفررريجظرر ةبجفختو ررلأ.جة رررتعرجأنجاًررةنجقرررو  بيج  ررمجفلاوكررروةجمع رروة يوتجمعت يرررلأج

 ررررمجاترررروي جفةثةقررررلأ.جنررررةبج لعللرررروجاترررروي جمعللررررة ىجفرررريج قيرررريمجمعارررر ةبجمعاررررتجقرررر ج لارررر ثج م رررر جمعمررررتعلأذجةمعتلارررريمجمعررررتم يجعلجصررررة ج 

 ة لا منج هللوجع   تمضوتجةمعتطة متجملم تقتويلأجمعاتجيلعيجأنجيًةنجعهوجأث ج تمتجفيجى م ةجمتجمة 

 
We develop a multi-level, multi-stage, agent-based framework that automates decision-making processes during crowd 

evacuations in dangerous scenarios. We model a hybrid architecture for managing crowd individual behaviors, and 

overall crowd behavior, using a heterogeneous agent-based modeling approach within dynamically changing 

environments due to external stimuli such as fires, congestions, etc. Our novel multi-component, agent-based modeling 

framework is applied to simulate the components, varying individual behaviors and phenomena of complex systems 

within massive crowds that represented among prayers in the last floor (the upper level) of Al- Haram Al-Sharif Mosque. 
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The proposed framework integrates a probabilistic model with a dynamic generating process of intelligent guide agents, 

which enables the automatic generation of decisions that are optimal for neighboring agents. The versatile agent-based 

framework we have developed encompasses the fundamental principles of modeling as commonly applied to crowd 

dynamics. Our crowd dynamics decision-making modeling is organized into three levels: strategic, tactical and 

operational. The formulation of a plan and its final objective are drawn at the strategic level. At this level, no information 

is provided about the real circumstances. At the tactical level, we compute and perform all activities to facilitate the 

formulated plan. This level addresses short-term decisions like avoiding obstacles or changing plans based on new 

information. The operational level addresses the physical actions and activities developed at the tactical level. We aim to 

accurately simulate the real crowd behaviors and phenomena, allowing for improved decisions taken to enhance the 

complex process of crowd management under various scenarios. Also, our goal is to be able to mimic intelligent, self-

organizational behaviors and gain reliable results. The model results will enable us to evaluate the conditions that might 

occur within the network and improve our understanding of which assumptions and future developments could have 

the most impact in managing crowd. 

Introduction 

Multi-agent systems are used to model and simulate complex systems, which range across various contexts and both 

biological and social systems. This simulation method is known as agent-based modeling (ABM) [1, 2]. The ABM 

approach which models complex systems is a form of optimization of individual solutions [3, 4]. The agents in the 

decentralized system have no direct information about their global position but do have information about their nearby 

neighbors and their environment locally. However, they can use this local knowledge to collectively construct a 

coordinate system [1-4].  

Here we present a novel multi-component, agent-based modeling framework that simulates the components, behaviors 

and phenomena of complex systems [5, 6]. A decentralized multi-agent control strategy is proposed and investigated on 

an autonomous microgrid. In a crowd complex system [2, 4], agents adjust their behavior according to their current 

states, to other agents’ states and to their environment. Thus, ABM is a suitable approach to use to study crowd 

behaviors. Our model [6] is a computational discrete-time simulation scheme. We outline our support system with 

finite-state machines and use a genetic algorithm to optimize the selections and decisions taken by crowd individuals. 

We build the model to explain and predict observed interactions among real agents [6]. 

Research aims  

We aim to accurately simulate the crowd behaviors and phenomena, thereby improving crowd management decisions. 

To ensure the effectiveness and robustness of our model in supporting crowd management decisions, we build a novel, 

multi-component, agent-based modeling framework. To this agent-based framework we introduce an adjustable 

approach for simulating human perception and decision-making in dangerous scenarios. The events that occur during a 

crowd evacuation are complex and have far-reaching implications for the safety of individuals [7]. Our framework will 

support crowd management decisions by elaborating what-if scenarios. Also, we aim to support event planners’ and 

building designers’ decisions. We use modeling and simulation as a means for developing a deep understanding of both 

complex systems and complex adaptive systems behavior. Because of the emergent phenomena of complex systems, 

ABM is an effective approach to address the question of how a system’s behavior connects to the behaviors and 
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characteristics of its individual components. The main goal of this work is to create a model that is able to simulate 

varying individual behaviors within massive crowds that represented among prayers in the last floor (the upper level) of 

Al- Haram Al-Sharif in Makkah [8] (Fig. 1), during evacuation.  

Research methodology  

In this proposed model we exploit the ABM approach and the non-homogeneous CA [9-18] to provide a multi-layered 

decision support system in cases of crowd evacuation. The work we propose here develops a new simulation method to 

understand the movement of large crowds during evacuations from buildings. Our work introduces a multi-leveled 

model where pedestrian dynamics are divided into three main levels of decision making [16, 18]: strategic, tactical, and 

operational. The planning for pre-trip of the route and the final destination is designed at the strategic level. At this level, 

no information is provided about the real circumstances [19]. At the tactical level, decisions for short term, like avoiding 

obstacles or change of route depending on the real situation, are addressed. Additional information about the crowd 

such as the flow of agents is available at this point [20]. The operative level represents the agents’ movement that 

includes the connection with other pedestrians [21]. 

Our simulation model consists of multiple sub-models, as it is shown in the system overview in Fig. 2, starting with the 

model of how the agent selects its goal destination. Then, we model the act of avoiding obstacles as well as collision 

with neighbored agents. Also, our hybrid version of agent-based model includes simulating the leading and following 

behaviors of agents after dynamically upgrading certain agents to the intelligent level and enabling them to perform 

some sort of guidance behavior, as detailed below. Besides avoiding collisions with neighboring agents, the framework 

also includes a model of avoiding high density areas in order to reduce the overall travel time. Our work represents an 

approach for modeling and simulating complex and dynamic crowd systems, both at microscopic and macroscopic 

levels. The highest layer represents the macroscopic phenomena of the crowd that would be difficult to model in CA 

frames. This layer represents the connections between intelligent guide agents to enhance the decisions for the whole 

system as it will be described below. The base layer is composed of a high determination CA framework for every open 

space, which shows how the agents’ neighborhood moves as well as the development of decision-making at the 

microscopic level of the system. Fig. 3 demonstrates the two-layered structure of the proposed system. 

The environment component of this ABM model defines the elements of the physical space, such as a city, building, 

roads, etc. The simulation environment is presented as a lattice, which is a two-dimensional array of n × n cells. We have 

designated specific types of cells in a lattice of a non-homogeneous cellular automaton. These are obstacle cells, which 

are unreachable, target cells, which represent exits in the evacuation scenarios, and the reachable cells, which are 

considered as the movement space. In this model, static floor field (SFF) [22] is used to indicate the distances to a 

destination for every agent in the environment. A target static floor field value is assigned to every cell to describe the 

distance to the earliest chosen target (exit).  

The agents in our model are randomly assigned with objective and subjective parameters at the beginning of the 

simulation. The individuals’ characteristics, or subject parameters, include awareness of the environment, education 

level, cooperativity, adaptability, flexibility, perception of potential risks, acceptance to follow orders, and ability to 

access global information about the environment. On the other hand, agents’ objective characteristics include age, 

health status, propensity to panic, mobility, and communication capability.  
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1. Target-driven decision-making model  

The optimal initial target decision is impacted by different factors that the agents perceive from the environment. In our 

model there are four important factors: the distance to a target, the width of the target (exit), the speed of the agent, and 

the density at the target. For each agent a we calculate the initial target decision (ITD) function for each target. For j 

targets in the environment, the ITD function is calculated as follows:  ITD(a)=min( 
𝑑𝑗

𝑠𝑎
 + 

𝑡𝑑𝑗

𝑤𝑗
 ) ,          

(2) 

2. Transition decision-making model  

At every time-stamp, the agent a will move to the neighbor empty cell with the highest transition probability, pij, to move 

to an unoccupied neighbor cell (i, j) that is determined by the four factors: dynamic floor field, target floor field, 

obstacles floor field, and the density around the next target cell. In each time-stamp, the dynamic floor field Dij decays 

with some probability and diffuses with some probability to one of its eight neighbor cells. In order to calculate the 

dynamic floor field, we first initialize all the cells to 0, i.e., at t = 0, D0
ij = 0 for all cells. Then we calculate the dynamic 

floor field (DFF) according to decay and diffusion as follows:  

 

𝐷𝑖𝑗
𝑡+1 = (1 − 𝛼)(1 − 𝛿)𝐷𝑖𝑗

𝑡 + 
𝛼(1−𝛿)

4
 (𝐷𝑖+1,𝑗 

𝑡 + 𝐷𝑖−1,𝑗 
𝑡 +  𝐷𝑖+1,𝑗+1

𝑡 +  𝐷𝑖+1,𝑗−1
𝑡 + 𝐷𝑖,𝑗+1 

𝑡 +

𝐷𝑖−1,𝑗+1
𝑡 + 𝐷𝑖,𝑗−1 

𝑡 + 𝐷𝑖−1,𝑗−1
𝑡 ) ,          (3) 

In our model, we also consider that people usually avoid walking close to walls and obstacles. In our model, the 

repulsive obstacle potential is inversely proportional to the distance from the obstacles. Thus, the impact of the target 

static potential field is affected by the obstacles floor field (OFF). The values for the cells occupied by obstacles is set to 

be the higher values of the cells in the environment. The obstacles’ static potential field is calculated as follows: OFF(x,y) 

= min(Dmax, dx,y ) ,       (4) 

For each agent ai, we calculate the transition probability to each empty cell (x, y) in its Moore neighborhood as follows:  

 

P(x, y) = N exp (−kTTFF(x, y) + kD DFF(x, y) + kO OFF(x, y) + kden Den(x, y) + kI I) ,   (5) 

3. Agent status upgrading model  

The third stage in the ABM simulation is to classify different types of agents in the environment. The agent-based model 

here represents two sets of evacuees: the first set who is familiar with the building geometry, and the other one who is 

unfamiliar. In our proposed model, this is a major stage as we examine the agents’ expected behaviors. This 

classification is done based on subjective and objective characteristics of the individual agents, as shown in Algorithm 1. 

Being an intelligent agent means that agent is relied upon during the decision-making processes by other agents. 

Particularly, unfamiliar agents apply only the operational level of crowd modeling by following or mimicking intelligent 

agents’ movements, thus maintaining the collective pattern.  
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ALGORITHM 1: Agents’ Status Upgrade  

for each agent a in the simulation environment do  

a.Objective-Parameter = Random [0,1];  

a.Subjective-Parameter = Random [0,1];  

end  

Divide the environment space into equal regions;  

for each environment region do  

if (Density > Density-T hreshold) then 

if (a.Objective-P arameter < Objective-T hreshold) and  

(a.Subjective-P arameter > Subjective-T hreshold)  then  

a.Status = Intelligent;  

a.MooreNeighbors.Status = Follower;  

end  

end  

end 

4. Evaluation of trustworthiness model  

Trust between agents is defined as the agent’s expectation about another’s perspectives. In our model, we investigated a 

trust evaluation algorithm for agents in a multi-agent system based on the trustworthiness of related intelligent agents. 

We introduce here the trust concept as the agent’s confidence in the ability of a related intelligent agent (information 

source) to deliver accurate information. Particularly, the probability that a following agent would approve of an 

intelligent agent’s opinion on a specific target is dependent on the approval of the neighboring agents about the 

decision taken by the intelligent agent. Suppose an intelligent agent p provides knowledge, or decision q to agent a. 

Suppose n neighboring agents have contributed to the current decision q. In other words, agent a trusts intelligent agent 

p if trustworthiness probability value is greater than or equal to a predefined threshold. The trustworthiness probability 

about the decision q is calculated as follows:  

𝑃(𝑞) =  𝜉 ∑ ∑ 𝑃(𝑞|𝑎𝑖
𝑗
)𝑃(𝑎𝑖

𝑗
) 2

𝑗=1
𝑁
𝑖=1 ,      (6) 

Results and discussion 

The ultimate aim is to test the capability of the presented model in improving the crowd behaviors during evacuation. 

Also, one of the main criteria for the performance evaluation of our crowd simulation model is the total travel time 

needed for the agents to reach their individual goals. We should ensure the shortest possible trip time for the agents to 

reach their destinations. Different attributes of the crowd have to be considered in the implementation of the model. 

This includes, but is not limited to, the individual characteristics of the agents, such as language, culture, age, and 

environment obstacles that could be caused by external events or the agents themselves.  

Fig. 4 shows the variation of density to each target’s static floor field (TFF). The blue radiance represents the higher force 

of attraction of the TFF value, while the yellow radiance illustrates avoiding areas that delay agents from reaching their 

exit. 

The distribution of agents is random throughout the environment at the beginning of the simulation. When an agent 

reaches its target, he is considered evacuated from the environment, and removed from the simulation. The simulation 
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model was run with ten thousand agents (prayers) in two different cases. The first case represents our model where the 

tactical level is involved. In the second case we only implemented agent-based simulation without involving the tactical 

level. That means there is no existence of intelligent agents in the simulation, and no application of trustworthiness.  

Our approach has yielded three main insights. The first finding illustrates the model’s capability of improving the crowd 

flow pattern. Fig. 5 shows that agents’ flow rate was higher in our proposed model (case 1) than the traditional ABM 

application (case 2). That indicates the ability of our model to improve the overall crowd flow during evacuation. We 

also found that the agents’ average speed during the simulation was higher in the proposed model. Fig. 6 shows the 

estimation of the average speed of 400 agents during the simulation.  

The second result is related to demonstrating the model’s efficiency in promoting the crowd overall travel time during 

evacuation. Specifically, we observed that all agents in the environment have been evacuated in a short and reasonable 

time, while it took the agents a longer travel time to evacuate in the traditional ABM model, as shown in Fig. 6 that 

shows the total travel time for 200 agents in both cases. This result proves the benefit of relying on an intelligent agent 

to improve the evacuation overall travel time.  

The results demonstrate the efficiency of our models in accurately simulating the events during crowd evacuations. 

Considerable changes of crowd dynamics have been detected during the simulations such as transitioning from a 

random to a coordinated motion and avoiding obstacles and high-density areas. We observed significant improvement 

of crowd flows during simulations compared to that observed with traditional applications of ABM. These observations 

could influence multiple aspects of how evacuations are planned. For example, design of where the exits are located in 

buildings, and how individuals are trained to behave during an evacuation. Taken together, our results show that the 

proposed multi-leveled multi-staged agent-based model outperforms the traditional ABM approach in improving the 

crowd dynamics during evacuation in a high-density simulation logic.  

Summary and conclusion: 

Our proposed ABM model was able to improve crowd management solutions by considering the diversity of prayers 

and their characteristics involved. The aim of our model in such cases is to help Hajj and Umrah crowd management 

authorities build successful schemas by predicting the crowd’s behaviors. Our model uses a finite state machine, in 

conjunction with an agent-based model, to determine how agents interact with each other locally in order to generate 

collision-free trajectories. The results of our model showed the ability to support the heterogeneity and high density 

observed among the massive number of prayers of Al- Haram Al-Sharif. That includes using small time steps in order to 

consider different pedestrian speeds and reduced mobility of some of them, e.g., elderlies. Our experimental results 

provide evidence that the hybrid, multi-layered approach can be successfully applied to efficiently simulate agent 

behaviors in intensive crowd environments. This research will provide promising solution to facilitate crowd 

management in case of increasing number of pilgrims based on 2030 vision; where the number of pilgrims will increase 

to approximately four and a half million in Hajj and thirty million in Umrah [23].  

Recommendations: 

One of the essential applications of our model will be crowd management during the enormous annual gathering of the 

Hajj [24]. The Hajj involves over two million people from approximately 150 countries. The complex multi-agent 

system represented by thein Hajj includes many agents, such as people with substantial variety of objective and 
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subjective characteristics, vehicles, communication systems, disaster and crowd management authority, etc. The Hajj 

crowd consists of a heterogeneous set of pilgrims with varying physical capacities and activities. Due to the special 

features of the Hajj, which include the massive number of people and approximately 30,000 vehicles contained in a 

limited space over a short period of time, crowd disastersجsuch as stampedes and overcrowding are common [25, 26]. 

The crowd density during pilgrimages is extremely high. Many studies have been conducted attempting to improve 

crowd management during Hajj to avoid such disaster [24, 25, 27]. The model’s implementation focus will include 

several real-world, expected scenarios during pilgrimage. These include evacuations under risky conditions, control of 

the crowd in case of panic, regimenting the massive number of pedestrians and vehicles quickly and in a safe manner, 

and improving the crowd management processes in the event of an increased number of pilgrims. 
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