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Abstract:

The integrated simulation of the atomization of round liquid jets by coaxial gas flow
is considered as one of the most important multiphase phenomenon commonly
encountered in nature, engineering applications and as a synthetic process to improve
the climate conditions during Hajj. However, the dynamics of the phase interface is
highly complex, poorly understood, and remains an unresolved problem in the area of
atomization simulation. The use of coaxial jets is widespread in the context of air
blast atomization, that is to say high-speed gas assisted spray formation. The coaxial
jets geometry, operating with a large outer (annular) to inner (central) momentum
ratio is used for its ability to destabilize fragment and mix the central stream in the
outer, rapid stream. These advantages of coaxial liquid jet atomization over those of a
single jet have motivated the present research paper.

The purpose of this paper is to investigate the topological changes of the liquid jet, as
it becomes destabilized by a coaxial gas stream. By assuming a turbulent
environment, the effect of the relative velocity between the two streams on the
deformation and breakup of the liquid jet is investigated. The interfacial stresses
between the two streams are modelled on the basis of RANS equations and the level
set method, which simultaneously; predict the topological changes of the central
liquid jet. Consequently, the spatial characteristics of the instabilities that develop at
the interface between the two streams can be predicted and the mechanism of the
breakup process is recognized .
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Introduction:

The atomization of a liquid jet is one of the challenging problems in computational
physics as it involves complex interface topology of large coherent liquid structures
where the dynamics of the phase interface is highly complex, poorly understood, and
remains an unresolved problem in the area of atomization simulation [1].

The atomization process can be divided into two subsequent processes: i.e., primary
atomization followed by secondary atomization. The primary atomization is the initial
breakup of the liquid jet into large and small liquid structures. It involves complex
interface topology of large coherent liquid structures. The secondary atomization is
the subsequent breakup into smaller drops forming sprays. Consequently, different
modelling strategies are needed to capture the distinct physical processes involved in
each regime [2].

Although many researches have been devoted to numerical simulation of atomization
process, a few methods are able to treat accurately atomization, especially primary
break-up. Usually most models applied for droplets tracking, in the secondary
atomization regime, are based ona Lagrangian approach. But this kind of model is not
well adapted to describe the shear-coaxial primary atomization. Indeed, most of them
assume that all liquid fragments are spherical. Moreover, the spray is very dense in
the primary break-up region, involving a lot of strong exchanges between the two
phases, which cannot be taken into account simply ina Lagrangian manner

Although the coaxial liquid jet has the ability to destabilize fragment and mix the
central stream in the outer rapid stream, most of the previous researches were focused
on the numerical simulation of the primary breakup of a single jet, while the coaxial
liquid jet was received relatively less attention [3].
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Figure 1-a, -b shows the configuration of three different configuration of simple jet,
coflowing jet and coaxial jet, as shown in [4].

(a) (b) (c)

Figure 1 Different configuration and shear layer development for (a) Single jet, (b)
coflowing jet, (c) coaxial jet.

As it can be seen from Figure 1, the complex near field mixing structure of coaxial jet
plays a significant role in the atomization of the liquid core jet and the final droplet
size produced.

The breakup and atomization of a liquid jet injected into a high-speed gas stream is
fundamentally different from that which occurs for the same jet discharging into a
stagnant gaseous environment. When the gas stream momentum flux is of the same
order, or in excess of that of the liquid jet, the atomization is achieved through a
Kinetic energy transfer from the gas to the liquid. This type of atomization is known as
air-assist atomization.

The instability arises at the interface of parallel gas flow and central liquid stream has
been previously studied by many investigators (e.g. [5-9]). Raynal [9] has shown that
the wavelength of the instability, developed at the gas-liquid interface in coaxial jets,
is strongly dependent on the gas vorticity thickness and the density ratio of the two
streams. Amplification of this primary wave structure leads to the formation of
axisymmetric or helical wave sheets which eventually breakup into droplets. The
mechanisms of formation and breakup of these wave sheets or liquid tongues are still
poorly understood. These mechanisms are expected to depend strongly on the
aerodynamic Weber number, as known from studies of drop breakup in high-speed
gas streams [10-12].

Recently, there is a great attention has turned to the detailed researches in order to
improve climate conditions during Ramadan and also Hajj [13-15]. These previous
researches have recommended that a multi- jet water sprays should be used in order to
soften the climate conditions during Ramadan Season and Hajj.

The present author of the current research has contributed in a previous research
project [15] dealing with the prediction of droplets size and numbers resulting from
the breakup of a single water jet issuing from wide range nozzle diameters into a
stagnant air.

The focus of the present research is geared towards the development of a
computational method for the prediction of the topological changes and the formation
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of the ligaments and droplets in the breakup process of a coaxial water jet issuing in a
parallel gas stream with a specified relative velocity. The breakup and the following
characteristics of small droplets formed in the jet surface are also predicted. The
numerical method is based on solving the Reynolds-Averaging Navier-Stokes
equations coupled with the level set method.

The main objectives of this research project are to:

e Dewelop an effective numerical method to deal with the breakup of coaxial liquid
jets.

e Validate the numerical method against the previous well established test cases.

e Discuss the effect of relative velocity of the coaxial streams on the deformation
and breakup of the coaxial liquid jets.

e Gain an insight into the highly complex mechanism of the atomization of the
coaxial liquid jets.

The Governing Equations

The sketch of the coaxial jet with two immiscible fluids (water-air) is shown in Figure
2, as presented in [16].

() (2) 'j (3)
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Figure 2. The sketch of coaxial jet

The governing equations to the existing model of coaxial jet with two immiscible
fluids are considered in the following. Each fluid has its own material properties p,
and o (=1, 2), where the subscript « = g or | indicates the gas and the liquid phase
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presented at a given point in space. Following the Reynolds averaging procedure, the
unsteady Reynolds-averaged Navier-Stokes (RANS) equations, applied separately in
each fluid domain and coupled with the standard k-e& model for predicting the
turbulent characteristics can be written as follows:

V-(p)=0
3)

8((;’:‘7) +V-(puu)+Vp=V- (28 +R,)
(4)
6(§k) +V- (k) =V (u+ /Prk)Vk+2yt§§—pe+Gk

(6)

WL 4V (ptt) = V-t 1 I PEIV e + (€ 2 89) o )i K

(7)

In the above system of equations, p is the density, T is the velocity vector, p is the
static pressure, u is the molecular viscosity, t4 is the turbulent viscosity, k is the

turbulent Kinetic energy, ¢ is the turbulent dissipation, the turbulent stress tensor if%t is

given by:
R; ——puu ———pk +244,5;;
8) where ¢, is the kronecker

delta, ujujis the average of the velocity fluctuations, the strain rate tensor and the
turbulent viscosity can be described as:

- Ou;
s, =0.5(2M 4 iy,
oX;  OX
=pC k*l¢
(10)

The coefficients for the standard k-¢& turbulence model are given following:
C,=0.09,Pr, =1,Pr. =1.3,C,, =1.44,C, =1.92.

L_evel set method

In the formulation of the level set method, the computational domain is divided into
grid points containing the level set function ¢, which is taken positive inside the liquid
phase, negative in the gas phase and zero at the interface I". The update of the level set
function with time can be determined by solving the following transport equation:
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%+U-V¢=O
(14)

Since the interface is captured implicitly, the level set algorithm is capable of
capturing the intrinsic geometrical properties of highly complicated interfaces in a
quite natural way. Consequently, the normal vector and the curvature of the interface
can be defined as:

The time-stepping procedure for the level set equation is based on the second-order
Runge-Kutta method. An important step in the solution algorithm of the level set
function is to maintain the level set function as a distance function within the two
fluds at all times, especially near the interface region, ie. the Eikonal equation,

|V¢|=1; should be satisfied in the computational domain. This can be achieved each

time step by applying the re-initialization algorithm described in for a specified small
number of iterations.

Detailed discussion and improvement of such re-initialization algorithm can be found
in our previous work [17], where a large number of the standard level set test cases
have been performed and the mass conservative property is thoroughly discussed and
evaluated.

Analytical method

The limiting case of interest for jet atomization is corresponding to the case where the
droplet sizes are much smaller than the jet diameter. Following the asymptotic
analysis of the system of the governing equation, described previously, on can obtain
the analytical equation of the jet growth rate as a function of the water-air system
properties.

(@+2vk?)? + f 2k a2k k2 + 2 1P (011U, k)7 =0
P Vi L

The above equation is solved analytically to find out the effect of relative velocity
(Urer) on the growth rate of the liquid jet. It can be observed from Figure 3, that the
increase in the relative velocity leads to an increase of the jet growth rate plotted
against the wave length A. That describes one of the important advantages of the
coaxial jet over the simple jet configuration where the relative velocity has a
significant effect on the breakup and the atomization processes.
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Figure 3. The effect of relative velocity on the jet growth rate

Results

The figures below (Figure 4-a, -b) show the configurations of the simple and coaxial
water jet operating at the same conditions except that, in case of simple jet, the
surrounding air velocity is assumed to be zero. In case of coaxial jet, the

surrounding air velocity is assumed to be equal, but in the opposite direction, of the
water jet velocity.

-
—_— Usi=0 —_— U,=-30m/s
o oo |
— > U, .=50m's — Uppe=30ms
o oo |
—_— U, =0 — > Us=30mss
s |

| e

(2) Ug=50m/s (b) U=100m/s
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Figure 4. The configurations of (a) simple jetand (b) coaxial jet

Tablel. describes the different properties of the two fluids used in the numerical
simulation performed. The Computer program used for the calculation is built by
the present author using the FORTRAN language.

Property Air flow Liquid Jet
Density 1.0 kg/m® 2 kg/m®
Viscosity 1.5e-5Pa.s 1.5e-5 Pa.s
Surface tension 0.0 0.02 N.m
Inttial pressure 1 bar 1 bar
Radius 0.05m 0.025m

The figures below (Figure 5-a, -b) show the important results obtained from the
numerical simulation performed for the simple and coaxial water jet operating at the
same conditions except that, in case of simple jet, the surrounding air velocity is
assumed to be zero. In case of coaxial jet, the surrounding air velocity is assumed to
be equal, but in the opposite direction, of the water jet velocity.

The results showed that, the breakup of the liquid jet in case of coaxial jet is faster

and the droplet size is smaller in comparison with the atomization process obtained
from the normal simple jet.

Simple jet coaxial jet
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(@) (b)
Figure 5. Comparison of the atomization process of liquid jet for coaxial liquid jet at
different times
(a) Relative velocity=50m/s, (b) Relative velocity=100 m/s

AaMAl
Conclusions

The conclusions of the present work are summarized as follows:

1. The currently used fans in the free areas for improving the climate conditions
are using the coflowing jet and that should be modified to coaxial jet in order
to increase the atomization performance.

2. The required power of the motors, which driving the fans, should be estimated
according to the required air wvelocity for optimum conditions of the
atomization.

3. The nozzle design and the number of nozzles distributed over the
circumferential of the fan should also be estimated to achieve the best
conditions for atomization process.

4. In future work, the effects of the liquid issuing pressure, air temperature and
air humidity ratio should be included in our simulation.

:&@aﬂ‘

Recommendation:
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According to the numerical results obtained, the author recommends the application
of the coaxial jet instead of the currently used coflowing jet in the atomization of
water during Hajj and Omra after detailed investigations and the providing of design
data.
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Abstract:

The integrated simulation of the atomization of round liquid jets by coaxial gas flow
is considered as one of the most important multiphase phenomenon commonly
encountered in nature, engineering applications and as a synthetic process to improve
the climate conditions during Hajj. However, the dynamics of the phase interface is
highly complex, poorly understood, and remains an unresolved problem in the area of
atomization simulation. The use of coaxial jets is widespread in the context of air
blast atomization, that is to say high-speed gas assisted spray formation. The coaxial
jets geometry, operating with a large outer (annular) to inner (central) momentum
ratio is used for its ability to destabilize fragment and mix the central stream in the
outer, rapid stream. These advantages of coaxial liquid jet atomization over those of a
single jet have motivated the present research paper.

The purpose of this paper is to investigate the topological changes of the liquid jet, as
it becomes destabilized by a coaxial gas stream. By assuming a turbulent
environment, the effect of the relative velocity between the two streams on the
deformation and breakup of the liquid jet is investigated. The interfacial stresses
between the two streams are modelled on the basis of RANS equations and the level
set method, which simultaneously; predict the topological changes of the central
liquid jet. Consequently, the spatial characteristics of the instabilities that develop at
the interface between the two streams can be predicted and the mechanism of the
breakup process is recognized .
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Introduction:

The atomization of a liquid jet is one of the challenging problems in computational
physics as it involves complex interface topology of large coherent liquid structures
where the dynamics of the phase interface is highly complex, poorly understood, and
remains an unresolved problem in the area of atomization simulation [1].

The atomization process can be divided into two subsequent processes: i.e., primary
atomization followed by secondary atomization. The primary atomization is the initial
breakup of the liquid jet into large and small liquid structures. It involves complex
interface topology of large coherent liquid structures. The secondary atomization is
the subsequent breakup into smaller drops forming sprays. Consequently, different
modelling strategies are needed to capture the distinct physical processes involved in
each regime [2].

Although many researches have been devoted to numerical simulation of atomization
process, a few methods are able to treat accurately atomization, especially primary
break-up. Usually most models applied for droplets tracking, in the secondary
atomization regime, are based ona Lagrangian approach. But this kind of model is not
well adapted to describe the shear-coaxial primary atomization. Indeed, most of them
assume that all liquid fragments are spherical. Moreover, the spray is very dense in
the primary break-up region, involving a lot of strong exchanges between the two
phases, which cannot be taken into account simply ina Lagrangian manner

Although the coaxial liquid jet has the ability to destabilize fragment and mix the
central stream in the outer rapid stream, most of the previous researches were focused
on the numerical simulation of the primary breakup of a single jet, while the coaxial
liquid jet was received relatively less attention [3].
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Figure 1-a, -b shows the configuration of three different configuration of simple jet,
coflowing jet and coaxial jet, as shown in [4].

(a) (b) (c)

Figure 1 Different configuration and shear layer development for (a) Single jet, (b)
coflowing jet, (c) coaxial jet.

As it can be seen from Figure 1, the complex near field mixing structure of coaxial jet
plays a significant role in the atomization of the liquid core jet and the final droplet
size produced.

The breakup and atomization of a liquid jet injected into a high-speed gas stream is
fundamentally different from that which occurs for the same jet discharging into a
stagnant gaseous environment. When the gas stream momentum flux is of the same
order, or in excess of that of the liquid jet, the atomization is achieved through a
Kinetic energy transfer from the gas to the liquid. This type of atomization is known as
air-assist atomization.

The instability arises at the interface of parallel gas flow and central liquid stream has
been previously studied by many investigators (e.g. [5-9]). Raynal [9] has shown that
the wavelength of the instability, developed at the gas-liquid interface in coaxial jets,
is strongly dependent on the gas vorticity thickness and the density ratio of the two
streams. Amplification of this primary wave structure leads to the formation of
axisymmetric or helical wave sheets which eventually breakup into droplets. The
mechanisms of formation and breakup of these wave sheets or liquid tongues are still
poorly understood. These mechanisms are expected to depend strongly on the
aerodynamic Weber number, as known from studies of drop breakup in high-speed
gas streams [10-12].

Recently, there is a great attention has turned to the detailed researches in order to
improve climate conditions during Ramadan and also Hajj [13-15]. These previous
researches have recommended that a multi- jet water sprays should be used in order to
soften the climate conditions during Ramadan Season and Hajj.

The present author of the current research has contributed in a previous research
project [15] dealing with the prediction of droplets size and numbers resulting from
the breakup of a single water jet issuing from wide range nozzle diameters into a
stagnant air.

The focus of the present research is geared towards the development of a
computational method for the prediction of the topological changes and the formation
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of the ligaments and droplets in the breakup process of a coaxial water jet issuing in a
parallel gas stream with a specified relative velocity. The breakup and the following
characteristics of small droplets formed in the jet surface are also predicted. The
numerical method is based on solving the Reynolds-Averaging Navier-Stokes
equations coupled with the level set method.

The main objectives of this research project are to:

e Dewelop an effective numerical method to deal with the breakup of coaxial liquid
jets.

e Validate the numerical method against the previous well established test cases.

e Discuss the effect of relative velocity of the coaxial streams on the deformation
and breakup of the coaxial liquid jets.

e Gain an insight into the highly complex mechanism of the atomization of the
coaxial liquid jets.

The Governing Equations

The sketch of the coaxial jet with two immiscible fluids (water-air) is shown in Figure
2, as presented in [16].

() (2) 'j (3)
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Figure 2. The sketch of coaxial jet

The governing equations to the existing model of coaxial jet with two immiscible
fluids are considered in the following. Each fluid has its own material properties p,
and o (=1, 2), where the subscript « = g or | indicates the gas and the liquid phase
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presented at a given point in space. Following the Reynolds averaging procedure, the
unsteady Reynolds-averaged Navier-Stokes (RANS) equations, applied separately in
each fluid domain and coupled with the standard k-e& model for predicting the
turbulent characteristics can be written as follows:

V-(p)=0
3)

8((;’:‘7) +V-(puu)+Vp=V- (28 +R,)
(4)
6(§k) +V- (k) =V (u+ /Prk)Vk+2yt§§—pe+Gk

(6)

WL 4V (ptt) = V-t 1 I PEIV e + (€ 2 89) o )i K

(7)

In the above system of equations, p is the density, T is the velocity vector, p is the
static pressure, u is the molecular viscosity, t4 is the turbulent viscosity, k is the

turbulent Kinetic energy, ¢ is the turbulent dissipation, the turbulent stress tensor if%t is

given by:
R; ——puu ———pk +244,5;;
8) where ¢, is the kronecker

delta, ujujis the average of the velocity fluctuations, the strain rate tensor and the
turbulent viscosity can be described as:

- Ou;
s, =0.5(2M 4 iy,
oX;  OX
=pC k*l¢
(10)

The coefficients for the standard k-¢& turbulence model are given following:
C,=0.09,Pr, =1,Pr. =1.3,C,, =1.44,C, =1.92.

L_evel set method

In the formulation of the level set method, the computational domain is divided into
grid points containing the level set function ¢, which is taken positive inside the liquid
phase, negative in the gas phase and zero at the interface I". The update of the level set
function with time can be determined by solving the following transport equation:
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%+U-V¢=O
(14)

Since the interface is captured implicitly, the level set algorithm is capable of
capturing the intrinsic geometrical properties of highly complicated interfaces in a
quite natural way. Consequently, the normal vector and the curvature of the interface
can be defined as:

The time-stepping procedure for the level set equation is based on the second-order
Runge-Kutta method. An important step in the solution algorithm of the level set
function is to maintain the level set function as a distance function within the two
fluds at all times, especially near the interface region, ie. the Eikonal equation,

|V¢|=1; should be satisfied in the computational domain. This can be achieved each

time step by applying the re-initialization algorithm described in for a specified small
number of iterations.

Detailed discussion and improvement of such re-initialization algorithm can be found
in our previous work [17], where a large number of the standard level set test cases
have been performed and the mass conservative property is thoroughly discussed and
evaluated.

Analytical method

The limiting case of interest for jet atomization is corresponding to the case where the
droplet sizes are much smaller than the jet diameter. Following the asymptotic
analysis of the system of the governing equation, described previously, on can obtain
the analytical equation of the jet growth rate as a function of the water-air system
properties.

(@+2vk?)? + f 2k a2k k2 + 2 1P (011U, k)7 =0
P Vi L

The above equation is solved analytically to find out the effect of relative velocity
(Urer) on the growth rate of the liquid jet. It can be observed from Figure 3, that the
increase in the relative velocity leads to an increase of the jet growth rate plotted
against the wave length A. That describes one of the important advantages of the
coaxial jet over the simple jet configuration where the relative velocity has a
significant effect on the breakup and the atomization processes.
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Figure 3. The effect of relative velocity on the jet growth rate

Results

The figures below (Figure 4-a, -b) show the configurations of the simple and coaxial
water jet operating at the same conditions except that, in case of simple jet, the
surrounding air velocity is assumed to be zero. In case of coaxial jet, the

surrounding air velocity is assumed to be equal, but in the opposite direction, of the
water jet velocity.

| oo ar | | oo |

ﬁ Ua1.1'=u ﬁ Uai,=-50m-"s
] | -

— Uyp=50ms — 5 Uppu=S0m's

| e o | | o |

ﬁ Uw=ﬂ ﬁ U,-u=—50m-"s
Tl A

(2) Up=50ms (b) U,~=100ms
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Figure 4. The configurations of (a) simple jetand (b) coaxial jet

Tablel. describes the different properties of the two fluids used in the numerical
simulation performed. The Computer program used for the calculation is built by
the present author using the FORTRAN language.

Property Air flow Liquid Jet
Density 1.0 kg/m® 2 kg/m®
Viscosity 1.5e-5Pa.s 1.5e-5 Pa.s
Surface tension 0.0 0.02 N.m
Inttial pressure 1 bar 1 bar
Radius 0.05m 0.025m

The figures below (Figure 5-a, -b) show the important results obtained from the
numerical simulation performed for the simple and coaxial water jet operating at the
same conditions except that, in case of simple jet, the surrounding air velocity is
assumed to be zero. In case of coaxial jet, the surrounding air velocity is assumed to
be equal, but in the opposite direction, of the water jet velocity.

The results showed that, the breakup of the liquid jet in case of coaxial jet is faster

and the droplet size is smaller in comparison with the atomization process obtained
from the normal simple jet.

Simple jet coaxial jet

page 130



ool onadlall

O)ujig oclig 22l Ayl

(@) (b)
Figure 5. Comparison of the atomization process of liquid jet for coaxial liquid jet at
different times
(a) Relative velocity=50m/s, (b) Relative velocity=100 m/s

AaMAl
Conclusions

The conclusions of the present work are summarized as follows:

5. The currently used fans in the free areas for improving the climate conditions
are using the coflowing jet and that should be modified to coaxial jet in order
to increase the atomization performance.

6. The required power of the motors, which driving the fans, should be estimated
according to the required air wvelocity for optimum conditions of the
atomization.

7. The nozzle design and the number of nozzles distributed over the
circumferential of the fan should also be estimated to achieve the best
conditions for atomization process.

8. In future work, the effects of the liquid issuing pressure, air temperature and
air humidity ratio should be included in our simulation.

:&@aﬂ‘

Recommendation:
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According to the numerical results obtained, the author recommends the application
of the coaxial jet instead of the currently used coflowing jet in the atomization of
water during Hajj and Omra after detailed investigations and the providing of design
data.
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