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Abstract  
Atmospheric particulate matters, especially those with smaller sizes such as PM10 are 

associated with numerous adverse health and environmental impacts.  PM10 concentrations 

are high in Makkah and exceed air quality standards. High PM10 levels might pose threat to 

human health, therefore for effective management it is vital to investigate and model the 

effect of different factors on PM10 concentrations in Makkah. In this paper for the first time 

in Makkah a quantile regression model (QRM) is developed using hourly PM10 

concentrations (µg/m
3
) as dependent variable and several air pollutants and meteorological 

variables as independent variables for year 2012. QRM addresses the problem of non-

normal distributions of air quality data, and non-linearity in the association of PM10 with 

the covariates. All covariates show significant effect at least at one or more quantiles, 

however, wind speed, carbon monoxide (CO), nitric oxide (NO) and previous day PM10 

(lag_PM10) concentrations have significant effect at all quantiles and hence are considered 

the most important factors for controlling PM10 concentrations. Furthermore, CO has 

negative impact, whereas wind speed, NO and lag_PM10 have positive impact on PM10 

concentrations. The strength, nature and direction of coefficients vary at different quantiles 

of the PM10 distribution. The performance of the model was assessed using several 

statistical metrics, including correlation coefficients (R, 0.82), factor of 2 (FACT2, 0.96), 

Root Mean Square Error (RMSE, 129), Normalised Mean Bias (NMB, 0.12) and 

Normalised Mean Gross Error (NMGE, 0.34). The values of these metrics and graphical 

presentations show that QRM performs better and explains significantly more variations in 
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PM10 concentrations than the multiple linear regression model (MLRM). To the best of our 

knowledge, this is the first study that uses a quantile regression approach for modelling 

PM10 levels in Makkah and probably elsewhere, and may help characterise and manage 

PM10 concentration in Makkah.  

Objectives of the study 

The aim of this research paper is to model PM10 concentration and investigate its 

association with other air pollutants and meteorological variables with the help of quantile 

regression model. The main objectives of the study are given below:  

1. To analyse PM10 concentration and characterise its behaviour in Makkah; 

2. To investigate the association of PM10 with other air pollutants;  

3. to analyze PM10 concentration and characterise its behavior in relation to 

meteorological parameters in Makkah 

4. To assess the performance of QRM for modelling PM10 in Makkah;  

5. To compare the performance of QRM and MLRM for predicting PM10 in Makkah;  

6. To emphasise the need for analysing the whole distribution of dependent variable, 

rather than only the central value (mean or median); 

7. To help better manage PM10 and reduce its adverse impact on human health in 

Makkah.  

Keywords: PM10, air pollution, Makkah - Saudi Arabia, Quantile Regression Model. 

Introduction 

Air pollutants have negative impacts on human health, agricultural crops, ecosystem and 

building materials (e.g., Dockery et al., 1993; Burnett et al., 2000; WHO, 2004). 

Atmospheric particles aggravate chronic respiratory and cardiovascular diseases, alter host 

defence, damage lung tissues, lead to premature death, and possibly cause cancer (WHO, 

2004; Hassan, 2006). Furthermore, particles have a range of important non-biological 

impacts, including soiling of man-made materials and buildings, reducing visibility and 

affecting heterogeneous atmospheric chemistry (Harrison, 2001). The adverse impacts of 

air pollutants are not limited to local areas where the pollutants are emitted and rather 
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extend to regional and global levels in the form of acid rain and ground level ozone, which 

have transboundary impacts (e.g., AQEG, 2009; Hassan et al., 2013). 

Makkah is one of the busiest cities in the world. Every year millions of people visit the city 

due to its religious importance. The high level of air pollutants is one of the growing 

concerns in Makkah, especially during the season of Hajj and Umrah as reported by 

several authors (e.g., Al-Jeelani, 2009; Othman et al., 2010; Seroji, 2011; Munir et al., 

2013a; Munir et al., 2013b, Habeebullah, 2013). PM10 concentrations in Makkah exceed 

air quality standards set for the protection of human health. The reasons for the high 

particulate matter concentrations are most probably high volume of road traffic, 

construction work, resuspension of particles, windblown dust and sand particles, and 

geographical conditions (arid region) with hot temperature and low rainfall (Khodeir et al., 

2012; Munir et al, 2013b). Furthermore, it is reported that the concentrations of PM10 in 

Makkah have increased during the last 15 years or so (Munir et al., 2013b).   

PM10 levels are affected wind speed and direction, relative humidity, temperature, and 

rainfall (e.g., Baur et al., 2004; Elminir, 2005; Ordonez et al., 2005; Cheng et al., 2007; 

Beaver and Palazoglu, 2009; Pearce et al., 2011). Wind speed, turbulence level, air 

temperature, and precipitation affect the re-suspension of particles from the ground 

surface, their residence in the atmosphere, and the formation of secondary pollutants 

(Bhaskar and Mehta, 2011). Furthermore, other air pollutants, such as carbon monoxide 

(CO), sulphur dioxide (SO2), and nitrogen oxide (NOx) can result in secondary aerosols 

formation, for example, SO2  is oxidised in the atmosphere to form sulphuric acid (H2SO4), 

which can be neutralised by ammonia (NH3) to form ammonium sulphate ((NH4)2SO4). 

Similarly Nitrogen Dioxide (NO2) is oxidised to nitric acid (HNO3), which in turn can 

react with NH3 to form ammonium nitrate (NH4NO3). Secondary sulphate (SO4
-2

) and 

nitrate (NO3
-
) particles are usually the dominant component of fine secondary particles 

(Harrison, 2001; WHO, 2003). Moreover, the interaction of these pollutants with each 

other and with PM10 can result in synergistic (positive interdependence) or antagonistic 

(negative interdependence) effects that can affect the adverse impact on human health and 

natural environment (WHO, 2003). How meteorology and other air pollutants affect the 

concentration of PM10 in an arid region like Makkah, where air quality data are limited, is 

not well characterised. Therefore, advanced modelling studies are required to analyse the 
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effects of various controlling factors that can help in understanding and effective 

management of PM10 concentrations in Makkah and elsewhere.  

Recently a generalised additive model (GAM) was developed to investigate the association 

of PM10 with various predictors in Makkah (Munir et al., 2013a), however GAM like 

multiple linear regression models focuses on the mean level of dependent variable (here 

PM10) and fails to model the whole distribution, including extreme values, which are 

probably more important from public health point of view. In this paper, a quantile 

regression model (QRM) is employed to model PM10 concentrations. QRM is an advanced 

modelling approach that can help model the effect of independent variables on various 

quantiles of the dependent variable. QRM is also applicable to non-normal air quality 

distribution and can address the inherited non-linearities in the association between 

dependent and independent variables.  

 

Methodology 

Data source 

This study uses a one year data measured at the Presidency of Meteorology and 

Environment (PME) monitoring station, situated near the Holy Mosque (Al-Haram) in 

Makkah, Saudi Arabia for the year 2012. The monitoring site and the air quality network 

in Makkah have been defined in Munir et al. (2013a and b) and are shown in. This study 

characterises PM10 concentration (µg/m3) with the aid of several air pollutants (CO 

mg/m3, SO2 µg/m3, NOx µg/m3) and meteorological parameters (relative humidity (RH %), 

Temperature (T oC), wind speed (WS m/s), Wind Direction (WD degrees from the north) 

and atmospheric pressure (P) measured in hectopascal (hPa), which is equivalent to the 

conventional unit millibar (mbar). A summary of these parameters is presented in Table 1, 

showing minimum (min), 1st quartile (0.25 quantile), mean, median (0.5 quantile), 3rd 

quartile (0.75 quantile) and maximum levels of the given parameters. These parameters 

are continuously monitored at the PME monitoring site. Gaseous air pollutant levels can 

be expressed as mixing ratios [e.g., parts per million (ppm) or parts per billion (ppb)] or as 

concentrations (e.g., μg/m3 or mg/m3), however, PM10 are always expressed as 

concentration (e.g., μg/m3). In this paper all pollutants are expressed as concentrations 
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(μg/m3 or mg/m3) to be consistent in the use of units for both gaseous and non gaseous 

pollutants. 

In order to make the collected data useful and to provide a sound scientific basis for 

comparison against air quality standards, public information or policy development, the 

data need to be accurate and reliable. Strict QA/QC (Quality Assurance and Quality 

Control) measures are taken to ensure the quality of data. This process makes sure that the 

data are (a) Genuinely representative of atmospheric concentrations in the areas under 

investigation; (b) Representative over the period of measurement. Data capture is greater 

than 90 % for all parameters, except SO2 where 88 % data were present. 

 It is shown in Figure 2 that PM10 concentrations and independent variables are not 

normally distributed. The histograms are right (positive) skewed. This has been reported 

previously by several authors (Duenas et al., 2002; Munir et al., 2011) elsewhere that air 

pollutants and meteorological variables are not normally distributed. The majority of 

classical statistical tests are based on the assumption that the data to which the tests are 

applied should exhibit a normal distribution (i.e. bell shape, symmetrical and with a 

common mean and median).  If the parametric tests are applied to non-normal data, they 

can result in biased or even erroneous results (Reiman et al., 2008). Therefore, before 

applying a classical test it is vital to check data distributions and if the data are non-

normally distributed, robust and non-parametric methods should be applied that are not 

based on such assumptions. 
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Figure 1. Map of the air quality monitoring sites in Makkah (Munir et al., 2013b). 

Table1. Showing a summary of the parameters used in this study measured at the PME 

monitoring station near the Holy Mosque in Makkah, Saudi Arabia for the year 2012.   

Pollutant Min 
1

st
 

quartile 
Mean Median 

3
rd

 

quartile 
Maximum 

%data 

capture 

1
CO (mg/m

3
) 0 0.79 0.98 1.12 1.27 6.87 95 

SO2 (µg/m
3
) 0 5 8 11 15 125 88 

NO2 (µg/m
3
) 0 27 42 46 61 223 99 

NOx (µg/m
3
) 0 21 33 42 52 367 99 

NO (µg/m
3
) 0 2 5 12 13 299 99 

PM10(µg/m
3
) 0 79 124 180 199 5761 93 

P (hPa) 649 971 975 974 978 984 100 

RH (%) 4 18 31 33 45 86 100 

T (
0
C) 16 27 32 32 36 46 100 

WS (m/s) 0 1 1 1 2 6 100 

WD 

(degrees) 
1 185 285 243 333 360 100 

1
In the table SO2 stands for sulphur dioxide, CO for carbon monoxide, NO for nitric oxide,  
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NO2 for nitrogen dioxide, NOx for nitrogen oxides, O3 for ozone, PM10 for particles with 

aero dynamic diameter of 10 um or less, WS for wind speed, WD for wind direction, T for 

temperature, RF for rainfall, RH for relative humidity, and P for atmospheric pressure.  

 

Figure 2. Histograms showing the frequency distributions of mean hourly data of PM10, 

SO2, CO, NOx, wind speed, and relative humidity at the PME (Presidency of 

Meteorology and Environment), near the Holy Mosque in Makkah, Saudi Arabia for the 

year 2012.  

General Statistics 

Statistical Software R programming language (R Development Core Team, 2012) and two 

packages Quantreg, version 4.9.1 (Koenker, 2012) and openair version 2.13.2 (Carslaw 

and Ropkins, 2012) are used for running QRM, performing other statistical analysis and 

making graphs. Graphical presentations (e.g., histograms, polar plot and scatter diagram) 

are also used to present the outputs of the analysis. 

 



   هـ - بحاث  الا  االعمة  االياثة لأ العلمي  ملتقىال – السجل العلمي 77

 

 

Quantile Regression Model (QRM) 

In this paper QRM model is employed to analyse the effect of covariates (e.g., 

meteorological parameters and other air pollutants such as NOx, CO, SO2) on PM10 

concentrations. QRM allows the covariates to have different contribution at different 

quantiles of the dependent variable distribution (here PM10) and is robust (insensitive) to 

departures from normality and to skewed tails. Air pollutant data are not normally 

distributed as reported by several authors (e.g., Duenas et al., 2002; Munir et al., 2011) and 

is also demonstrated in Figure 1. Furthermore, air pollutants exhibit nonlinear association 

with its predictors (e.g., Gardner and Dorling, 2000; Baur et al., 2004). This means that the 

contributions of the explanatory variables (e.g., meteorological variables) to PM10 

concentration vary significantly at different levels. This suggests that statistical models 

should have the capability to address the linearity and normality issues when applying to 

analyse PM10 data. QRM is capable of addressing these issues. Readers are referred to 

Koenker (2005) and Hao and Naiman (2007) for details on QRM; and to Baur et al. (2004) 

and Munir et al. (2012) for the applicability of QRM to ground level ozone concentrations. 

Baur et al. (2004) modelled the impact of meteorology on ozone concentration in Athens, 

whereas Munir et al. (2012) modelled the effect of road traffic on ozone concentrations in 

the UK. 

Using hourly mean PM10 concentrations as a dependent (modelled or response) variable, 

and several meteorological parameters (T, RH, P, WS, and WD) and air pollutants (CO, 

NO, NO2, SO2 and lag_PM10) as independent variables, a QRM is developed and 

compared with Multiple Linear Regression Model (MLRM). These covariates are 

important for modelling PM10 concentrations and control a significant proportion of PM10 

variations as previously shown by Munir et al. (2013a).  MLRM specifies the conditional 

mean function, whereas QRM specifies the conditional quantile function. MLRM and 

QRM are shown below in Equations (1) and (2), respectively (Hao and Naiman, 2007). 

 

PM10 = βo + β1P + β2RH + β3T+ β4WS + β5WD + β6CO + β7 SO2 + β8 NO + β9 NO2 + β10 

lag_PM10 + εi ...... (1) 
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PM10 = βo
(p)

 + β1
(p)

P + β2
(p)

RH + β3
(p)

T+ β4
(p)

WS + β5
(p)

WD + β6
(p)

CO + β7
(p)

SO2 + β8
(p)

NO + 

β9
(p)

NO2 + β10
(p)

lag_PM10 + εi ...... (2) 

In Equations (1) and (2) βo represents the intercept, β1 to β10 the slopes (gradients) of the 

covariates and εi the error term. The (p) shows the pth quantile and its value lies between 0 

and 1. Equation (1) gives one coefficient for each variable, on the other hand equation (2) 

can have numerous quantiles and will require a separate equation for each quantile and 

therefore will produce numerous coefficients for each variable. This study adopts 11 

quantiles (0.05, 0.1 – 0.9, 0.95) and therefore 11 equations will generate the same number 

of quantile regression coefficients for each covariate. Several metrics are calculated to 

assess the model performance. These metrics are: Root Mean Square Error (RMSE), 

Normalised Mean Gross Error (NMGE), Correlation coefficient (R), Normalised Mean 

Bias (NMB), and Factor of 2 (FAC2). For more details on these metrics, their definition 

and their mathematical formulae see Carslaw (2011) and Derwent et al. (2010).  

QRM makes several predictions, one for each quantile and therefore the metrics used for 

assessing the model performance can be calculated for each quantile. The metrics are 

called local metrics, e.g., local goodness of fit, local MRSE and local FB etc. The local 

metrics cannot be compared with the metrics estimated for MLRM, as they have different 

nature (Baur et al., 2004). Therefore, global metrics need to be estimated for QRM to take 

account of all quantiles and make them comparable with MLRM. To estimate global 

metrics for QRM, this study adopts the amalgamated quantile regression model (AQRM) 

technique suggested by Baur et al. (2004). However, Baur et al. (2004) have used only 

coefficient of determination (R
2
) value for assessing the model performance, whereas this 

paper extends this concept further to other metrics (NMB, NMGE, RMSE, FAC2). The 

first step is to run QRM and determine quantile regression coefficients for all the quantiles 

used in the model.  QRM will normally give numerous predictions according to the 

number of quantiles. To turn those into one global prediction, the dataset is divided into the 

same number of subsets as the number of quantiles and then the model for that respective 

quantile is used to predict PM10 concentration. The predicted PM10 concentration for these 

quantiles is then re-integrated in such a way that it corresponds to the observed 

concentrations in the exact order. This gives a global prediction (prediction taking into 

account all quantiles), which is compared with observed concentration to calculate various 
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metrics for assessing the performance of the model using various metrics according to the 

formulae given by Carslaw (2011) and Derwent et al. (2010).  

 

Results and Discussions 

The outputs of QRM (Equation 2) and MLRM (Equation 1) are depicted in Figure 3, 

which shows the effect of various covariates on PM10 concentration. The quantiles used in 

this study are shown on x-axis and their respective coefficients (slopes) are shown on y-

axis. The dashed-dotted black line represents the coefficients of QRM, the solid red line 

represents the coefficient of MLRM and the solid black is the zero line. When any of the 

confidence intervals overlaps with zero line, it shows non-significant effect and vice versa. 

Understandably negative coefficients show negative effect, whereas positive coefficients 

show positive effect of the independent variables on PM10 concentrations.  

The first panel in Figure 3 shows the intercept of the model. The intercepts are within the 

range of +100 and -113 for quantile 0.9 and 0.8, respectively, except quantile 0.95 which 

has higher intercept. Positive coefficients show positive effect whereas negative 

coefficients show negative effect of the covariates on the PM10 concentrations. The effect 

of atmospheric pressure (Figure 3, top-middle panel) is significant only at quantile 0.95 

and for the rest of the quantiles the confidence intervals overlap with zero line, showing 

non-significant effect. Significant negative effect at quantile 0.95 may be due to the fact 

that high PM10 concentration in Saudi Arabia is linked with high wind speed which in turn 

is associated with low pressure. This means high PM10 concentration is linked with low 

atmospheric pressure. It is worth mentioning here that quantile 0.95 is related to high PM10 

concentration and not with high atmospheric pressure, however the negative coefficients 

signify negative association of pressure with PM10 concentration. Relative humidity shows 

significant negative mean (average) effect, which is significantly different from the effect 

at various quantiles. Furthermore, the negative effect of relative humidity is significant at 

quantiles 0.05 to 0.3 and negative but non-significant at higher quantiles. As reported 

previously by Munir et al. (2013a) that high relative humidity is generally linked with 

nighttime hours when dust concentration is generally low and therefore shows negative 

correlation with PM10 concentrations. Furthermore, high relative humidity might be related 

with precipitations which wash out the atmospheric particles. Duenas et al. (2002) has 

reported that relative humidity plays an important role in the overall reactivity of the 
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atmospheric system, either by affecting chain termination reactions or in the production of 

wet aerosols, which in turn affect the flux of ultraviolet radiation. Furthermore, relative 

humidity is also considered to be a limiting factor in the disposition of NO2 because high 

percentages of humidity favour the reaction of the NO2 with salt particles, e.g., sodium 

chloride. Barmpadimos et al. (2011) have reported that the relationship between PM10 and 

relative humidity is not the same for different monitoring sites. They have shown that the 

nature of relationship between relative humidity and PM10 changed at various monitoring 

sites and also at different levels of the relative humidity, e.g., the association was positive 

at low relative humidity (< 60%) and negative at high relative humidity (> 60%).  

The effect of temperature on PM10 concentration is insignificant at extreme values (top and 

bottom 10%) and significant at the middle quantiles (0.2 to 0.8), where the effect is 

positive. High temperature can results in enhanced resuspension of soil and road dust, and 

formation of secondary aerosol, hence a temperature increase from 10 to 35 
o
C increases 

PM10 concentration by a factor of 4 in warm days during summer (Barmpadimos et al., 

2011). High levels of PM10 (extreme levels) in Makkah is mostly caused by sand storms 

and construction activities near the monitoring site (Munir et al., 2013b), which are not 

dependent on temperature as much as on wind speed and direction, therefore probably 

temperature show non-significant effect. The mean effect estimated by MLRM is negative, 

where the regression coefficient is about -2. Mean can be biased by outliers and therefore 

the results of MLRM can be confusing sometimes. This probably shows that for air quality 

analysis more robust metrics (e.g., median or other quantiles) should be used, which are 

not affected by extreme values in the concentrations. When temperature was used as the 

only model input, the effect became positive. This might mean that the effect of 

temperature changes when other inputs are added to the model, probably due to interaction 

of various input variables. The effect of wind speed is positive and significant at all 

quantiles. The effect of wind speed is much stronger: the coefficient at quantile 0.95 is 

about 120. The effect gradually increases as PM10 concentration increases; however, the 

rate of increase is greater at higher quantiles. The stronger effect of wind speed at higher 

PM10 concentration is expected as high wind speed blows sand and dust particles from the 

barren desserts around the Makkah city causing sand-and-dust storms. The effect of wind 

direction is positive at lower quantiles until quantile 0.7 and becomes negative at higher 

quantiles. Because of the circular nature of wind direction, its effect is more complicated 
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and is further investigated with the help of polar plots (Figure 4). The plots are constructed 

by averaging pollutant concentration by wind speed categories (0–1 m/s, 1–2 m/s, etc.) as 

well as wind direction (0–10, 10–20, etc.). In polar plots the levels of PM10 concentration 

is shown as a continuous surface, which is calculated through using Generalized Additive 

Models smoothing techniques (Carslaw and Ropkins, 2012). It can be observed in Figure 4 

that highest PM10 concentration is related with high wind speed (5 – 6 m/s) from the 

southeast direction. In addition at a wind speed about 3 m/s relative high PM10 

concentration is shown in the west, northwest and east direction. Mostly low PM10 

concentration can be observed at low wind speed (< 2 m/s) from all direction. Further 

investigation of the local area revealed that there was a large construction work going on 

near the Holy Mosque in the west to northwest direction. There are some barriers between 

the monitoring site and construction location; however it seems like when westerly wind 

blows at a speed greater than 2 m/s, the dusts manage to reach the monitoring site. On the 

eastern side, there is a busy road (Masjid Al-Haram road) and a couple of bus stations, 

which probably contribute to the monitored concentration. 

CO shows negative effect on PM10 and the strength of coefficients (in absolute terms) 

increase as PM10 concentration increases. The effect of CO is significant at all quantiles 

and coefficients range from -8 to -47 at quantile 0.05 and 0.95, respectively. Mean 

regression coefficient was -60, which is stronger than the quantile coefficients; however it 

is not significantly greater than the coefficients of quantile 0.9 and 0.95. The effect of SO2 

is negative and significant at most of the quantiles, except at quantile 0.05, 0.8 and 0.9. 

Mean regression coefficient is about -2 and is significantly greater than the quantile 

regression coefficients. The positive effect of NO2 is significant at quantile 0.05 to 0.6, 

whereas at higher quantiles (0.7 to 0.95) the effect is insignificant. On the other hand the 

effect of NO is positive and significant at all quantiles. Furthermore, the strength of 

coefficients gradually increases from quantile 0.05 to 0.95, in contrast to NO2, where the 

strength of coefficients shows the opposite pattern. The effect of lag_PM10 is also positive, 

as expected and the effect becomes stronger as the concentration of PM10 increases. Fine 

and extra fine particles stay in the atmosphere for long time and contribute positively to the 

measured concentration hours or even days later (Munir et al., 2013a) probably that is why 

lag_PM10 demonstrate positive effect. 
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It can be observed in Figure 3 that the effect of independent variables on PM10 

concentration is not linear and changes as the concentration of PM10 changes. Sometimes 

only the strength of coefficients changes and the nature (positive or negative) remains 

unchanged as in the case of wind speed, CO, NO and lag_PM10, whereas other times both 

strength and nature of the coefficients change as in the case of atmospheric pressure, 

temperature and wind direction. It is shown that independent variables can have significant 

effect at some quantiles and insignificant at other quantiles (e.g., pressure, relative 

humidity, temperature, wind direction, SO2 and NO2), however, wind speed, CO, NO and 

lag_PM10 have significant effects at all quantiles. The insignificant effect is mostly related 

with high quantiles, for instance in the case of relative humidity, temperature, NO2 and 

SO2, however, temperature, pressure and SO2 also show insignificant effect at lower 

quantiles. This sort of relationship usually remains hidden when applying linear models, 

e.g. MLRM, which assume linear association between dependent and independent 

variables.. 

 Other air pollutants (e.g., CO and SO2) would be expected to show positive correlation 

with PM10 because they have the same sources of emissions (e.g., road traffic in urban 

areas or at roadside locations) and also can add to secondary air pollutant formation, for 

example the conversion of SO2 and NOx to sulphate (SO4
-2

) and nitrate (NO3
-
) ions, 

respectively.  However, here the association is predominantly negative, particularly the 

association of CO and SO2 with PM10. To investigate this further, scatter plots of CO, SO2 

and NOx against PM10 are shown in Figure 5, where the number of data points are colour 

coded to show where most of the data points lie (left to right and top to bottom, panel 1- 3). 

Figure 5 clearly shows (left to right and top to bottom, panel 4-6) two different patterns. 

The red colour shows high PM10 concentrations associated with low concentrations of 

other pollutants (e.g., CO). The blue colour indicates a different pattern, i.e. as the 

concentrations of other pollutants increase, there seems to be little variation in PM10 

concentrations. As mentioned above wind speed, probably plays the dominant role in the 

negative association of PM10 with other air pollutants. High wind speed, blowing sand and 

dust particles enhances the concentration of PM10 and disperses locally emitted gaseous 

pollutants. Thus episodes of high PM10 are associated with low levels of other pollutants 

and vice versa, which probably explains the negative effect of CO and SO2 on PM10 

concentration (Figure 5). 
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Figure 3. The outputs of quantile regression model showing the effect of atmospheric 

pressure (hPa), relative humidity (%), temperature (
o
C), wind speed (m/s), wind direction 

(degrees from the north), carbon monoxide (CO mg/m
3
), sulphur dioxide (SO2 µg/m

3
), 

nitrogen dioxide (NO2 µg/m
3
), nitric oxide (NO µg/m

3
) and lag_PM10 (previous day PM10 

concentrations µg/m
3
) on PM10 concentration (µg/m

3
). Quantile regression coefficients 

(dashed dotted dark line) and ordinary least square regression coefficients (solid red line) 

are presented with their 95% confidence interval. Various quantiles are shown on x-axis 

and their respective coefficients on y-axis.  
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Figure 4. Polar plot of PM10 concentration (µg/m3) near the Holy Mosque, Makkah, 

colour coded by PM10 concentrations for 2012. 
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Figure 5. Scatter plots of hourly PM10 concentrations (µg/m
3
) versus NOx (µg/m

3
), CO 

(mg/m
3
) and SO2 (µg/m

3
) concentrations measured at PME monitoring stations near the 

Holy Mosque in Makkah, Saudi Arabia, 2012. ‗Counts‘ shows the number of data points, 

meant to present where most of the data points lie. In the lower panels the red and blue 

colour indicates different patterns in the association of PM10 and other pollutants.   

To assess the QRM performance Hao and Naiman (2007) have suggested the estimation of 

local coefficient of determination (R
1
τ), which are calculated for each quantile considered 

in the model. However, R
1
τ cannot be compared with normal coefficient of determination 

(R
2
) and therefore do not aid much in assessing the model performance. In this study the 

approach recommended by Baur et al. (2004) for calculating R
2
 is adopted and extended 

further by calculating several other metrics as suggested by Carslaw (2011) and Derwent et 
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al. (2010). An air quality model is considered acceptable if more than half of the predicted 

values are within a factor of 2 of the observed concentration and faulty if not. Furthermore, 

it is recommended that air quality models are considered acceptable if NMB values lie 

within the range between -0.2 and +0.2 and faulty otherwise (Derwent et al., 2010). Table 

2 shows that both of these metrics for both QRM and MLRM are within in the 

recommended range, and hence the performance of the models is acceptable. In addition, 

the performance of the QRM is better than that of MLRM, for instance FAC2 and 

correlation coefficients for QRM and MLRM are 0.96, 0.82 and 0.82, 0.39, respectively.  

Figure 6 compares observed and predicted PM10 concentrations of both QRM and MLRM 

with the help of a scatter plot, which is very useful for model evaluation (Carslaw, 2011). 

In the scatter plot it is much easier to see where the data lie and to get a feeling about bias, 

etc. Relatively more points lie below the 1:1 line (middle line in Figure 5) in case of 

MLRM and there seems to be a slight negative bias (under prediction); whereas more 

points lie above the 1:1 line in case of QRM, showing slight positive bias (over prediction). 

Particularly at high concentration of PM10 MLRM fails to perform and under predicts PM10 

concentration. The dashed lines show the within factor of two (FAC2) region and it is 

perhaps worth noting that majority of points lie well within this region.  

 

Table 2. Statistical metrics for assessing the performance of the model calculated for the 

testing dataset June 2012 at PME monitoring station in Makkah.   

Metric 
1
QRM MLRM 

FAC2 0.96 0.82 

MB 25.71 -14.35 

MGE 69.66 104.58 

NMB 0.12 -0.06 

NMGE 0.34 0.43 

RMSE 129.06 204.34 

R 0.82 0.39 
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1
QRM stands for quantile regression model; MLRM for multiple regression model; FAC2 

for Factor of Two; MB for Mean Bias; RMSE for Root Mean Square Error; MGE for 

Mean Gross Error; NMGE for Normalised Mean Gross Error; R for correlation coefficient; 

and NMB for Normalised Mean Bias. For definitions and calculation methods of these 

metrics see Derwent et al. (2010) and Carslaw (2011). 

 

Figure 6. Comparison of observed and predicted PM10 concentrations (μg/m3) based on 

the testing dataset for June 2012. The middle solid line is 1:1, and the above and below 

dashed lines are 0.5:1 and 2:1, respectively. So, the area between the two dashed lines 

is the factor of two (FAC2) regions. 

4. Conclusions and Recommendation 

This study employs a quantile regression model to characterise the effect of several air 

pollutants and meteorological variables on PM10 concentration in Makkah, Saudi Arabia. 

QRM characterises the effect of covariates at various quantiles, in contrast to the 

traditional approaches which investigate the effect of independent variables on the mean of 

the dependent variable (here PM10). The effect of the independent variables (pressure, 

relative humidity, temperature, wind speed, wind direction, CO, SO2, NO, NO2, and 
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lag_PM10) was significant at least at one or more quantiles of the PM10 concentrations. 

However, the effect of wind speed, CO, NO and lag_PM10 was significant at all quantiles 

and hence seems to be controlling most of the variations in PM10 concentrations. Scatter 

plots and polar plots were employed to provide further insight into the association of these 

variables with PM10 concentration. The model performance is assessed by calculating 

several statistical metrics, including R (0.82), MRSE (129), FAC2 (0.96), MB (25.71), 

NMB (0.12), MGE (69.66) and NMGE (0.34) and graphical presentation. The values of 

these metrics show satisfactory performance of the models, especially that of QRM, which 

analyses the whole PM10 distribution and is therefore recommended for modelling PM10 in 

Makkah. As a result of this study the following recommendation can be given:   

1. QRM analyses the whole PM10 distribution and outperforms MLRM and is 

therefore preferred over the traditional linear approach; 

2.  Multiple linear regression model fails to capture variations in PM10 concentrations 

and is not recommended for modelling PM10 in Makkah; 

3. This study uses data from only one monitoring station, therefore it is 

recommended to collect data at several sites in Makkah to provide a full picture of 

the spatial variations of PM10 in Makkah.  

4. No air pollutant emission sources (e.g. road traffic) data were available, which 

could further improve the performance of the model. Further work is required to 

quantify the emission of PM10 from various sources and analyse their impact on 

observed concentrations; 

5.  In addition to statistical models, dispersion model should be run to characterise 

different air pollutants and prepare an effective air quality management plan in 

Makkah.   
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