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Preface

This textbook is intended for use in an introductory graduate level course 
that broadens (expands) the fundamental concepts acquired by students in 
their undergraduate work. The introductory graduate course can be fol-
lowed by advanced courses dedicated to topics such as mechanical and 
chemical stabilization of soils, geoenvironmental engineering, finite ele-
ment application to geotechnical engineering, critical state soil mechanics, 
geosynthetics, rock mechanics, and others.

The first edition of this book was published jointly by Hemisphere 
Publishing Corporation and McGraw-Hill Book Company of New York 
with a 1983 copyright. Taylor & Francis Group published the second and 
third editions with 1997 and 2008 copyrights, respectively. Compared to 
the third edition, the text is now divided into 11 chapters. Stresses and 
displacements in a soil mass are now presented in two chapters with two-
dimensional problems in Chapter 3 and three-dimensional problems in 
Chapter 4. Permeability and seepage are now presented in two separate 
chapters (Chapters 6 and 7). Similarly, the settlement of shallow founda-
tions is now presented in two chapters—elastic settlement in Chapter 10 
and consolidation settlement in Chapter 11. Several new example problems 
have been added. SI units have been used throughout the text.

Some major changes in this edition include the following:

•	 In Chapter 1, “Soil aggregate, plasticity, and classification,” a 
more detailed description of the relationships between the maxi-
mum and minimum void ratios of granular soils is provided. The 
American Association of State Highway and Transportation Officials 
(AASHTO) soil classification system has been added to this chapter. 
Sections on soil compaction procedures in the laboratory, along with 
recently developed empirical relationships for maximum dry unit 
weight and optimum moisture content obtained from Proctor com-
paction tests, have been summarized.

•	 Chapter 4, “Stresses and displacements in a soil mass: Three-
dimensional problems,” has new sections on vertical stress due to a 
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line load of finite length; vertical stress in Westergaard material due 
to point load; line load of finite length; circularly loaded area; and 
rectangularly loaded area.

•	 The fundamental concepts of compaction of clay soil for the construc-
tion of clay liners in waste disposal sites as they relate to permeability 
are discussed in Chapter 6, “Permeability.”

•	 Several new empirical correlations for overconsolidation ratio and 
compression index for clay soils have been added to Chapter 8, 
“Consolidation.”

•	 Chapter 9, “Shear strength of soils,” provides additional discussion 
on the components affecting friction angle of granular soils, drained 
failure envelopes, and secant residual friction angles of clay and clay 
shale. Also added to this chapter are some new correlations between 
field vane shear strength, preconsolidation pressure, and overconsoli-
dation ratio of clay soils.

•	 Chapter 10, “Elastic settlement of shallow foundations,” has been 
thoroughly revised and expanded.

•	 Discussion related to precompression with sand drains has been added 
to Chapter 11, “Consolidation settlement of shallow foundations.”

•	 The parameters required for the calculation of stress at the interface 
of a three-layered flexible system have been presented in graphical 
form in the Appendix, which should make interpolation easier.
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Chapter 1

Soil aggregate, plasticity, 
and classification

1.1 � INTRODUCTION

Soils are aggregates of mineral particles; and together with air and/or water 
in the void spaces, they form three-phase systems. A large portion of the 
earth’s surface is covered by soils, and they are widely used as construction 
and foundation materials. Soil mechanics is the branch of engineering that 
deals with the engineering properties of soils and their behavior under stress.

This book is divided into 11 chapters: “Soil Aggregate, Plasticity, and 
Classification,” “Stresses and Strains: Elastic Equilibrium,” “Stresses  and 
Displacement in a Soil Mass: Two-Dimensional Problems,” “Stresses 
and Displacement in a Soil Mass: Three-Dimensional Problems,” “Pore 
Water Pressure due to Undrained Loading,” “Permeability,” “Seepage,” 
“Consolidation,” “Shear Strength of Soil,” “Elastic Settlement of Shallow 
Foundations,” and “Consolidation Settlement of Shallow Foundations.” 
This chapter is a brief overview of some soil properties and their 
classification. It is assumed that the reader has been previously exposed 
to a basic soil mechanics course.

1.2 � SOIL: SEPARATE SIZE LIMITS

A naturally occurring soil sample may have particles of various sizes. Over 
the years, various agencies have tried to develop the size limits of gravel, 
sand, silt, and clay. Some of these size limits are shown in Table 1.1.

Referring to Table 1.1, it is important to note that some agencies classify 
clay as particles smaller than 0.005 mm in size, and others classify it as par-
ticles smaller than 0.002 mm in size. However, it needs to be realized that 
particles defined as clay on the basis of their size are not necessarily clay 
minerals. Clay particles possess the tendency to develop plasticity when 
mixed with water; these are clay minerals. Kaolinite, illite, montmorillonite, 
vermiculite, and chlorite are examples of some clay minerals.
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Fine particles of quartz, feldspar, or mica may be present in a soil in the 
size range defined for clay, but these will not develop plasticity when mixed 
with water. It appears that it is more appropriate for soil particles with 
sizes <2 or 5 μm as defined under various systems to be called clay-size 
particles rather than clay. True clay particles are mostly of colloidal size 
range (<1 μm), and 2 μm is probably the upper limit.

Table 1.1  �Soil: separate size limits

Agency Classification Size limits (mm)

U.S. Department of Agriculture (USDA) Gravel >2

Very coarse sand 2–1
Coarse sand 1–0.5
Medium sand 0.5–0.25
Fine sand 0.25–0.1
Very fine sand 0.1–0.05
Silt 0.05–0.002
Clay <0.002

International Society of Soil Mechanics and 
Foundation Engineering (ISSMFE)

Gravel >2

Coarse sand 2–0.2
Fine sand 0.2–0.02
Silt 0.02–0.002
Clay <0.002

Federal Aviation Administration (FAA) Gravel >2
Sand 2–0.075
Silt 0.075–0.005
Clay <0.005

Massachusetts Institute of Technology (MIT) Gravel >2
Coarse sand 2–0.6
Medium sand 0.6–0.2
Fine sand 0.2–0.06
Silt 0.06–0.002
Clay <0.002

American Association of State Highway and 
Transportation Officials (AASHTO)

Gravel
Coarse sand
Fine sand
Silt
Clay

76.2–2
2–0.425
0.425–0.075
0.075–0.002
<0.002

Unified (U.S. Army Corps of Engineers, 
U.S. Bureau of Reclamation, and American 
Society for Testing and Materials)

Gravel
Coarse sand
Medium sand
Fine sand
Silt and clay (fines)

76.2–4.75
4.75–2
2–0.425
0.425–0.075
<0.075
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1.3 � CLAY MINERALS

Clay minerals are complex silicates of aluminum, magnesium, and iron. 
Two basic crystalline units form the clay minerals: (1) a silicon–oxygen 
tetrahedron, and (2) an aluminum or magnesium octahedron. A silicon–
oxygen tetrahedron unit, shown in Figure 1.1a, consists of four oxygen 
atoms surrounding a silicon atom. The tetrahedron units combine to 
form a silica sheet as shown in Figure 1.2a. Note that the three oxygen 
atoms located at the base of each tetrahedron are shared by neighbor-
ing tetrahedra. Each silicon atom with a positive valence of 4 is linked 
to four oxygen atoms with a total negative valence of 8. However, each 
oxygen atom at the base of the tetrahedron is linked to two silicon atoms. 
This leaves one negative valence charge of the top oxygen atom of each 
tetrahedron to be counterbalanced. Figure 1.1b shows an octahedral unit 
consisting of six hydroxyl units surrounding an aluminum (or a magne-
sium) atom. The combination of the aluminum octahedral units forms a 
gibbsite sheet (Figure 1.2b). If the main metallic atoms in the octahedral 
units are magnesium, these sheets are referred to as brucite sheets. When 
the silica sheets are stacked over the octahedral sheets, the oxygen atoms 
replace the hydroxyls to satisfy their valence bonds. This is shown in 
Figure 1.2c.

Some clay minerals consist of repeating layers of two-layer sheets. A two-
layer sheet is a combination of a silica sheet with a gibbsite sheet, or a 
combination of a silica sheet with a brucite sheet. The sheets are about 
7.2 Å thick. The repeating layers are held together by hydrogen bonding 
and secondary valence forces. Kaolinite is the most important clay mineral 
belonging to this type (Figure 1.3). Other common clay minerals that fall 
into this category are serpentine and halloysite.

The most common clay minerals with three-layer sheets are illite and 
montmorillonite (Figure 1.4). A three-layer sheet consists of an octahedral 
sheet in the middle with one silica sheet at the top and one at the bottom. 

Silicon

Oxygen
Hydroxyl

Aluminum or
magnesium

(a) (b)

Figure 1.1  �(a) Silicon–oxygen tetrahedron unit and (b) aluminum or magnesium octa­
hedral unit.
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Repeated layers of these sheets form the clay minerals. Illite layers are 
bonded together by potassium ions. The negative charge to balance the 
potassium ions comes from the substitution of aluminum for some sili-
con in the tetrahedral sheets. Substitution of this type by one element for 
another without changing the crystalline form is known as isomorphous 
substitution. Montmorillonite has a similar structure to illite. However, 
unlike illite, there are no potassium ions present, and a large amount of 
water is attracted into the space between the three-sheet layers.

The surface area of clay particles per unit mass is generally referred to 
as specific surface. The lateral dimensions of kaolinite platelets are about 
1,000–20,000 Å with thicknesses of 100–1,000 Å. Illite particles have lateral 
dimensions of 1000–5000 Å and thicknesses of 50–500 Å. Similarly, mont-
morillonite particles have lateral dimensions of 1000–5000 Å with thick-
nesses of 10–50 Å. If we consider several clay samples all having the same 

(b)
and Hydroxyl

Aluminum

(a)

and

and

Silicon

Oxygen

Hydroxyl
Aluminum
Silicon

Oxygen

(c)

Figure 1.2  �(a) Silica sheet, (b) gibbsite sheet, and (c) silica–gibbsite sheet. (After Grim, R.E., 
J. Soil Mech. Found. Div., ASCE, 85(2), 1–17, 1959.)
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mass, the highest surface area will be in the sample in which the particle sizes 
are the smallest. So it is easy to realize that the specific surface of kaolinite 
will be small compared to that of montmorillonite. The specific surfaces 
of kaolinite, illite, and montmorillonite are about 15, 90, and 800  m2/g, 
respectively. Table 1.2 lists the specific surfaces of some clay minerals.

Gibbsite sheet

A number of
repeating layers of
kaolinite form a
kaolinite particle

Silica sheetS

G
S

S

G

S

G

S

G

Elementary kaolinite layer

Figure 1.3  �Symbolic structure for kaolinite.
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Figure 1.4  �Symbolic structure of (a) illite and (b) montmorillonite.
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Clay particles carry a net negative charge. In an ideal crystal, the positive 
and negative charges would be balanced. However, isomorphous substitu-
tion and broken continuity of structures result in a net negative charge at 
the faces of the clay particles. (There are also some positive charges at the 
edges of these particles.) To balance the negative charge, the clay particles 
attract positively charged ions from salts in their pore water. These are 
referred to as exchangeable ions. Some are more strongly attracted than 
others, and the cations can be arranged in a series in terms of their affinity 
for attraction as follows:

	 Al Ca Mg NH K H Na Li3+ 2+ 2+
4
+ + + + +> > > > > > >

This series indicates that, for example, Al3+ ions can replace Ca2+ ions, and 
Ca2+ ions can replace Na+ ions. The process is called cation exchange. For 
example,

	
Na CaCl Ca NaClclay 2 clay+ Æ +

Cation exchange capacity (CEC) of a clay is defined as the amount of 
exchangeable ions, expressed in milliequivalents, per 100 g of dry clay. 
Table 1.2 gives the CEC of some clays.

1.4 � NATURE OF WATER IN CLAY

The presence of exchangeable cations on the surface of clay particles was 
discussed in the preceding section. Some salt precipitates (cations in excess 
of the exchangeable ions and their associated anions) are also present on 
the surface of dry clay particles. When water is added to clay, these cations 
and anions float around the clay particles (Figure 1.5).

Table 1.2  �Specific surface area and cation exchange capacity 
of some clay minerals

Clay mineral Specific surface (m2/g)
Cation exchange 

capacity (me/100 g)

Kaolinite 10–20 3
Illite 80–100 25
Montmorillonite 800 100
Chlorite 5–50 20
Vermiculite 5–400 150
Halloysite (4H2O) 40 12
Halloysite (2H2O) 40 12
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At this point, it must be pointed out that water molecules are dipolar, 
since the hydrogen atoms are not symmetrically arranged around the oxygen 
atoms (Figure 1.6a). This means that a molecule of water is like a rod with 
positive and negative charges at opposite ends (Figure 1.6b). There are three 
general mechanisms by which these dipolar water molecules, or dipoles, can 
be electrically attracted toward the surface of the clay particles (Figure 1.7):

	 a.	Attraction between the negatively charged faces of clay particles and 
the positive ends of dipoles

	 b.	Attraction between cations in the double layer and the negatively 
charged ends of dipoles. The cations are in turn attracted by the nega-
tively charged faces of clay particles

	 c.	Sharing of the hydrogen atoms in the water molecules by hydrogen 
bonding between the oxygen atoms in the clay particles and the oxy-
gen atoms in the water molecules
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Figure 1.5  �Diffuse double layer.
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Figure 1.6  �Dipolar nature of water: (a) unsymmetrical arrangement of hydrogen atoms; 
(b) dipole.
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The electrically attracted water that surrounds the clay particles is known 
as double-layer water. The plastic property of clayey soils is due to the 
existence of double-layer water. Thicknesses of double-layer water for typi-
cal kaolinite and montmorillonite crystals are shown in Figure 1.8. Since 
the innermost layer of double-layer water is very strongly held by a clay 
particle, it is referred to as adsorbed water.

Case (b)

Case (a)

+

+

+

+

+

–

–

–

–

–

–

–

–

Case (c)

Dipole
Clay

particle

Dipole

Cation

Cation

Dipole

Hydrogen

Figure 1.7  �Dipolar water molecules in diffuse double layer.

Double-layer water
10 Å

1000 Å

10 Å

400 Å

400 Å

Kaolinite
crystal

Adsorbed
water

Double-
layer water200 Å

200 Å

10 Å
Adsorbed water

Montmorillonite
crystal

(a) (b)

Figure 1.8  �Clay water (a) typical kaolinite particle, 10,000 by 1,000 Å and (b) typical 
montmorillonite particle, 1,000 by 10 Å. (After Lambe, T.W., Trans. ASCE, 
125, 682, 1960.)
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1.5 � REPULSIVE POTENTIAL

The nature of the distribution of ions in the diffuse double layer is 
shown in Figure 1.5. Several theories have been presented in the past 
to describe the ion distribution close to a charged surface. Of these, the 
Gouy–Chapman theory has received the most attention. Let us assume 
that the ions in the double layers can be treated as point charges, and 
that the surface of the clay particles is large compared to the thickness 
of the double layer. According to Boltzmann’s theorem, we can write 
that (Figure 1.9)

	
n n

v e
KT

+ +
+= -

( ) exp0
F

	 (1.1)

	
n n

v e
KT

- -
-= -

( ) exp0
F

	 (1.2)

where
n+ is the local concentration of positive ions at a distance x
n− is the local concentration of negative ions at a distance x
n+(0), n−(0) are the concentration of positive and negative ions away from 

the clay surface in the equilibrium liquid
Φ is the average electric potential at a distance x (Figure 1.10)
v+, v− are ionic valences
e is the unit electrostatic charge, 4.8 × 10−10 esu
K is the Boltzmann constant, 1.38 × 10−16 erg/K
T is the absolute temperature

Clay
particle

Ions

dxx

Figure 1.9  �Derivation of repulsive potential equation.
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The charge density ρ at a distance x is given by

	 r = -+ + - -v en v en 	 (1.3)

According to Poisson’s equation

	

d
dx

2

2

4F = - pr
l 	 (1.4)

where λ is the dielectric constant of the medium.
Assuming v+ = v− and n+(0) = n−(0) = n0, and combining Equations 1.1 

through 1.4, we obtain

	

d
dx

n ve ve
KT

2

2
08F F= p
l

sinh 	 (1.5)

It is convenient to rewrite Equation 1.5 in terms of the following nondi-
mensional quantities

	
y

ve
KT

= F 	 (1.6)

	
z

ve
KT

= F 0 	 (1.7)

Po
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l, 
Φ

Φ0

Distance from surface of clay, x

Figure 1.10  �Nature of variation of potential Φ with distance from the clay surface.
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and

	 x= kx 	 (1.8)

where Φ0 is the potential at the surface of the clay particle and

	
k2 0

2 2
28= -p

l
n e v
KT

(cm ) 	 (1.9)

Thus, from Equation 1.5

	

d y
d

y
2

2x
= sinh 	 (1.10)

The boundary conditions for solving Equation 1.10 are

	 1.	At ξ = ∞, y = 0 and dy/dξ = 0
	 2.	At ξ = 0, y = z, that is, Φ = Φ0

The solution yields the relation

	
e

e e e
e e e

y
z z

z z
/

/ /

/ /

( ) ( )
( ) ( )

2
2 2

2 2

1 1
1 1

= + + -
+ - -

-

-

x

x 	 (1.11)

Equation 1.11 gives an approximately exponential decay of potential. The 
nature of the variation of the nondimensional potential y with the nondi-
mensional distance is given in Figure 1.11.

For a small surface potential (<25 mV), we can approximate Equation 1.5 as

	

d
dx

2

2
2F F= k 	 (1.12)

	 F F= -
0e

xk 	 (1.13)

Equation 1.13 describes a purely exponential decay of potential. For this 
condition, the center of gravity of the diffuse charge is located at a distance 
of x = 1/κ. The term 1/κ is generally referred to as the double-layer thickness.

There are several factors that will affect the variation of the repulsive 
potential with distance from the surface of the clay layer. The effect of 
the cation concentration and ionic valence is shown in Figures 1.12 and 
1.13, respectively. For a given value of Φ0 and x, the repulsive potential Φ 
decreases with the increase of ion concentration n0 and ionic valence v.

When clay particles are close and parallel to each other, the nature of 
variation of the potential will be as shown in Figure 1.14. Note for this case 
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Figure 1.11  �Variation of nondimensional potential with nondimensional distance.
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Figure 1.12  �Effect of cation concentration on the repulsive potential.



Soil aggregate, plasticity, and classification  13

© 2010 Taylor & Francis Group, LLC

v2 > v1

Φ0

Po
te

nt
ia

l, 
Φ

v = v1

v = v2

Distance from clay particle, x

Figure 1.13  �Effect of ionic valence on the repulsive potential.
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Figure 1.14  �Variation of Φ between two parallel clay particles.
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that at x = 0, Φ = Φ0, and at x = d (midway between the plates), Φ = Φd and 
dΦ/dx = 0. Numerical solutions for the nondimensional potential y = yd 
(i.e., Φ = Φd) for various values of z and ξ = κd (i.e., x = d) are given by 
Verweg and Overbeek (1948) (see also Figure 1.15).

1.6 � REPULSIVE PRESSURE

The repulsive pressure midway between two parallel clay plates (Figure 1.16) 
can be given by the Langmuir equation

	
p n KT

ve
KT

d= -Ê
ËÁ

ˆ
¯̃

2 10 cosh
F

	 (1.14)

where p is the repulsive pressure, that is, the difference between the osmotic 
pressure midway between the plates in relation to that in the equilibrium 
solution. Figure 1.17, which is based on the results of Bolt (1956), shows 
the theoretical and experimental variation of p between two clay particles.

Although the Guoy–Chapman theory has been widely used to explain 
the behavior of clay, there have been several important objections to this 
theory. A good review of these objections has been given by Bolt (1955).

y d

yd =

z= z1

KT
veΦd

z1> z2> z3

z= z2

z= z3

ξ=κd

Figure 1.15  �Nature of variation of the nondimensional midplane potential for two paral­
lel plates.
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Figure 1.16  �Repulsive pressure midway between two parallel clay plates.
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Figure 1.17  �Repulsive pressure between sodium montmorillonite clay particles. (After 
Bolt, G.H., Geotechnique, 6, 86, 1956.)



16  Advanced Soil Mechanics﻿

© 2010 Taylor & Francis Group, LLC

1.7 � FLOCCULATION AND DISPERSION 
OF CLAY PARTICLES

In addition to the repulsive force between the clay particles, there is an 
attractive force, which is largely attributed to the Van der Waal force. This 
is a secondary bonding force that acts between all adjacent pieces of matter. 
The force between two flat parallel surfaces varies inversely as 1/x3 to 1/x4, 
where x is the distance between the two surfaces. Van der Waal’s force is 
also dependent on the dielectric constant of the medium separating the sur-
faces. However, if water is the separating medium, substantial changes in the 
magnitude of the force will not occur with minor changes in the constitution 
of water.

The behavior of clay particles in a suspension can be qualitatively visual-
ized from our understanding of the attractive and repulsive forces between 
the particles and with the aid of Figure 1.18. Consider a dilute suspension of 
clay particles in water. These colloidal clay particles will undergo Brownian 
movement and, during this random movement, will come close to each 
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Figure 1.18  �Dispersion and flocculation of clay in a suspension.
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other at distances within the range of interparticle forces. The  forces of 
attraction and repulsion between the clay particles vary at different rates 
with respect to the distance of separation. The force of repulsion decreases 
exponentially with distance, whereas the force of attraction decreases as 
the inverse third or fourth power of distance, as shown in Figure 1.18. 
Depending on the distance of separation, if the magnitude of the repulsive 
force is greater than the magnitude of the attractive force, the net result will 
be repulsion. The clay particles will settle individually and form a dense 
layer at the bottom; however, they will remain separate from their neigh-
bors (Figure 1.19a). This is referred to as the dispersed state of the soil. On 
the contrary, if the net force between the particles is attraction, flocs will be 
formed and these flocs will settle to the bottom. This is called flocculated 
clay (Figure 1.19b).

1.7.1 � Salt flocculation and nonsalt flocculation

We saw in Figure 1.12 the effect of salt concentration, n0, on the repulsive 
potential of clay particles. High salt concentration will depress the double 
layer of clay particles and hence the force of repulsion. We noted earlier 
in this section that the Van der Waal force largely contributes to the force 
of attraction between clay particles in suspension. If the clay particles are 
suspended in water with a high salt concentration, the flocs of the clay par-
ticles formed by dominant attractive forces will give them mostly an orien-
tation approaching parallelism (face-to-face type). This is called a salt-type 
flocculation (Figure 1.20a).

Another type of force of attraction between the clay particles, which is 
not taken into account in colloidal theories, is that arising from the elec-
trostatic attraction of the positive charges at the edge of the particles and 
the negative charges at the face. In a soil–water suspension with low salt 
concentration, this electrostatic force of attraction may produce a floccula-
tion with an orientation approaching a perpendicular array. This is shown 
in Figure 1.20b and is referred to as nonsalt flocculation.

(a) (b)

Figure 1.19  �(a) Dispersion and (b) flocculation of clay.
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1.8 � CONSISTENCY OF COHESIVE SOILS

The presence of clay minerals in a fine-grained soil will allow it to be remolded 
in the presence of some moisture without crumbling. If a clay slurry is dried, 
the moisture content will gradually decrease, and the slurry will pass from 
a liquid state to a plastic state. With further drying, it will change to a 
semisolid state and finally to a solid state, as shown in Figure 1.21. In 1911, 
A. Atterberg, a Swedish scientist, developed a method for describing the 
limit consistency of fine-grained soils on the basis of moisture content. 
These limits are the liquid limit, the plastic limit, and the shrinkage limit.

The liquid limit is defined as the moisture content, in percent, at which 
the soil changes from a liquid state to a plastic state. The moisture contents 
(in percent) at which the soil changes from a plastic to a semisolid state 
and from a semisolid to a solid state are defined as the plastic limit and 
the shrinkage limit, respectively. These limits are generally referred to as 
the Atterberg limits. The Atterberg limits of cohesive soil depend on sev-
eral factors, such as the amount and type of clay minerals and the type of 
adsorbed cation.

Liquid
state

Moisture
content

decreasing
Solid
state

Semisolid
state

Plastic
state

Liquid
limit

Plastic
limit

Shrinkage
limit

Figure 1.21  �Consistency of cohesive soils.
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Figure 1.20  �(a) Salt and (b) nonsalt flocculation of clay particles.
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1.8.1 � Liquid limit

The liquid limit of a soil is generally determined by the Standard 
Casagrande device. A schematic diagram (side view) of a liquid limit 
device is shown in Figure 1.22a. This device consists of a brass cup and a 
hard rubber base. The brass cup can be dropped onto the base by a cam 
operated by a crank. To perform the liquid limit test, one must place a 
soil paste in the cup. A groove is then cut at the center of the soil pat with 
the standard grooving tool (Figure 1.22b). By using the crank-operated 
cam, the cup is lifted and dropped from a height of 10 mm. The moisture 
content, in percent, required to close a distance of 12.7 mm along the 
bottom of the groove (see Figure 1.22c and d) after 25 blows is defined as 
the liquid limit.

54 mm
50 mm

2 mm11 mm27°

8
mm

27 mm

(a) (b)

8 mm

2 mm

Plan

11
mm

Section

12.7 mm

46.8 mm

(c) (d)

Figure 1.22  �Schematic diagram of (a) liquid limit device, (b) grooving tool, (c) soil pat at 
the beginning of the test, and (d) soil pat at the end of the test.
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It is difficult to adjust the moisture content in the soil to meet the required 
12.7 mm closure of the groove in the soil pat at 25 blows. Hence, at least three 
tests for the same soil are conducted at varying moisture contents, with the 
number of blows, N, required to achieve closure varying between 15 and 35. 
The moisture content of the soil, in percent, and the corresponding number of 
blows are plotted on semilogarithmic graph paper (Figure 1.23). The relation-
ship between moisture content and log N is approximated as a straight line. 
This line is referred to as the flow curve. The moisture content corresponding 
to N = 25, determined from the flow curve, gives the liquid limit of the soil. 
The slope of the flow line is defined as the flow index and may be written as

	
I

w w
N N

F
/

= -1 2

2 1log( )
	 (1.15)

where
IF is the flow index
w1 is the moisture content of soil, in percent, corresponding to N1 blows
w2 is the moisture content corresponding to N2 blows

Note that w2 and w1 are exchanged to yield a positive value even though the 
slope of the flow line is negative. Thus, the equation of the flow line can be 
written in a general form as

	 w I N C= - +F log 	 (1.16)

where C is a constant.
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Figure 1.23  �Flow curve for the determination of the liquid limit for a silty clay.
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From the analysis of hundreds of liquid limit tests in 1949, the U.S. Army 
Corps of Engineers, at the Waterways Experiment Station in Vicksburg, 
Mississippi, proposed an empirical equation of the form

	
LL = Ê

ËÁ
ˆ
¯̃

w
N

N
25

tanb

	 (1.17)

where
N is the number of blows in the liquid limit device for a 12.7 mm 

groove closure
wN is the corresponding moisture content
tan β = 0.121 (but note that tan β is not equal to 0.121 for all soils)

Equation 1.17 generally yields good results for the number of blows 
between 20 and 30. For routine laboratory tests, it may be used to deter-
mine the liquid limit when only one test is run for a soil. This procedure 
is generally referred to as the one-point method and was also adopted by 
ASTM under designation D-4318 (ASTM, 2010). The reason that the one-
point method yields fairly good results is that a small range of moisture 
content is involved when N = 20–30.

Another method of determining the liquid limit, which is popular in 
Europe and Asia, is the fall cone method (British Standard—BS 1377). 
In this test, the liquid limit is defined as the moisture content at which a 
standard cone of apex angle 30° and weight of 0.78 N (80 gf) will penetrate 
a distance d = 20 mm in 5 s when allowed to drop from a position of point 
contact with the soil surface (Figure 1.24a). Due to the difficulty in achiev-
ing the liquid limit from a single test, four or more tests can be conducted at 
various moisture contents to determine the fall cone penetration, d, in 5 s. 
A semilogarithmic graph can then be plotted with moisture content w ver-
sus cone penetration d. The plot results in a straight line. The moisture 
content corresponding to d = 20 mm is the liquid limit (Figure 1.24b). From 
Figure 1.24b, the flow index can be defined as

	
I

w w
d d

FC = -
-

2 1

2 1

(%) (%)
log log

	 (1.18)

where w1, w2 are the moisture contents at cone penetrations of d1 and d2, 
respectively.

1.8.2 � Plastic limit

The plastic limit is defined as the moist content, in percent, at which the soil 
crumbles when rolled into threads of 3.2 mm diameter. The plastic limit 
is the lower limit of the plastic stage of soil. The plastic limit test is simple 
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and is performed by repeated rolling of an ellipsoidal size soil mass by hand 
on a ground glass plate. The procedure for the plastic limit test is given by 
ASTM Test Designation D-4318 (ASTM, 2010).

As in the case of liquid limit determination, the fall cone method can be 
used to obtain the plastic limit. This can be achieved by using a cone of 
similar geometry, but with a mass of 2.35 N (240 gf). Three to four tests at 
varying moist contents of soil are conducted, and the corresponding cone 
penetrations d are determined. The moisture content corresponding to a cone 
penetration of d = 20 mm is the plastic limit. Figure 1.25 shows the liquid 
and plastic limit determined by the fall cone test for Cambridge Gault clay 
reported by Wroth and Wood (1978).
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Figure 1.24  �(a) Fall cone test and (b) plot of moisture content versus cone penetration 
for determination of liquid limit.
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The difference between the liquid limit and the plastic limit of a soil is 
defined as the plasticity index, PI

	 PI LL PL= - 	 (1.19)

where
LL is the liquid limit
PL is the plastic limit

Sridharan et al. (1999) showed that the plasticity index can be correlated 
to the flow index as obtained from the liquid limit tests. According to their 
study

	 PI 4 12 F(%) . (%)= I 	 (1.20)

and

	 PI 74 FC(%) . (%)= 0 I 	 (1.21)
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Figure 1.25  �Liquid and plastic limits for Cambridge Gault clay determined by the fall cone test.
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1.9 � LIQUIDITY INDEX

The relative consistency of a cohesive soil can be defined by a ratio called 
the liquidity index LI. It is defined as

	
LI

PL
LL PL

PL
PI

N N= -
-

= -w w
	 (1.22)

where wN is the natural moisture content. It can be seen from Equation 
1.22 that, if wN = LL, then the liquidity index is equal to 1. Again, if 
wN = PL, the liquidity index is equal to 0. Thus, for a natural soil deposit 
which is in a plastic state (i.e., LL ≥ wN ≥ PL), the value of the liquidity 
index varies between 1 and 0. A natural deposit with wN ≥ LL will have a 
liquidity index greater than 1. In an undisturbed state, these soils may be 
stable; however, a sudden shock may transform them into a liquid state. 
Such soils are called sensitive clays.

1.10 � ACTIVITY

Since the plastic property of soil is due to the adsorbed water that 
surrounds the clay particles, we can expect that the type of clay minerals 
and their proportional amounts in a soil will affect the liquid and plastic 
limits. Skempton (1953) observed that the plasticity index of a soil lin-
early increases with the percent of clay-size fraction (percent finer than 
2μ by weight) present in it. This relationship is shown in Figure 1.26. 

Soil 1

Soil 2

Pl
as

tic
ity

 in
de

x

Percentage of clay-size fraction (<2µ)

Figure 1.26  �Relationship between plasticity index and percentage of clay-size fraction 
by weight.
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The average lines for all the soils pass through the origin. The correla-
tions of PI with the clay-size fractions for different clays plot separate 
lines. This is due to the type of clay minerals in each soil. On the basis 
of these results, Skempton defined a quantity called activity, which is the 
slope of the line correlating PI and percent finer than 2μ. This activity A 
may be expressed as

	
A =

PI
percentage of clay-size fraction by weight( )

	 (1.23)

Activity is used as an index for identifying the swelling potential of clay 
soils.  Typical values of activities for various clay minerals are given in 
Table 1.3.

Seed et al. (1964a) studied the plastic property of several artificially pre-
pared mixtures of sand and clay. They concluded that, although the rela-
tionship of the plasticity index to the percent of clay-size fraction is linear 
(as observed by Skempton), it may not always pass through the origin. This 
is shown in Figure 1.27. Thus, the activity can be redefined as

	
A

C
=

-
PI

percentof clay-size fraction ¢
	 (1.24)

where C′ is a constant for a given soil. For the experimental results shown 
in Figure 1.27, C′ = 9.

Further works of Seed et al. (1964b) have shown that the relationship 
of the plasticity index to the percentage of clay-size fractions present in a 
soil can be represented by two straight lines. This is shown qualitatively 
in Figure 1.28. For clay-size fractions greater than 40%, the straight line 
passes through the origin when it is projected back.

Table 1.3  Activities of clay minerals

Mineral Activity (A)

Smectites 1–7
Illite 0.5–1
Kaolinite 0.5
Halloysite (4H2O) 0.5
Halloysite (2H2O) 0.1
Attapulgite 0.5–1.2
Allophane 0.5–1.2
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1.11 � GRAIN-SIZE DISTRIBUTION OF SOIL

For a basic understanding of the nature of soil, the distribution of 
the grain size present in a given soil mass must be known. The grain-
size distribution of coarse-grained soils (gravelly and/or sandy) is 
determined by sieve analysis. Table 1.4 gives the opening size of some 
U.S. sieves.
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Commercial kaolinite
Kaolinite/bentonite—19:1
Kaolinite/bentonite—9:1
Kaolinite/bentonite—4:1
Kaolinite/bentonite—1.5:1
Bentonite/kaolinite—1.5:1
Bentonite/kaolinite—4:1
Commercial bentonite

Percentage of clay-size fraction (<2µ)

Figure 1.27  �Relationship between plasticity index and clay-size fraction by weight for 
kaolinite/bentonite clay mixtures. (After Seed, H.B. et al., J. Soil Mech. Found. 
Eng. Div., Am. Soc. Civ. Eng., 90(SM4), 107, 1964.)
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The cumulative percent by weight of a soil passing a given sieve is referred 
to as the percent finer. Figure 1.29 shows the results of a sieve analysis for a 
sandy soil. The grain-size distribution can be used to determine some of the 
basic soil parameters, such as the effective size, the uniformity coefficient, 
and the coefficient of gradation.
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Figure 1.28  �Simplified relationship between plasticity index and percentage of clay-size 
fraction by weight. (After Seed, H.B. et al., J. Soil Mech. Found. Eng. Div., Am. 
Soc. Civ. Eng., 90(SM6), 75, 1964.)

Table 1.4  U.S. standard sieves

Sieve no. Opening size (mm)

3 6.35
4 4.75
6 3.36
8 2.38

10 2.00
16 1.19
20 0.84
30 0.59
40 0.425
50 0.297
60 0.25
70 0.21

100 0.149
140 0.105
200 0.075
270 0.053
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The effective size of a soil is the diameter through which 10% of the total 
soil mass is passing and is referred to as D10. The uniformity coefficient Cu 
is defined as

	
C

D
D

u =
60

10

	 (1.25)

where D60 is the diameter through which 60% of the total soil mass is passing.
The coefficient of gradation Cc is defined as

	
C

D
D D

c =
( )

( )( )
30

2

60 10

	 (1.26)

where D30 is the diameter through which 30% of the total soil mass is passing.
A soil is called a well-graded soil if the distribution of the grain sizes 

extends over a rather large range. In that case, the value of the uniformity 
coefficient is large. Generally, a soil is referred to as well graded if Cu is larger 
than about 4–6 and Cc is between 1 and 3. When most of the grains in a soil 
mass are of approximately the same size—that is, Cu is close to 1—the soil is 
called poorly graded. A soil might have a combination of two or more well-
graded soil fractions, and this type of soil is referred to as a gap-graded soil.

The sieve analysis technique described earlier is applicable for soil grains 
larger than No. 200 (0.075 mm) sieve size. For fine-grained soils, the pro-
cedure used for determination of the grain-size distribution is hydrometer 
analysis. This is based on the principle of sedimentation of soil grains.
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Figure 1.29  �Grain-size distribution of a sandy soil.
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1.12 � WEIGHT–VOLUME RELATIONSHIPS

Figure 1.30a shows a soil mass that has a total volume V and a total weight W. 
To develop the weight–volume relationships, the three phases of the soil mass, 
that is, soil solids, air, and water, have been separated in Figure 1.30b. Note that

	 W W W= +s w 	 (1.27)

and, also

	 V V V V= + +s w a 	 (1.28)

	 V V Vv w a= + 	 (1.29)

where
Ws is the weight of soil solids
Ww is the weight of water
Vs is the volume of the soil solids
Vw is the volume of water
Va is the volume of air

The weight of air is assumed to be zero. The volume relations commonly 
used in soil mechanics are void ratio, porosity, and degree of saturation.

Void ratio e is defined as the ratio of the volume of voids to the volume 
of solids:

	
e

V
V

= u

s

	 (1.30)

Weight

=

Weight

Air

WaterW Ww

Va

Vw

Vv

VsWs

Volume Volume

V

(b)(a)

Soil
solids

Figure 1.30  �Weight–volume relationships for soil aggregate: (a) soil mass of volume V; 
(b) three phases of the soil mass.
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Porosity n is defined as the ratio of the volume of voids to the total volume:

	
n

V
V

= u 	 (1.31)

Also, V = Vs + Vv

and so

	
n

V
V V

V V
V V V V

e
e

=
+

=
+

=
+

u

u

u

us

s

s s s

/
/ /( ) ( ) 1

	 (1.32)

Degree of saturation Sr is the ratio of the volume of water to the volume 
of voids and is generally expressed as a percentage:

	
S

V
V

r
w(%) = ¥
u

100 	 (1.33)

The weight relations used are moisture content and unit weight. Moisture 
content w is defined as the ratio of the weight of water to the weight of soil 
solids, generally expressed as a percentage:

	
w

W
W

(%) = ¥w

s

100 	 (1.34)

Unit weight γ is the ratio of the total weight to the total volume of the soil 
aggregate:

	
g= W

V
	 (1.35)

This is sometimes referred to as moist unit weight since it includes the 
weight of water and the soil solids. If the entire void space is filled with 
water (i.e., Va = 0), it is a saturated soil; Equation 1.35 will then give us the 
saturated unit weight γsat.

The dry unit weight γd is defined as the ratio of the weight of soil solids 
to the total volume:

	
gd

s= W
V

	 (1.36)

Useful weight–volume relations can be developed by considering a soil 
mass in which the volume of soil solids is unity, as shown in Figure 1.31. 
Since Vs = 1, from the definition of void ratio given in Equation 1.30, the 
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volume of voids is equal to the void ratio e. The weight of soil solids can 
be given by

	 W G V G Vs s w s s w ssince 1= = =g g ( )

where
Gs is the specific gravity of soil solids
γw is the unit weight of water (9.81 kN/m3)

From Equation 1.34, the weight of water is Ww = wWs = wGsγw. So the 
moist unit weight is

	
g g g g

u
= = +

+
= +

+
= +

+
W
V

W W
V V

G wG
e

G w
e

s w

s

s w s w s w

1
1

1
( )

	 (1.37)

The dry unit weight can also be determined from Figure 1.31 as

	
g g

d
s s w= =

+
W
V

G
e1

	 (1.38)

The degree of saturation can be given by

	
S

V
V

W
V

wG
e

wG
e

r
w w w s w w s/ /= = = =
u u

g g g
	 (1.39)

Water

Air

Soil
solids

Ww=wGsγw Vw=wGs

Vs= 1

Vυ= e

Ws=Gsγw

Figure 1.31  �Weight–volume relationship for Vs = 1.
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For saturated soils, Sr = 1. So, from Equation 1.39,

	 e wG= s 	 (1.40)

By referring to Figure 1.32, the relation for the unit weight of a saturated 
soil can be obtained as

	
g g g

sat
s w s w w= = + = +

+
W
V

W W
V

G e
e1

	 (1.41)

Basic relations for unit weight such as Equations 1.37, 1.38, and 1.41 in 
terms of porosity n can also be derived by considering a soil mass that has a 
total volume of unity as shown in Figure 1.33. In this case (for V = 1), from 
Equation 1.31, Vυ = n. So, Vs = V − Vv = 1 − n.

Ww = wGsγw(1 – n) Water

Air

Vv = n

Vs = (1 – n)

V = 1

Ws = Gsγw(1 – n) Soil
solids

Figure 1.33  �Weight–volume relationship for V = 1.

Water

Soil
solids

Vv = e

Vs = 1

Ww = eγw

Ws = Gsγw

Figure 1.32  �Weight–volume relation for saturated soil with Vs = 1.
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The weight of soil solids is equal to (1 − n)Gsγw, and the weight of water 
Ww = wWs = w(1 − n)Gsγw. Thus, the moist unit weight is

	

g g g

g

= = + = - + -

= - +

W
V

W W
V

n G w n G

G n w

s w s w s w

s w

( ) ( )

( )( )

1 1
1

1 1 	 (1.42)

The dry unit weight is

	
g gd

s
s w= = -W

V
n G( )1 	 (1.43)

If the soil is saturated (Figure 1.34),

	
g g g gsat

s w
s w w s s w= + = - + = - -W W

V
n G n G n G( ) [ ( )]1 1 	 (1.44)

Table 1.5 gives some typical values of void ratios and dry unit weights 
encountered in granular soils.

Water
Vv =n

Vs = (1 –n)

Ww =nγw

Ws =Gsγw(1 –n)

V= 1

Soil
solids

Figure 1.34  �Weight–volume relationship for saturated soil with V = 1.

Table 1.5  Typical values of void ratios and dry unit weights for granular soils

Soil type

Void ratio, e Dry unit weight, γd

Maximum Minimum Minimum (kN/m3) Maximum (kN/m3)

Gravel 0.6 0.3 16 20
Coarse sand 0.75 0.35 15 19
Fine sand 0.85 0.4 14 19
Standard Ottawa sand 0.8 0.5 14 17
Gravelly sand 0.7 0.2 15 22
Silty sand 1 0.4 13 19
Silty sand and gravel 0.85 0.15 14 23
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Example 1.1

For a soil in natural state, given e = 0.8, w = 24%, and Gs = 2.68.

	 a.	Determine the moist unit weight, dry unit weight, and degree of 
saturation.

	 b.	 If the soil is completely saturated by adding water, what would 
its moisture content be at that time? Also, find the saturated unit 
weight.

Solution

Part a:

From Equation 1.37, the moist unit weight is

	
g g= +

+
G w

e
s w( )1

1

Since γw = 9.81 kN/m3,

	
g= +

+
=( . )( . )( . )

.
.

2 68 9 81 1 0 24
1 0 8

18 11 3kN/m

From Equation 1.38, the dry unit weight is

	
g g

d
s w 3kN/m=
+

=
+

=G
e1

2 68 9 81
1 0 8

14 61
( . )( . )

.
.

From Equation 1.39, the degree of saturation is

	
S

wG
e

r
s(%)

( . )( . )
.

. %= ¥ = ¥ =100
0 24 2 68

0 8
100 80 4

Part b:

From Equation 1.40, for saturated soils, e = wGs, or

	
w

e
G

(%)
.
.

. %= ¥ = ¥ =
s

100
0 8
2 68

100 29 85

From Equation 1.41, the saturated unit weight is

	
g g g

sat
s w w 3kN/m= +

+
= +

+
=G e

e1
9 81 2 68 0 8

1 0 8
18 97

. ( . . )
.

.
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1.13 � RELATIVE DENSITY AND RELATIVE 
COMPACTION

Relative density is a term generally used to describe the degree of compac-
tion of coarse-grained soils. Relative density Dr is defined as

	
D

e e
e e

r =
-
-

max

max min
	 (1.45)

where
emax is the maximum possible void ratio
emin is the minimum possible void ratio
e is the void ratio in natural state of soil

Equation 1.45 can also be expressed in terms of dry unit weight of the soil:

	
g g g

gd
s w s w

d

or(max)
(max)min

min=
+

= -G
e

e
G

1
1 	 (1.46)

Similarly,

	
e

G
max

(min)
= -s w

d

g
g

1 	 (1.47)

and

	
e

G= -s w

d

g
g

1 	 (1.48)

where γd(max), γd(min), and γd are the maximum, minimum, and natural-
state dry unit weights of the soil. Substitution of Equations 1.46 through 
1.48 into Equation 1.45 yields

	
Dr

d

d

d d

d d

= È
ÎÍ

˘
˚̇

-
-

È
ÎÍ

˘
˚̇

g
g

g g
g g

(max) (min)
(max) (min)

	 (1.49)

Relative density is generally expressed as a percentage. It has been used 
by several investigators to correlate the angle of friction of soil, the soil 
liquefaction potential, etc.

Another term occasionally used in regard to the degree of compaction of 
coarse-grained soils is relative compaction, Rc, which is defined as

	
Rc

d

d

= g
g (max)

	 (1.50a)
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Comparing Equations 1.49 and 1.50a,

	
R

R
D R

c
o

r o

=
- -1 1( )

	 (1.50b)

where Ro = γd(min)/γd(max).
Lee and Singh (1971) reviewed 47 different soils and gave the approxi-

mate relation between relative compaction and relative density as

	 R Dc r= +80 0 2. 	 (1.50c)

where Dr is in percent.

1.14 � RELATIONSHIP BETWEEN emax AND emin

The maximum and minimum void ratios for granular soils described in 
Section 1.13 depend on several factors such as

•	 Grain size
•	 Grain shape
•	 Nature of grain-size distribution
•	 Fine content Fc (i.e., fraction smaller than 0.075 mm)

Following are some of the correlations now available in the literature related 
to emax and emin of granular soils.

•	 Clean sand (Fc = 0%–5%)

Miura et al. (1997) conducted an extensive study of the physical characteris-
tics of about 200 samples of granular material, which included mostly clean 
sand, some glass beads, and lightweight aggregates (LWA). Figure 1.35 
shows a plot of emax versus emin obtained from that study, which shows that

	 e emax min.ª1 62 	 (1.51)

Cubrinovski and Ishihara (2002) analyzed a large number of clean sand 
samples based on which it was suggested that

	 e emax min. .= +0 072 1 53 	 (1.52)

The data points upon which Equation 1.52 is based and an additional 55 data 
points for clean sand given by Patra et al. (2010) are shown in Figure 1.36. 
From this figure, it appears that Equation 1.51 may be taken as a good aver-
age approximation. The difference in the angularity or roundness of the 
particles of different soils is another major factor causing the scatter.
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Figure 1.35  �Plot of emax versus emin based on the results of Miura et al. (1997).
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Figure 1.36  �Plot of emax versus emin for clean sand.
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Based on best-fit linear regression lines, Cubrinovski and Ishihara (2002) 
also provided the following relationships for other soils:

•	 Sand with fines (5% < Fc ≤ 15%)

	 e emax min25 1 37= +0. . 	 (1.53)

•	 Sand with fines and clay (15% < Fc ≤ 30%; Pc = 5%–20%)

	 e emax min44 1 21= +0. . 	 (1.54)

•	 Silty soils (30% < Fc ≤ 70%; Pc = 5%–20%)

	 e emax min44 1 32= +0. . 	 (1.55)

		  where
Fc is the fine fraction for which grain size is smaller than 0.075 mm
Pc is the clay-size fraction (<0.005 mm)

Based on a very large database, Cubrinovski and Ishihara (1999, 2002) devel-
oped a unique relationship between emax – emin and median grain size D50. The 
database included results from clean sand, sand with fines, and sand with clay, 
silty soil, gravelly sand, and gravel. This relationship is shown in Figure 1.37. 
In spite of some scatter, the average line can be given by the relation

	
e e

D
max min .

.- = +0 23
0 06

50(mm)
	 (1.56)

It appears that the upper and lower limits of emax – emin versus D50 as shown 
in Figure 1.37 can be approximated as

•	 Lower limit

	
e e

D
max min .

.- = +0 16
0 045

50(mm)
	 (1.57)

•	 Upper limit

	
e e

D
max min .

.- = +0 29
0 079

50(mm)
	 (1.58)

1.15 � SOIL CLASSIFICATION SYSTEMS

Soil classification is the arrangement of soils into various groups or subgroups to 
provide a common language to express briefly the general usage characteristics 
without detailed descriptions. At the present time, two major soil classification 
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systems are available for general engineering use. They are the unified system 
and the American Association of State Highway and Transportation Officials 
(AASHTO) system. Both systems use simple index properties such as grain-
size distribution, liquid limit, and plasticity index of soil.

1.15.1 � Unified system

The unified system of soil classification was originally proposed by A. 
Casagrande in 1948 and was then revised in 1952 by the Corps of Engineers 
and the U.S. Bureau of Reclamation. In its present form [also see ASTM 
D-2487, ASTM (2010)], the system is widely used by various organizations, 
geotechnical engineers in private consulting business, and building codes.

Initially, there are two major divisions in this system. A soil is classified 
as a coarse-grained soil (gravelly and sandy) if more than 50% is retained 
on a No. 200 sieve and as a fine-grained soil (silty and clayey) if 50% or 
more is passing through a No. 200 sieve. The soil is then further classified 
by a number of subdivisions, as shown in Table 1.6.
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Figure 1.37  �Plot of emax – emin versus median grain size (D50). (Redrawn after Cubrinovski 
and Ishihara, Soils Found., 42(6), 65–78, 2002.)
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Example 1.2

For a soil specimen, given the following,

Passing No. 4 sieve = 92% Passing No. 40 sieve = 78%
Passing No. 10 sieve = 81% Passing No. 200 sieve = 65%
Liquid limit = 48 Plasticity index = 32

classify the soil by the unified classification system.

Solution

Since more than 50% is passing through a No. 200 sieve, it is a fine-
grained soil, that is, it could be ML, CL, OL, MH, CH, or OH. Now, if 
we plot LL = 48 and PI = 32 on the plasticity chart given in Figure 1.38, 
it falls in the zone CL. So the soil is classified as CL.

1.15.2 � AASHTO classification system

This system of soil classification was developed in 1929 as the Public Road 
Administration Classification System. It has undergone several revisions, 
with the present version proposed by the Committee on Classification of 
Materials for Subgrades and Granular Type Roads of the Highway Research 
Board in 1945 [ASTM (2010) Test Designation D-3282].

The AASHTO classification system in present use is given in 
Table  1.7. According to this system, soil is classified into seven major 
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Figure 1.38  �Plasticity chart.
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Table 1.7  �Classification of highway subgrade materials

General classification
Granular materials (35% or less of total sample passing No. 

200 sieve)

A-1 A-2

Group classification A-1-a A-1-b A-3 A-2-4 A-2-5 A-2-6 A-2-7
Sieve analysis (percent 
passing)

No. 10 50 max.
No. 40 30 max. 50 max. 50 min.
No. 200 15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.
Characteristics of 
fraction passing

No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 6 max. NP 10 max. 10 max. 11 min. 11 min.
Usual types of 
significant 
constituent materials

Stone fragments, 
gravel, and sand

Fine 
sand

Silty or clayey gravel and sand

General subgrade 
rating

Excellent to good

General classification Silt–clay materials (more than 35% or total sample passing No. 
200 sieve)

A-7
A-7-5a

Group classification A-4 A-5 A-6 A-7-6b

Sieve analysis (percent 
passing)

No. 10
No. 40
No. 200 36 min. 36 min. 36 min. 36 min.
Characteristics of 
fraction passing

No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 10 max. 10 max. 11 min. 11 min.
Usual types of 
significant 
constituent materials

Silty soils Clayey soils

General subgrade 
rating

Fair to poor

a	 For A-7-5, PI ≤ LL – 30.
b	 For A-7-6, PI > LL – 30.
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groups: A-1 through A-7. Soils classified into Groups A-1, A-2, and A-3 are 
granular materials, where 35% or less of the particles pass through the No. 
200 sieve. Soils where more than 35% pass through the No. 200 sieve are 
classified into groups A-4, A-5, A-6, and A-7. These are mostly silt and clay-
type materials. The classification system is based on the following criteria:

	 1.	Grain size
Gravel: Fraction passing the 75 mm sieve and retained on No. 10 (2 mm) 

U.S. sieve
Sand: Fraction passing the No. 10 (2 mm) U.S. sieve and retained on 

the No. 200 (0.075 mm) U.S. sieve
Silt and clay: Fraction passing the No. 200 U.S. sieve

	 2.	Plasticity: The term silty is applied when the fine fractions of the soil 
have a plasticity index of 10 or less. The term clayey is applied when 
the fine fractions have a plasticity index of 11 or more.

	 3.	If cobbles and boulders (size larger than 75 mm) are encountered, they 
are excluded from the portion of the soil sample on which classifica-
tion is made. However, the percentage of such material is recorded.

To classify a soil according to Table 1.7, the test data are applied from 
left to right. By the process of elimination, the first group from the left into 
which the test data will fit is the correct classification.

For the evaluation of the quality of a soil as a highway subgrade material, 
a number called the group index (GI) is also incorporated with the groups 
and subgroups of the soil. The number is written in parentheses after the 
group or subgroup designation. The group index is given by the equation

	 GI 35 2 5 LL 4 1 15 PI 1= - + - + - -( )[ . . ( )] . ( )( )F F0 0 00 0 0 0 0 	 (1.59)

where
F is the percent passing the No. 200 sieve
LL is the liquid limit
PI is the plasticity index

The first term of Equation 1.59—that is, (F − 35)[0.2 + 0.005(LL − 40)]—
is the partial group index determined from the liquid limit. The second 
term—that is, 0.01(F − 15) (PI – 10)—is the partial group index deter-
mined from the plasticity index. Following are the rules for determining 
the group index:

	 1.	If Equation 1.59 yields a negative value for GI, it is taken as 0.
	 2.	The group index calculated from Equation 1.59 is rounded off to the 

nearest whole number (e.g., GI = 3.4 is rounded off to 3; GI = 3.5 is 
rounded off to 4).
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	 3.	There is no upper limit for the group index.
	 4.	The group index of soils belonging to groups A-1-a, A-1-b, A-2-4, 

A-2-5, and A-3 is always 0.
	 5.	When calculating the group index for soils that belong to groups 

A-2-6 and A-2-7, use the partial group index for PI, or

	 GI 1 15 PI 1= - -0 0 0. ( )( )F 	 (1.60)

In general, the quality of performance of a soil as a subgrade material is 
inversely proportional to the group index.

Example 1.3

Classify the following soil by the AASHTO classification system.

Passing No. 10 sieve: 100%
Passing No. 40 sieve: 92%
Passing No. 200 sieve: 86%
Liquid limit (LL): 70
Plasticity index (PI): 32

Solution

Percent passing the No. 200 sieve is 86%. So, it is a silty clay material 
(i.e., A-4, A-5, A-6, or A-7) as shown in Table 1.7. Proceeding from left 
to right, we see that it falls under A-7. For this case, PI = 32 < LL – 30. 
So, this is A-7-5. From Equation 1.59

	 GI 35 2 5 LL 4 1 15 PI 1= - + - + - -( )[ . . ( )] . ( )( )F F0 0 00 0 0 0 0

Now, F = 86; LL = 70; PI = 32; so

	

G ( 6 35)[0.2 0.005(70 40)] 0.01( 6 15)(32 10)

33.47 33

I = - + - + - -

= ª

8 8

Thus, the soil is A-7-5(33).

1.16 � COMPACTION

Compaction of loose fills is a simple way of increasing the stability and 
load-bearing capacity of soils, and this is generally achieved by using 
smooth-wheel rollers, sheepsfoot rollers, rubber-tired rollers, and vibratory 
rollers. In order to write the specifications for field compaction, Proctor 
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compaction tests are generally conducted in the laboratory. A brief descrip-
tion of the Proctor compaction test procedure is as follows:

1.16.1 � Standard Proctor compaction test

A standard laboratory soil compaction test was first developed by Proctor 
(1933), and this is usually referred to as the standard Proctor test (ASTM des-
ignation D-698). The test is conducted by compaction of three layers of soil in 
a mold that is 944 cm3 in volume. Each layer of soil is subjected to 25 blows by 
a hammer weighing 24.6 N with a 304.8 mm drop. From the known volume 
of the mold, weight of moist compacted soil in the mold, and moisture content 
of the compacted soil, the dry unit weight of compaction can be determined as

	
gmoist

Weight of moist soil in the mold
Volume of the mold

=

	
g g

d
moist  

1
=

+w

where
γmoist is the moist unit weight of compacted soil
γd is the dry unit weight of compacted soil
w is the moisture content of soil

The test can be repeated several times at various moist contents of soil. 
By plotting a graph of γd against the corresponding moisture content, the 
optimum moisture content wopt and the maximum dry unit weight γd(max) 
can be obtained (Figure 1.39). Also plotted in Figure 1.39 is the variation of 

γd (max)
γzav vs. w

wopt

D
ry

 u
ni

t w
ei

gh
t, 

γ d

Moisture content, w (%)

Figure 1.39  �Nature of variation of γd versus w.
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the dry unit weights, assuming the degree of saturation to be 100%. These 
are the theoretical maximum dry unit weights that can be attained for a 
given moisture content when there will be no air in the void spaces. With 
the degree of saturation as 100%

	 e wG= s 	 (1.61)

The maximum dry unit weight at a given moisture content with zero air 
voids can be given by (Equation 1.38)

	
g g g g

zav
s w s w

s

w

s/
=

+
=

+
=

+
G

e
G

wG G w1 1 1( )
	 (1.62)

where γzav is the zero-air-void unit weight (dry).
For standard Proctor compaction test, the compaction energy E can be 

expressed as

	

E = ( . )( )(
( )

24 5 3
944 106

N/blow layers 25blows/layer)(0.3048m)
/ m3

== ª593 294, N-m/m 593kN-m/m3 3

1.16.2 � Modified Proctor compaction test

With the development of heavier compaction equipment, the standard 
Proctor test has been modified for better representation of field conditions. 
In the modified Proctor test (ASTM designation D-1577), the same mold 
as in the standard Proctor test is used. However, the soil is compacted in 
5 layers, with a 44.5 N hammer giving 25 blows to each layer. The height 
of drop of the hammer is 457.2 mm. Hence, the compactive effort in the 
modified Proctor test is equal to

	

E = ( ( )( . )
( )

25blows/layer) layers N/blow (0.4572m)
/ m3

5 44 5
944 106

== ª2 694 041 604, , N-m/m 2 kN-m/m3 3

The maximum dry unit weight obtained from the modified Proctor test 
will be higher than that obtained from the standard Proctor test due to the 
application of higher compaction energy. It will also be accompanied by a 
lower optimum moisture content compared to that obtained from the stan-
dard Proctor compaction test.
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1.17 � EMPIRICAL RELATIONSHIPS FOR PROCTOR 
COMPACTION TESTS

Omar et al. (2003) presented the results of modified Proctor compaction 
tests on 311 soil samples. Of these samples, 45 were gravelly soil (GP, 
GP–GM, GW, GW–GM, and GM), 264 were sandy soil (SP, SP–SM, 
SW–SM, SW, SC–SM, SC, and SM), and two were clay with low plasticity 
(CL). Based on the tests, the following correlations were developed:

	 rd s LL(max)
.[ , , . ( ) , ( # ) , ,= - + -4 804 574 195 55 156 971 4 9 527 8302 0 5G R ]] .0 5

	
� (1.63)

	
ln( ) . ( ) . . ( # ) .w G Ropt sLL= ¥ - - ¥ +- -1 195 10 1 964 6 617 10 4 7 6514 2 5

	
� (1.64)

where
ρd(max) is the maximum dry density
wopt is the optimum moisture content (%)
Gs is the specific gravity of soil solids
LL is the liquid limit, in percent
R#4 is the percent retained on No. 4 sieve

For granular soils with less than 12% fines (i.e., finer than No. 200 sieve), 
relative density may be a better indicator for end product compaction speci-
fication in the field. Based on laboratory compaction tests on 55 clean sands 
(less than 5% finer than No. 200 sieve), Patra et al. (2010) provided the 
following relationships:

	 D AD B
r = -

50 	 (1.65)

	 A E= -0 0 0. .216ln 85 	 (1.66)

	 B E= - +0 0 0 0. .3ln 3 6 	 (1.67)

where
Dr is the maximum relative density of compaction achieved with com-

paction energy E, kN-m/m3

D50 is the median grain size, mm

Gurtug and Sridharan (2004) proposed correlations for optimum mois-
ture content and maximum dry unit weight with the plastic limit PL of 
cohesive soils. These correlations can be expressed as
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w Eopt PL(%) [ . . (log )]( )= -1 95 0 38 	 (1.68)

	 gd
3kN/m opt

(max)
. (%)( ) .= 22 68 0 0183e w 	 (1.69)

where
PL is the plastic limit, %
E is the compaction energy, kN-m/m3

For modified Proctor test, E ≈ 2700 kN/m3. Hence,

	
wopt PL(%) . ( )ª 0 65

	 gd
3 PLkN/m(max)

. ( )( ) .ª -22 68 0 012e

Osman et al. (2008) analyzed a number of laboratory compaction test 
results on fine-grained (cohesive) soil, including those provided by 
Gurtug and Sridharan (2004). Based on this study, the following cor-
relations were developed:

	
w Eopt PI(%) ( . . ln )( )ª -1 99 0 165 	 (1.70)

	
gd

3
optkN/m(max)( ) (%)ª -L Mw 	 (1.71)

where

	 L E= +14 34 1 195ln. . 	 (1.72)

	 M E= - +0 0 0. .19 73ln 	 (1.73)

wopt is the optimum moisture content, %
PI is the plasticity index, %
γd(max) is the maximum dry unit weight, kN/m3

E is the compaction energy, kN-m/m3

DiMatteo et al. (2009) analyzed the results of 71 fine-grained soils and pro-
vided the following correlations for optimum moisture content wopt and max-
imum dry unit weight γd(max) for modified Proctor tests (E = 2700 kN-m/m3)

	 wopt LL) + 3.04
LL
G

(%) . ( .= - Ê
ËÁ

ˆ
¯̃
+0 86 2 2 	 (1.74)
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gd optkN m PI(max)

. .( / ) . ( ) .3 0 295 0 3240 316 2 4= ( ) --w 	 (1.75)

where
LL is the liquid limit, %
PI is the plasticity index, %
Gs is the specific gravity of soil solids

Example 1.4

For a sand with 4% finer than No. 200 sieve, estimate the maximum 
relative density of compaction that may be obtained from a modified 
Proctor test. Given D50 = 1.4 mm.

Solution

For the modified Proctor test, E = 2696 kN-m/m3.
From Equation 1.66

	 A E= - = - =0 0 0 0 0 0 0. . ( . ( . .216ln 85 216) ln 2696) 85 856

From Equation 1.67

	 B E= - + = - + =0 0 0 0 0 0 0 0 0 0. . ( . )( ) . .3ln 3 6 3 ln 2696 3 6 69

From Equation 1.65

	 D AD B
r = = = =- -

50
0 0690 856 1 4 0 836 83 6( . )( . ) . . %.

Example 1.5

For a silty clay soil given LL = 43 and PL = 18. Estimate the maximum 
dry unit weight of compaction that can be achieved by conducting 
modified Proctor test. Use Equation 1.71.

Solution

For the modified Proctor test, E = 2696 kN-m/m3.
From Equations 1.72 and 1.73

	 L E= + = + =14 34 1 195ln 14 34 1 195ln 2696 23 78. . . . ( ) .

	 M E= - + = - + =0 0 0 0 0 0 0. . . . ( ) .19 73ln 19 73ln 2696 387
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From Equation 1.70

	

w Eopt PI(%) ( . . ln )( )

[ . . ln( )]( )

= -

= - -

=

1 99 0 165

1 99 0 165 2696 43 18

17.. %16 	

From Equation 1.71

	 gd opt
3kN/m(max) . ( . )( . ) .= - = - =L Mw 23 78 0 387 17 16 17 14

REFERENCES

American Society for Testing and Materials, Annual Book of ASTM Standards, 
sec. 4, vol. 04.08, ASTM, West Conshohocken, PA, 2010.

Atterberg, A., Uber die Physikalische Bodenuntersuschung und Uber die Plastizitat 
der Tone, Int. Mitt. Bodenkunde, 1, 5, 1911.

Bolt, G. H., Analysis of validity of Gouy-Chapman theory of the electric double 
layer, J. Colloid Sci., 10, 206, 1955.

Bolt, G. H., Physical chemical analysis of compressibility of pure clay, Geotechnique, 
6, 86, 1956.

Casagrande, A., Classification and identification of soils, Trans. ASCE, 113, 901–930, 
1948.

Cubrinovski, M. and K. Ishihara, Empirical correlation between SPT N-value and 
relative density for sandy soils, Soils Found., 39(5), 61–71, 1999.

Cubrinovski, M. and K. Ishihara, Maximum and minimum void ratio characteristics 
of sands, Soils Found., 42(6), 65–78, 2002.

DiMatteo, L. D., F. Bigotti, and R. Rico, Best-fit model to estimate proctor properties 
of compacted soil, J. Geotech. Geoenviron. Eng., Am. Soc. Civ. Eng., 135(7), 
992–996, 2009.

Grim, R.E., Physico-Chemical Properties of Soils, J. Soil Mech. Found. Div., ASCE, 
85(SM2), 1–17, 1959.

Gurtug, Y. and A. Sridharan, Compaction behaviour and prediction of its character-
istics of fine grained soils with particular reference to compaction energy, Soils 
Found., 44(5), 27–36, 2004.

Lambe, T. W., Compacted clay: Structure, Trans. ASCE, 125, 682–717, 1960.
Lee, K. L. and A. Singh, Relative density and relative compaction, J. Soil Mech. 

Found. Div., Am. Soc. Civ. Eng., 97(SM7), 1049–1052, 1971.
Miura, K., K. Maeda, M. Furukama, and S. Toki, Physical characteristics of sands 

with different primary properties, Soils Found., 37(3), 53–64, 1997.
Omar, M., S. Abdallah, A. Basma, and S. Barakat, Compaction characteristics of 

granular soils in United Arab Emirates, Geotech. Geol. Eng., 21(3), 283–295, 
2003.



52  Advanced Soil Mechanics﻿

© 2010 Taylor & Francis Group, LLC

Osman, S., E. Togrol, and C. Kayadelen, Estimating compaction behavior of fine-
grained soils based on compaction energy, Can. Geotech. J., 45(6), 877–887, 
2008.

Patra, C. R., N. Sivakugan, B. M. Das, and S. K. Rout, Correlation of relative density 
of clean sand with median grain size and compaction energy, Int. J. Geotech. 
Eng., 4(2), 196–203, 2010.

Proctor, R. R., Design and construction of rolled earth dams, Eng. News Record, 3, 
245–248, 286–289, 348–351, 372–376, 1933.

Seed, H. B., R. J. Woodward, and R. Lundgren, Clay mineralogical aspects of the 
Atterberg limits, J. Soil Mech. Found. Eng. Div., Am. Soc. Civ. Eng., 90(SM4), 
107–131, 1964a.

Seed, H. B., R. J. Woodward, and R. Lundgren, Fundamental aspects of Atterberg 
limits, J. Soil Mech. Found. Eng. Div., Am. Soc. Civ. Eng., 90(SM6), 75–105, 
1964b.

Skempton, A. W., The colloidal activity of clay, Proc. 3rd Int. Conf. Soil Mech. 
Found. Eng., Zurich, Switzerland, Vol. 1, pp. 57–61, 1953.

Sridharan, A., H. B. Nagaraj, and K. Prakash, Determination of the plasticity index 
from flow index, Geotech. Testing J., ASTM, 22(2), 175–181, 1999.

Verweg, E. J. W. and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids, 
Elsevier-North Holland, Amsterdam, the Netherlands, 1948.

Wroth, C. P. and D. M. Wood, The correlation of index properties with some basic 
engineering properties of soils, Can. Geotech. J., 15(2), 137–145, 1978. 



53© 2010 Taylor & Francis Group, LLC

Chapter 2

Stresses and strains
Elastic equilibrium

2.1 � INTRODUCTION

An important function in the study of soil mechanics is to predict the 
stresses and strains imposed at a given point in a soil mass due to cer-
tain loading conditions. This is necessary to estimate settlement and to 
conduct stability analysis of earth and earth-retaining structures, as well 
as to determine stress conditions on underground and earth-retaining 
structures.

An idealized stress–strain diagram for a material is shown in Figure 2.1. 
At low stress levels, the strain increases linearly with stress (branch ab), 
which is the elastic range of the material. Beyond a certain stress level, the 
material reaches a plastic state, and the strain increases with no further 
increase in stress (branch bc). The theories of stresses and strains presented 
in this chapter are for the elastic range only. In determining stress and 
strain in a soil medium, one generally resorts to the principles of the theory 
of elasticity, although soil in nature is not fully homogeneous, elastic, or 
isotropic. However, the results derived from the elastic theories can be judi-
ciously applied to the problem of soil mechanics.

2.2 � BASIC DEFINITION AND SIGN 
CONVENTIONS FOR STRESSES

An elemental soil mass with sides measuring dx, dy, and dz is shown in 
Figure 2.2. Parameters σx, σy, and σz are the normal stresses acting on the 
planes normal to the x, y, and z axes, respectively. The normal stresses are 
considered positive when they are directed onto the surface. Parameters 
τxy, τyx, τyz, τzy, τzx, and τxz are shear stresses. The notations for the shear 
stresses follow.
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Figure 2.1  Idealized stress–strain diagram.
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Figure 2.2  �Notations for normal and shear stresses in a Cartesian coordinate system.
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If τij is a shear stress, it means the stress is acting on a plane normal to 
the i axis, and its direction is parallel to the j axis. A shear stress τij is con-
sidered positive if it is directed in the negative j direction while acting on 
a plane whose outward normal is the positive i direction. For example, all 
shear stresses are positive in Figure 2.2. For equilibrium

	
t txy yx= 	 (2.1)

	 t txz zz= 	 (2.2)

	
t tyz zy= 	 (2.3)

Figure 2.3 shows the notations for the normal and shear stresses in 
a polar coordinate system (two-dimensional case). For this case, σr and 
σθ are the normal stresses, and τrθ and τθr are the shear stresses. For 
equilibrium, τrθ = τθr. Similarly, the notations for stresses in a cylindri-
cal coordinate system are shown in Figure 2.4. Parameters σr, σθ, and 
σz are the normal stresses, and the shear stresses are τrθ = σθr, σθz = σzθ, 
and τrz = τzr.

z

x

σθ

τθr

τrθ

θ

dθ

drτθr

τrθ

σr

σr

r

σθ

Figure 2.3  �Notations for normal and shear stresses in a polar coordinate system.
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2.3 � EQUATIONS OF STATIC EQUILIBRIUM

Figure 2.5 shows the stresses acting on an elemental soil mass with sides 
measuring dx, dy, and dz. Let γ be the unit weight of the soil. For equilib-
rium, summing the forces in the x direction
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∂
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˙ + - +∂
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∂
∂

 + ∂
∂

 + ∂
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Figure 2.4  �Notations for normal and shear stresses in cylindrical coordinates.
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Similarly, along the y direction, ∑Fy = 0, or

	

∂
∂
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∂

+ ∂
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=s t ty xy zy

y x z
0 	 (2.5)

Along the z direction
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The last term of the preceding equation is the self-weight of the soil mass.
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Figure 2.5  �Derivation of equations of equilibrium.
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Thus

	

∂
∂

+ ∂
∂

+ ∂
∂

- =s t t gz xz yz

z x y
0 	 (2.6)

Equations 2.4 through 2.6 are the static equilibrium equations in the 
Cartesian coordinate system. These equations are written in terms of total 
stresses.

They may, however, be written in terms of effective stresses as

	 s s s gx x x wu h= ¢+ = ¢+ 	 (2.7)

where
¢sx  is the effective stress

u is the pore water pressure
γw is the unit weight of water
h is the pressure head

Thus

	

∂
∂

= ∂ ¢
∂

+ ∂
∂

s s gx x
w

x x
h
x

	 (2.8)

Similarly

	

∂
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= ∂ ¢
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+ ∂
∂

s s gy y
w

y y
h
y

	 (2.9)

and

	

∂
∂

= ∂ ¢
∂

+ ∂
∂

s s gz z
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z z
h
z

	 (2.10)

Substitution of the proper terms in Equations 2.4 through 2.6 results in
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where γ′ is the effective unit weight of soil. Note that the shear stresses will 
not be affected by the pore water pressure.
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In soil mechanics, a number of problems can be solved by two-dimensional 
stress analysis. Figure 2.6 shows the cross-section of an elemental soil prism 
of unit length with the stresses acting on its faces. The static equilibrium equa-
tions for this condition can be obtained from Equations 2.4 through 2.6 by 
substituting τxy = τyx = 0, τyz = τzy = 0, and ∂σy/∂y = 0. Note that τxz = τzx. Thus

	

∂
∂

+ ∂
∂

=s tx xz

x z
0 	 (2.14)

	

∂
∂

+ ∂
∂

- =s t gz xz

z x
0 	 (2.15)

Figure 2.7 shows an elemental soil mass in polar coordinates. Parameters 
σr and σθ are the normal components of stress in the radial and tangential 
directions, and τθr and τrθ are the shear stresses. In order to obtain the static 
equations of equilibrium, the forces in the radial and tangential directions 
need to be considered. Thus
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Figure 2.6  �Derivation of static equilibrium equation for a two-dimensional problem in 
Cartesian coordinates.
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Taking sin dθ/2 ≈ dθ/2 and cos dθ/2 ≈ 1, neglecting infinitesimally small 
quantities of higher order, and noting that ∂(σrr)/∂r = r(∂σr /∂r) + σr and 
τθr = τrθ, the previous equation yields

	

∂
∂

+ ∂
∂

+ - - =s t
q

s s g qq qr r r

r r r
1

0cos 	 (2.16)

Similarly, the static equation of equilibrium obtained by adding the com-
ponents of forces in the tangential direction is

	

1 2
0

r r r
r r∂

∂
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+ + =s
q

t t g qq q q sin 	 (2.17)

The stresses in the cylindrical coordinate system on a soil element are 
shown in Figure 2.8. Summing the forces in the radial, tangential, and 
vertical directions, the following relations are obtained:
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Figure 2.7  �Derivation of static equilibrium equation for a two-dimensional problem in 
polar coordinates.
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2.4 � CONCEPT OF STRAIN

Consider an elemental volume of soil as shown in Figure 2.9a. Owing to 
the application of stresses, point A undergoes a displacement such that its 
components in the x, y, and z directions are u, v, and w, respectively. The 
adjacent point B undergoes displacements of u + (∂u/∂x)dx, v + (∂v/∂x)dx, 
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Figure 2.8  �Equilibrium equations in cylindrical coordinates.
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and w + (∂w/∂x)dx in the x, y, and z directions, respectively. So, the change 
in the length AB in the x direction is u + (∂u/∂x)dx − u = (∂u/∂x)dx. Hence, 
the strain in the x direction, Œx, can be given as

	
Œ = ∂

∂
Ê
ËÁ

ˆ
¯̃
= ∂
∂x

dx
u
x

dx
u
x

1
	 (2.21)

Similarly, the strains in the y and z directions can be written as

	
Œ = ∂

∂y
v
y

	 (2.22)

	
Œ = ∂

∂z
w
z

	 (2.23)

where ∈y and ∈z are the strains in the y and z directions, respectively.
Owing to stress application, sides AB and AC of the element shown in 

Figure 2.9a undergo a rotation as shown in Figure 2.9b (see A′B″ and A′C″). 
The small change in angle for side AB is α1, the magnitude of which may 
be given as [(∂v/∂x)dx](1/dx) = ∂v/∂x, and the magnitude of the change in 
angle α2 for side AC is [(∂u/∂y)dy](1/dy) = ∂u/∂y. The shear strain γxy is 
equal to the sum of the change in angles α1 and α2. Therefore

	
gxy

u
y

v
x

= ∂
∂

+ ∂
∂

	 (2.24)
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Figure 2.9  �Concept of strain: (a) elemental volume of soil measuring dx dy dz; (b) rotation 
of sides AB and AC of the elemental volume.
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Similarly, the shear strains γxz and γyz can be derived as

	
gxz

u
z

w
x

= ∂
∂

+ ∂
∂

	 (2.25)

and

	
gyz

v
z

w
y

= ∂
∂

+ ∂
∂ 	 (2.26)

Generally, in soil mechanics, the compressive normal strains are considered 
positive. For shear strain, if there is an increase in the right angle BAC 
(Figure 2.9b), it is considered positive. As shown in Figure 2.9b, the shear 
strains are all negative.

2.5 � HOOKE’S LAW

The axial strains for an ideal, elastic, isotropic material in terms of the 
stress components are given by Hooke’s law as
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and
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where
E is the Young’s modulus
v is the Poisson’s ratio

Form the relation given by Equations 2.27 through 2.29, the stress com-
ponents can be expressed as
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The shear strains in terms of the stress components are
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where shear modulus
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2.6 � PLANE STRAIN PROBLEMS

A state of stress generally encountered in many problems in soil mechanics 
is the plane strain condition. Long retaining walls and strip foundations 
are examples where plane strain conditions are encountered. Referring to 
Figure 2.10, for the strip foundation, the strain in the y direction is zero 
(i.e., ∈y = 0). The stresses at all sections in the xz plane are the same, and the 
shear stresses on these sections are zero (i.e., τyx = τxy = 0 and τyz = τzy = 0). 
Thus, from Equation 2.28

	
Œ = = - +y y x z

E
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1
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Substituting Equation 2.37 into Equations 2.27 and 2.29
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and
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Since τxy = 0 and τyz = 0

	
g gxy yz= =0 0 	 (2.40)

and
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2.6.1 � Compatibility equation

The three strain components given by Equations 2.38, 2.39, and 2.41 are 
functions of the displacements u and w and are not independent of each 
other. Hence, a relation should exist such that the strain components give 
single-valued continuous solutions. It can be obtained as follows. From 
Equation 2.21, ∈x = ∂u/∂x. Differentiating twice with respect to z
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Figure 2.10  �Strip foundation: plane strain problem.
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From Equation 2.23, ∈z = ∂w/∂z. Differentiating twice with respect to x
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Similarly, differentiating γxz (Equation 2.25) with respect to x and z
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Combining Equations 2.42 through 2.44, we obtain

	

∂ Œ
∂

+ ∂ Œ
∂

= ∂
∂ ∂

2

2

2

2

2
x z xz

z x x z
g
 

	 (2.45)

Equation 2.45 is the compatibility equation in terms of strain compo-
nents. Compatibility equations in terms of the stress components can also 
be derived. Let E′ = E/(1 − v2) and v′ = v/(1 − v). So, from Equation 2.38, 
∈x = 1/E′(σx − v′σz). Hence
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Similarly, from Equation 2.39, ∈x = (1/E′)(σz − v′σx). Thus
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Again, from Equation 2.41
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Substitution of Equations 2.46 through 2.48 into Equation 2.45 yields
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From Equations 2.14 and 2.15
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Combining Equations 2.49 and 2.50
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For weightless materials, or for a constant unit weight γ, the previous 
equation becomes
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Equation 2.51 is the compatibility equation in terms of stress.

2.6.2 � Stress function

For the plane strain condition, in order to determine the stress at a given 
point due to a given load, the problem reduces to solving the equations of 
equilibrium together with the compatibility equation (Equation 2.51) and 
the boundary conditions. For a weight-less medium (i.e., γ = 0), the equa-
tions of equilibrium are
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x z
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The usual method of solving these problems is to introduce a stress func-
tion referred to as Airy’s stress function. The stress function ϕ in terms of 
x and z should be such that

	
s f

x
z

= ∂
∂

2

2 	 (2.52)
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s f

z
x

= ∂
∂

2

2 	 (2.53)

	
t f

xz
x z

= - ∂
∂ ∂

2

 
	 (2.54)

The aforementioned equations will satisfy the equilibrium equations. When 
Equations 2.52 through 2.54 are substituted into Equation 2.51, we get

	

∂
∂

+ ∂
∂ ∂

+ ∂
∂

=
4

4

4

2 2

4

42 0
f f f

x x z z 
	 (2.55)

So, the problem reduces to finding a function ϕ in terms of x and z such that 
it will satisfy Equation 2.55 and the boundary conditions.

2.6.3 � Compatibility equation in polar coordinates

For solving plane strain problems in polar coordinates, assuming the 
soil to be weightless (i.e., γ = 0), the equations of equilibrium are (from 
Equations 2.16 and 2.17)
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r r r
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0
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The compatibility equation in terms of stresses can be given by

	

∂
∂

+ ∂
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∂
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1 1
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The Airy stress function ϕ should be such that

	
s f f

qr
r r r

= ∂
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+ ∂
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1 1
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2 	 (2.57)

	
s f
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∂
∂

2
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	 (2.58)
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The previous equations satisfy the equilibrium equations. The compat-
ibility equation in terms of stress function is
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Similar to Equation 2.37, for the plane strain condition

	 σy = v(σr + σθ)

Example 2.1

The stress at any point inside a semi-infinite medium due to a line load 
of intensity q per unit length (Figure 2.11) can be given by a stress 
function

	
f = Ê

ËÁ
ˆ
¯̃

-Ax
z
x

tan 1

where A is a constant. This equation satisfies the compatibility equa-
tion (Equation 2.55). (a) Find σx, σz, σy, and τxz. (b) Applying proper 
boundary conditions, find A.

Line load,
q/unit length

σz

x

z

Figure 2.11  �Stress at a point due to a line load.
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Solution

Part a:

	
f = Ê

ËÁ
ˆ
¯̃

-Ax
z
x

tan 1

The relations for σx, σz, σy, and τxz are given in Equations 2.52 
through 2.54.
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Part b: Consider a unit length along the y direction. We can write
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We can see that at z = 0 (i.e., at the surface) and for any value of x ≠ 0, 
σx, σz, and τxz are equal to zero.

2.7 � EQUATIONS OF COMPATIBILITY 
FOR THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems in the Cartesian coordinate system as 
shown in Figure 2.2, the compatibility equations in terms of stresses are 
(assuming the body force to be zero or constant)
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	 (2.61)
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where
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and

	 Θ = σx + σy + σz

The compatibility equations in terms of stresses for the cylindrical coor-
dinate system (Figure 2.4) are as follows (for constant or zero body force):
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2.8 � STRESSES ON AN INCLINED PLANE 
AND PRINCIPAL STRESSES FOR 
PLANE STRAIN PROBLEMS

The fundamentals of plane strain problems are explained in Section 2.5. 
For these problems, the strain in the y direction is zero (i.e., τyx = τxy = 0; 
τyz = τzy = 0) and σy is constant for all sections in the plane.

If the stresses at a point in a soil mass (i.e., σx, σy, σz, τxz(= τzx)) are known 
(as shown in Figure 2.12a), the normal stress σ and the shear stress τ on 
an inclined plane BC can be determined by considering a soil prism of unit 
length in the direction of the y axis. Summing the components of all forces 
in the n direction (Figure 2.12b) gives

	 ∑Fn = 0

	 σ dA = (σx cos θ)(dA cos θ) + (σz sin θ)(dA sin θ)

	 + (τxz sin θ)(dA cos θ) + (τxz cos θ)(dA sin θ)

where dA is the area of the inclined face of the prism. Thus
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Similarly, summing the forces in the s direction gives

	

Â =

= - +

+

F

dA dA dA

dA

s

x z

xz

0

t s q q s q q

t q

 ( sin )( cos ) ( cos )( sin )

( cos )( coos ) ( sin )( sin )

sin cos sin cos (cos

q t q q

t s q q s q q t q

-

= - + + -

xz

x z xz

dA

2 ssin )

cos sin

2

2
2

2

q

t q s s q= - -Ê
ËÁ

ˆ
¯̃

xz
x z 	 (2.74)

Note that σy has no contribution to σ or τ.
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2.8.1 � Transformation of stress components from 
polar to Cartesian coordinate system

In some instances, it is helpful to know the relations for transformation of 
stress components in a polar coordinate system to a Cartesian coordinate sys-
tem. This can be done by a principle similar to that demonstrated earlier for 
finding the stresses on an inclined plane. Comparing Figures 2.12 and 2.13, 

x

s

n

Principal plane
(a)

B

z

A

θ τ
σ

σx

σz

C
Ć

C˝

τxz

τzx

AB=BC cos θ
AC=BC sin θ

A C

dA

θ

τ σ
σx

σz

σy

σy

τxz

τzx

Unit
length

B
(b)

Figure 2.12  �(a) Stresses on an inclined plane for the plane strain case; (b) soil prism of 
unit length in the direction of y-axis.
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it  is  obvious that we can substitute σr for σz, σθ for σx, and τrθ for τxz in 
Equations 2.73 and 2.74 to obtain σx and τxz as shown in Figure 2.13. So

	 s s q s q t q qq qx r r= + +sin cos 2 sin cos2 2 	 (2.75)

	 t s q q s q q t q qq qxz r r= - + + -sin cos sin cos cos sin2 2( ) 	 (2.76)

Similarly, it can be shown that

	 s s q s q t q qq qz r r= + -cos sin 2 sin cos2 2 	 (2.77)

2.8.2 � Principal stress

A plane is defined as a principal plane if the shear stress acting on it is zero. 
This means that the only stress acting on it is a normal stress. The normal 
stress on a principal plane is referred to as the principal stress. In a plane 
strain case, σy is a principal stress, and the xz plane is a principal plane. 
The orientation of the other two principal planes can be determined by 
considering Equation 2.74. On an inclined plane, if the shear stress is zero, 
it follows that

	
t q s s qxz

x zcos sin2
2

2= -Ê
ËÁ

ˆ
¯̃

θ

θ

σx

σθ

σr

τxzτθr

τrθ

x

z

Figure 2.13  �Transformation of stress components from polar to Cartesian coordinate 
system.
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tan2

2q t
s s

=
-

xz

x z

	 (2.78)

From Equation 2.78, it can be seen that there are two values of θ at right 
angles to each other that will satisfy the relation. These are the directions 
of the two principal planes BC′ and BC″ as shown in Figure 2.12. Note 
that there are now three principal planes that are at right angles to each 
other. Besides σy, the expressions for the two other principal stresses can 
be obtained by substituting Equation 2.78 into Equation 2.73, which gives

	
s s s s s tp(1) =

+ + -Ê
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ˆ
¯̃
+x z x z

xz
2 2

2
2 	 (2.79)

	
s s s s s tp(3) =

+ - -Ê
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ˆ
¯̃
+x z x z

xz
2 2

2
2 	 (2.80)

where σp(1) and σp(3) are the principal stresses. Also

	
s s s sp p1 3( )+ = +( ) x z 	 (2.81)

Comparing the magnitude of the principal stresses, σp(1) > σy = σp(2) > σp(3). 
Thus σp(1), σp(2), and σp(3) are referred to as the major, intermediate, and 
minor principal stresses. From Equations 2.37 and 2.81, it follows that

	
s s sy v= +[ ]( ) ( )p p1 3 	 (2.82)

2.8.3 � Mohr’s circle for stresses

The shear and normal stresses on an inclined plane (Figure 2.12) can also 
be determined graphically by using Mohr’s circle. The procedure to con-
struct Mohr’s circle is explained later.

The sign convention for normal stress is positive for compression and 
negative for tension. The shear stress on a given plane is positive if it tends 
to produce a clockwise rotation about a point outside the soil element, and 
it is negative if it tends to produce a counterclockwise rotation about a point 
outside the element (Figure 2.14). Referring to plane AB in Figure 2.12a, 
the normal stress is +σx and the shear stress is +τxz. Similarly, on plane 
AC, the stresses are +σz and −τxz. The stresses on planes AB and AC can 
be plotted on a graph with normal stresses along the abscissa and shear 
stresses along the ordinate. Points B and C in Figure 2.15 refer to the stress 
conditions on planes AB and AC, respectively. Now, if points B and C are 
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joined by a straight line, it will intersect the normal stress axis at O′. With 
O′ as the center and O′B as the radius, if a circle BP1 CP3 is drawn, it will 
be Mohr’s circle. The radius of Mohr’s circle is

	
¢ = ¢ + = -Ê

ËÁ
ˆ
¯̃
+O B O D BD x z

xz
2 2

2
2

2
s s t 	 (2.83)

Negative
shear stress

Positive
shear stress

Positive
shear stress

Figure 2.14  �Sign convention for shear stress used for the construction of Mohr’s circle.
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Figure 2.15  �Mohr’s circle.
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Any radial line in Mohr’s circle represents a given plane, and the 
coordinates of the points of intersection of the radial line and the circumfer-
ence of Mohr’s circle give the stress condition on that plane. For example, 
let us find the stresses on plane BC. If we start from plane AB and move 
an angle θ in the clockwise direction in Figure 2.12, we reach plane BC. In 
Mohr’s circle in Figure 2.15, the radial line O′B represents the plane AB. 
We move an angle 2θ in the clockwise direction to reach point F. Now the 
radial line O′F in Figure 2.15 represents plane BC in Figure 2.12. The coor-
dinates of point F will give us the stresses on the plane BC.

Note that the ordinates of points P1 and P3 are zero, which means 
that O′P1 and O′P3 represent the major and minor principal planes, and 
OP1 = σp(1) and OP3 = σp(3):

	
s s s s s tp(1) = = ¢+ ¢ = + + -Ê

ËÁ
ˆ
¯̃
+OP OO O P x z x z

xz1 1

2
2

2 2

	
s s s s s tp(3) = = ¢- ¢ = + - -Ê
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ˆ
¯̃
+OP OO O P x z x z

xz3 3

2
2

2 2

The previous two relations are the same as Equations 2.79 and 2.80. Also 
note that the principal plane O′P1 in Mohr’s circle can be reached by moving 
clockwise from O′B through angle BO′P1 = tan−1 [2τxz/(σx − σz)]. The other 
principal plane O′P3 can be reached by moving through angle 180° + tan−1 
[2τxz/(σx − σz)] in the clockwise direction from O′B. So, in Figure 2.12, if 
we move from plane AB through angle (1/2) tan−1 [2τxz/(σx − σz)], we will 
reach plane BC′, on which the principal stress σp(1) acts. Similarly, moving 
clockwise from plane AB through angle 1/2{180° + tan−1 [2τxz/(σx − σz)]} = 
90° +  (1/2) tan−1 [2τxz/(σx − σz)] in Figure 2.12, we reach plane BC″, on 
which the principal stress σp(3) acts. These are the same conclusions as 
derived from Equation 2.78.

2.8.4 � Pole method for finding stresses 
on an inclined plane

A pole is a unique point located on the circumference of Mohr’s circle. If a 
line is drawn through the pole parallel to a given plane, the point of inter-
section of this line and Mohr’s circle will give the stresses on the plane. The 
procedure for finding the pole is shown in Figure 2.16.

Figure 2.16a shows the same stress element as Figure 2.12. The corre-
sponding Mohr’s circle is given in Figure 2.16b. Point B on Mohr’s circle 
represents the stress conditions on plane AB (Figure 2.16a). If a line is drawn 
through B parallel to AB, it will intersect Mohr’s circle at P. Point P is the 
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pole for Mohr’s circle. We could also have found pole P by drawing a line 
through C parallel to plane AC. To find the stresses on plane BC, we draw 
a line through P parallel to BC. It will intersect Mohr’s circle at F, and the 
coordinates of point F will give the normal and shear stresses on plane AB.

Example 2.2

The stresses at a point in a soil mass are shown in Figure 2.17 (plane 
strain case). Determine the principal stresses and show their direc-
tions. Use v = 0.35.

Solution

Based on the sign conventions explained in Section 2.2,

	 s s tz x xz= + = + = -100 50 25kN/m kN/m and kN/m2 2 2, ,
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2( ) == ±( . )75 35 36 kN/m2

	 σp(1) = 110.36 kN/m2  σp(3) = 39.64 kN/m2

	 σp(2) = v[σp(1) + σp(3)] = (0.35)(110.36 + 39.34) = 52.5 kN/m2
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Figure 2.16  �Pole method of finding stresses on an inclined plane: (a) stress element; 
(b) corresponding Mohr’s circle.
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From Equation 2.78
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and 225 so qq = ∞ ∞22.5 and 112.5

Parameter σp(2) is acting on the xz plane. The directions of σp(1) and σp(3) 
are shown in Figure 2.17.

Example 2.3

Refer to Example 2.2.

	 a.	Determine the magnitudes of σp(1) and σp(3) by using Mohr’s circle.
	 b.	Determine the magnitudes of the normal and shear stresses on 

plane AC shown in Figure 2.17.

Solution

Part a: For Mohr’s circle, on plane AB, σx = 50 kN/m2 and τxz = −25 kN/m2. 
On plane BC, σz = +100 and τxz +25 kN/m2. For the stresses, Mohr’s 
circle is plotted in Figure 2.18. The radius of the circle is

	
¢ = ¢ + = + =O H O I HI( ) ( ) .2 2 2 2 225 25 35 36 kN/m

B

A

110.36 kN/m2

39.64 kN/m2

C
σz = 100 kN/m2

σx = 50 kN/m2

τxz = 25 kN/m235°

22.5°

x

z

Figure 2.17  �Determination of principal stresses at a point.



Stresses and strains  81

© 2010 Taylor & Francis Group, LLC

	 σp(1) = OO′ + O′P1 = 75 + 35.36 = 110.36 kN/m2

	 σp(3) = OO′ + O′P1 = 75 − 35.36 = 39.64 kN/m2

The angle GO′P3 = 2θ = tan−1(JG/O′J) = tan−1(25/25) = 45°. So, we 
move an angle θ = 22.5° clockwise from plane AB to reach the minor 
principal plane, and an angle θ = 22.5 + 90 = 112.5° clockwise from 
plane AB to reach the major principal plane. The orientation of the 
major and minor principal stresses is shown in Figure 2.17.

Part b: Plane AC makes an angle 35°, measured clockwise, with plane 
AB. If we move through an angle of (2)(35°) = 70° from the radial line 
O′G (Figure 2.18), we reach the radial line O′K. The coordinates of K 
will give the normal and shear stresses on plane AC. So

	 τ = O′K sin 25° = 35.36 sin 25° = l4.94 kN/m2

	 σ = OO′ − O′K cos 25° = 75 − 35.36 cos 25° = 42.95 kN/m2

Note:  This could also be solved using Equations 2.73 and 2.74:

	
t t q s s q= - -Ê
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ˆ
¯̃

xz
x zcos sin2

2
2

where
τxz = –25 kN/m2

θ = 35°
σx = +50 kN/m2

σz = +100 kN/m2 (watch the sign conventions)
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Figure 2.18  �Mohr’s circle for stress determination.
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2.9 � STRAINS ON AN INCLINED PLANE 
AND PRINCIPAL STRAIN FOR 
PLANE STRAIN PROBLEMS

Consider an elemental soil prism ABDC of unit length along the y direction 
(Figure 2.19). The lengths of the prism along the x and z directions are AB = 
dx and AC = dz, respectively. When subjected to stresses, the soil prism is 
deformed and displaced. The length in the y direction still remains unity. 
A′B″D″C″ is the deformed shape of the prism in the displaced position. 

A

Á

Ć

B́
B˝

D˝

C˝

B

D

2 +π

C

x

dz dl

dx

θ

γxz

z

Figure 2.19  �Normal and shear strains on an inclined plane (plane strain case).
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If the normal strain on an inclined plane AD making an angle θ with the 
x axis is equal to ∈,

	 ¢ ¢¢= +Œ = +ŒA D AD dl( ) ( )l 1 	 (2.84)

where AD = dl.
Note that the angle B″A′C″ is equal to (π/2 − γxz). So the angle A′C″D″ is 

equal to +(π/2 + γxz). Now

	 ( ) ( ) ( ) ( )( ) ( )¢ ¢¢ = ¢ ¢¢ + ¢ ¢¢ - ¢ ¢¢ ¢¢ ¢¢ +A D A C C D A C C D xz
2 2 2 2 cos /2p g 	 (2.85)

	 ¢ ¢¢= +Œ = +Œ = +ŒA C AC dz dlz z z( ) ( ) ( )( )l 1 sin 1q 	 (2.86)

	 ¢¢ ¢¢= ¢ ¢¢= +Œ = +ŒC D A B dx dlx x( ) ( )( )1 cos 1q 	 (2.87)

Substitution of Equations 2.84, 2.86, and 2.87 into Equation 2.85 gives

	

( ) ( ) [ ( )( )] [ ( )( )]

( ) (

1 sin 1 cos 1

2 sin

2 2 2

2

+Œ = +Œ + +Œ

+

dl dl dl

dl

z xq q2

qq q g)( )( )( )cos 1 l  sin+Œ +Œx z xz 	 (2.88)

Taking sin γxz ≈ γxz and neglecting the higher order terms of strain such as 
Œ Œ Œ Œ Œ Œ Œ2 2 2, , , , , ,x z x xz z xz x z xzg g g  Equation 2.88 can be simplified to

	

1 2 1 2 1 2 22 2

2

+ Œ = + Œ + + Œ +

Œ =Œ +Œ

( )sin ( ) cos sin cos

cos sin

z x xz

x z

q q g q q

q 22

2
2q g q+ xz sin 	 (2.89)

or

	
Œ = Œ +Œ +Œ -Œ +x z x z xz

2 2
2

2
2cos sinq g q	 (2.90)

Similarly, the shear strain on plane AD can be derived as

	 g g q q= - Œ -Œxz xcos2  sin2( )z 	 (2.91)

Comparing Equations 2.90 and 2.91 with Equations 2.73 and 2.74, it 
appears that they are similar except for a factor of 1/2 in the last terms of 
the equations.



84  Advanced Soil Mechanics﻿

© 2010 Taylor & Francis Group, LLC

The principal strains can be derived by substituting zero for shear strain 
in Equation 2.91. Thus

	
tan2q g=

Œ -Œ
xz

x y

	 (2.92)

There are two values of θ that will satisfy the aforementioned relation. 
Thus, from Equations 2.90 and 2.92, we obtain

	
Œ = Œ +Œ ± Œ -ŒÊ

ËÁ
ˆ
¯̃
+Ê
ËÁ

ˆ
¯̃

p
x z x z xz

2 2 2

2 2g
	 (2.93)

where ∈p = principal strain. Also note that Equation 2.93 is similar to 
Equations 2.79 and 2.80.

2.10 � STRESS COMPONENTS ON AN INCLINED 
PLANE, PRINCIPAL STRESS, AND OCTAHEDRAL 
STRESSES: THREE-DIMENSIONAL CASE

2.10.1 � Stress on an inclined plane

Figure 2.20 shows a tetrahedron AOBC. The face AOB is on the xy plane 
with stresses σz, τzy, and τzx acting on it. The face AOC is on the yz plane 
subjected to stresses σx, τxy, and τxz. Similarly, the face BOC is on the xz 

BO

A

y

σx

σz

σy

τxy

τzy

τyz

τyx

τzx

psy
psz

C

x

psx

Normal to plane ABC;
unit vector = s

τxz

z

Figure 2.20  �Stresses on an inclined plane—three-dimensional case.
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plane with stresses σy, τyx, and τyz. Let it be required to find the x, y, and z 
components of the stresses acting on the inclined plane ABC.

Let i, j, and k be the unit vectors in the x, y, and z directions, and let s 
be the unit vector in the direction perpendicular to the inclined plane 
ABC:

	 s s x s y s z= + +cos cos cos( , ) ( , ) ( , )i j k 	 (2.94)

If the area of ABC is dA, then the area of AOC can be given as dA(s · i) = 
dA cos(s, x). Similarly, the area of BOC = dA(s · j) = dA cos(s, y), and the 
area of AOB = dA(s · k) = dA cos(s, z).

For equilibrium, summing the forces in the x direction, ∑Fx = 0:

	 psx dA = [σx cos(s, x) + τyx cos(s, y) + τzx cos(s, z)]dA

or

	
p s x s y s zsx x yx zx= + +s t tcos cos cos( , ) ( , ) ( , ) 	 (2.95)

where psx is the stress component on plane ABC in the x direction.
Similarly, summing the forces in the y and z directions

	
p s x s y s zsy xy y zy= + +t s tcos cos cos( , ) ( , ) ( , ) 	 (2.96)

	
p s x s y s zsz xz yz z= + +t t scos cos( ) cos( , ) , ( , ) 	 (2.97)

where psy and psz are the stress components on plane ABC in the y and z 
directions, respectively. Equations 2.95 through 2.97 can be expressed in 
matrix form as

	

p

p

p

s x

s y

s z

sx

sy

sz

x yx xz

xy y zy

xz yz z

=
s t t
t s t
t t s

cos( , )

cos( , )

cos( , )
	 (2.98)

The normal stress on plane ABC can now be determined as

	

s

s s

= + +

= +

p s x p s y p s z

s x s

sx sy sz

x y

cos cos cos

cos cos2 2

( , ) ( , ) ( , )

( , ) ( ,, ) ( , ) ( , ) ( , )

( , ) ( ,

y s z s x s y

s y s z

z xy

yz

+ +

+

s t

t

cos cos  cos

2 cos cos

2 2

)) ( , ) ( , )+2 cos costzx s x s z 	(2.99)
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The shear stress τ on the plane can be given as

	
t s= + +( )-p p psx sy sz

2 2 2 2 	 (2.100)

2.10.2 � Transformation of axes

Let the stresses in a soil mass in the Cartesian coordinate system be given. 
If the stress components in a new set of orthogonal axes (x1, y1, z1) as 
shown in Figure 2.21 are required, they can be determined in the following 
manner. The direction cosines of the x1, y1, and z1 axes with respect to the 
x, y, and z axes are shown:

x y z
x1 l1 m1 n1

y1 l2 m2 n2

z1 l3 m3 n3

Following the procedure adopted to obtain Equation 2.98, we can write

	

p

p

p

l

m

n

x x

x y

x z

x yx zx

xy y zy

xz yz z

1

1

1

1

1

1

=
s t t
t s t
t t s

	 (2.101)

where p p px x x y x z1 1 1, , and  are stresses parallel to the x, y, and z axes and are 
acting on the plane perpendicular to the x1 axis (i.e., y1z1 plane).

x

x1

z1

y1
y

z

Figure 2.21  �Transformation of stresses to a new set of orthogonal axes.
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We can now take the components of p p px x x y x z1 1 1, , and  to determine the 
normal and shear stresses on the y1z1 plane, or

	

s

t

t

x x x x y x z

x y x x x y x z

x z

l p m p n p

l p m p n p

l

1 1 1 1

1 1 1 1 1

1 1

1 1 1

2 2 2

3

= + +

= + +

= pp m p n px x x y x z1 1 13 3+ +

In a matrix form, the previous three equations may be expressed as

	

s
t
t

x

x y

x z

x x

x y

x z

l m n

l m n

l m n

p

p

p

1

1 1

1 1

1

1

1

1 1 1

2 2 2

3 3 3

= 	 (2.102)

In a similar manner, the normal and shear stresses on the x1z1 plane  
( , , )i.e.,  and s t ty y x y z1 1 1 1 1  and on the x1y1 plane  (i.e.,  and s t tz z x z y1 1 1 1 1, , ) can 
be determined. Combining these terms, we can express the stresses in the 
new set of orthogonal axes in a matrix form. Thus

	

s t t
t s t
t t s

x y x z x

x y y z y

x z y z z

l m n

l m n

l m n

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

2 2 2

3 2 2

=
ss t t
t s t
t t s

x yx zx

xy y zy

xz yz z

l l l

m m m

n n n

1 2 3

1 2 3

1 2 3

� (2.103)

Note:  τxy = τyx, τzy = τyz, and τzx = τxz.

Solution of Equation 2.103 gives the following relations:

	
s s s s t t tx x y z yz zx xyl m n m n n l l m1 1

2
1
2

1
2

1 1 1 1 1 12 2 2= + + + + + 	 (2.104)

	
s s s s t t ty x y z yz zx xyl m n m n n l l m1 2

2
2
2

2
2

2 2 2 2 2 22 2 2= + + + + + 	 (2.105)

	
s s s s t t tz x y z yz zx xyl m n m n n l l m1 3

2
3
2

3
2

3 3 3 3 3 32 2 2= + + + + + 	 (2.106)

	

t t s s s tx y y x x y z yzl l m m n n m n m n

n l n l

1 1 1 1 1 2 1 2 1 2 1 2 2 1

1 2 2 1

= = + + + +

+ +

( )

( )) ( )t tzx xyl m l m+ +1 2 2 1 	 (2.107)
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t t s s s tx z z x x y z yzl l m m n n m n m n

n l n l

1 1 1 1 1 3 1 3 1 3 1 3 3 1

1 3 3 1

= = + + + +

+ +

( )

( )) ( )t tzx xyl m l m+ +1 3 3 1 	 (2.108)

	

t t s s s ty z z y x y z yzl l m m n n m n m n

n l n l

1 1 1 1 2 3 2 3 2 3 2 3 3 2

2 3 3 2

= = + + + +

+ +

( )

( )) ( )t tzx xyl m l m+ +2 3 3 2 	 (2.109)

2.10.3 � Principal stresses

The preceding procedure allows the determination of the stresses on any 
plane from the known stresses based on a set of orthogonal axes. As dis-
cussed earlier, a plane is defined as a principal plane if the shear stresses act-
ing on it are zero, which means that the only stress acting on it is a normal 
stress. This normal stress on a principal plane is referred to as a principal 
stress. In order to determine the principal stresses, refer to Figure 2.20, in 
which x, y, and z are a set of orthogonal axes. Let the stresses on planes 
OAC, BOC, and AOB be known, and let ABC be a principal plane. The 
direction cosines of the normal drawn to this plane are l, m, and n with 
respect to the x, y, and z axes, respectively. Note that

	 l m n2 2 2 1+ + = 	 (2.110)

If ABC is a principal plane, then the only stress acting on it will be a 
normal stress σp. The x, y, and z components of σp are σpl, σpm, and σpn. 
Referring to Equations 2.95 through 2.97, we can write

	 σpl = σxl + τyxm + τzxn

or

	
( )s s t tx yx zxl m n- + + =p 0 	 (2.111)

Similarly

	
t s s txy y zyl m n+ - + =( )p 0 	 (2.112)

	
t t s sxz yz zl m n+ + - =( )p 0 	 (2.113)
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From Equations 2.110 through 2.113, we note that l, m, and n cannot all be 
equal to zero at the same time. So

	

( )

( )

( )

s s t t
t s s t
t t s s

x yx zx

xy y zy

xz yz z

-
-

-
=

p

p

p

0 	 (2.114)

or

	
s s sp p

3 - + - =I I Ip1
2

2 3 0 	 (2.115)

where

	
I x y z1 = + +s s s 	 (2.116)

	
I x y y z x z xy yz xz2

2 2 2= + + - - -s s s s s s t t t 	 (2.117)

	
I x y z xy yz xz x yz y xz z xy3

2 2 22= + - - -s s s t t t s t s t s t 	 (2.118)

I1, I2, and I3 defined in Equations 2.116 through 2.118 are independent of 
direction cosines and hence independent of the choice of axes. So, they are 
referred to as stress invariants.

Solution of Equation 2.115 gives three real values of σp. So there are 
three principal planes and they are mutually perpendicular to each other. 
The directions of these planes can be determined by substituting each σp in 
Equations 2.111 through 2.113 and solving for l, m, and n, and observing 
the direction cosine condition for I2 + m2 + n2 = 1. Note that these values 
for l, m, and n are the direction cosines for the normal drawn to the plane 
on which σp is acting. The maximum, intermediate, and minimum values 
of σp(i) are referred to as the major principal stress, intermediate principal 
stress, and minor principal stress, respectively.

2.10.4 � Octahedral stresses

The octahedral stresses at a point are the normal and shear stresses acting 
on the planes of an imaginary octahedron surrounding that point. The 
normals to these planes have direction cosines of ±1 3 with respect to 
the direction of the principal stresses (Figure 2.22). The axes marked 1, 2, 
and 3 are the directions of the principal stresses σp(1), σp(2), and σp(3). The 
expressions for the octahedral normal stress σoct can be obtained using 
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Equations  2.95 through 2.97 and 2.99. Now, compare planes ABC in 
Figures 2.20 and 2.22. For the octahedral plane ABC in Figure 2.22

	
p ls1 1= sp( ) 	 (2.119)

	
p ms2 2= sp( ) 	 (2.120)

	
p ns3 3= sp( ) 	 (2.121)

where ps1, ps2, and ps3 are stresses acting on plane ABC parallel to the 
principal stress axes 1, 2, and 3, respectively. Parameters l, m, and n are the 
direction cosines of the normal drawn to the octahedral plane and are all 
equal to 1 3/ . Thus, from Equation 2.99

	

s s s s

s s s

oct = + +

= + +

l m n1
2

1 1
2

2 1
2

3

1 2 3
1
3

p p p

p p p

( ) ( ) ( )

( ) ( ) ( )[ ] 	 (2.122)
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σoct

33, 1/ 3, 1/direction cosine 1/

Figure 2.22  �Octahedral stress.
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The shear stress on the octahedral plane is

	
t soct oct

2= + + -[( ) ( ) ( ) ]p p ps s s1
2

2
2

3
2 	 (2.123)

where τoct is the octahedral shear stress, or

	
t s s s s s soct = - + - + -1

3
1 2

2
2 3

2
3 1

2[ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )p p p p p p 	 (2.124)

The octahedral normal and shear stress expressions can also be derived 
as a function of the stress components for any set of orthogonal axes x, y, z. 
From Equation 2.116

	
I x y z1 1 2 3const= = + + = + +s s s s s sp p p( ) ( ) ( ) 	 (2.125)

So

	
s s s s s s soct = + + = + +1

3
1
3

1 2 3[ ] ( )( ) ( ) ( )p p p x y z 	 (2.126)

Similarly, from Equation 2.117

	

I x y y z z x xy yz xz2
2 2 2

1 2 2

= = + + - - -

= +

const ( )

( ) ( ) ( )

s s s s s s t t t

s s s sp p p pp p p( ) ( ) ( )3 3 1+s s 	 (2.127)

Combining Equations 2.124, 2.125, and 2.127 gives

	
t s s s s s s t t toct = - + - + - + + +1

3
6 6 62 2 2 2 2 2( ) ( ) ( )x y y z z x xy yz xz 	 (2.128)

Example 2.4

The stresses at a point in a soil mass are as follows:

σx = 50 kN/m2	 τxy = 30 kN/m2

σy = 40 kN/m2	 τyz = 25 kN/m2

σz = 80 kN/m2	 τxz = 25 kN/m2

Determine the normal and shear stresses on a plane with direction 
cosines l = 2/3, m = 2/3, and n = 1/3.
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Solution

From Equation 2.98

p

p

p

l

m

n

x

y

z

x xy xz

xy y yz

xz yz z

s

s

s

=
s t t
t s t
t t s

The normal stress on the inclined plane (Equation 2.99) is

	 σ = psxl + psym + pszn

	 = σxl2 + σym2 + σzn2 + 2τxylm + 2τyzmn + 2τxzln

	 = 50(2/3)2 + 40(2/3)2 + 80(1/3)2 + 2(30)(2/3)(2/3)

	 + 2(25)(2/3)(1/3) + 2(25)(2/3)(1/3) = 97.78 kN/m2

	 psx = σxl + τxym + τxzn = 50(2/3) + 30(2/3) + 25(1/3)

	 = 33.33 + 20 + 8.33 = 61.66 kN/m2

	 psy = τxyl + σym + τyzn = 30(2/3) + 40(2/3) + 25(1/3)

	 = 20 + 26.67 + 8.33 = 55 kN/m2

	 psz = τxzl + τyzm + σzn = 25(2/3) + 25(2/3) + 80(1/3)

	 = 16.67 + 16.67 + 26.67 = 60.01 kN/m2

The resultant stress is

	
p p p px y z= + + = + + =s s s

2 2 2 2 2 2 261 66 55 60 01 102 2. . . kN/m

The shear stress on the plane is

	
t s= - = - =p2 2 2 2102 2 97 78 29 73. . . kN/m2

Example 2.5

At a point in a soil mass, the stresses are as follows:

σx = 25 kN/m2	 τxy = 30 kN/m2

σy = 40 kN/m2	 τyz = −6 kN/m2

σz = 17 kN/m2	 τxz = −10 kN/m2

Determine the principal stresses and also the octahedral normal and 
shear stresses.
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Solution

From Equation 2.114

( )

( )

( )

s s t t
t s s t
t t s s

x yx zx

xy y zy

xz yz z

-
-

-
=

p

p

p

0
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( )

( )
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82 1069 800 02

- -
- -

- - -
= - + - =

s
s

s
s s s

p

p

p

p p p
3

The three roots of the equation are

	 σp(l) = 65.9 kN/m2

	 σp(2) = 15.7 kN/m2

	 σp(3) = 0.4 kN/m2

	

s s s soct

2kN/m

= + +

= + + =

1
3

1
3

65 9 15 7 0 4 27 33

1 2 3[ ]

( . . . ) .

( ) ( ) ( )p p p

	

t s s s s s soct = - + - + -

=

1
3

1
3

65

1 2
2

2 3
2

3 1
2[ ] [ ] [ ]

( .

( ) ( ) ( ) ( ) ( ) ( )p p p p p p

99 15 7 15 7 0 4 0 4 65 9 27 972 2 2- + - + - =. ) ( . . ) ( . . ) . kN/m2

2.11 � STRAIN COMPONENTS ON AN INCLINED 
PLANE, PRINCIPAL STRAIN, AND OCTAHEDRAL 
STRAIN: THREE-DIMENSIONAL CASE

We have seen the analogy between the stress and strain equations derived 
in Sections 2.7 and 2.8 for the plane strain case. Referring to Figure 2.20, 
let the strain components at a point in a soil mass be represented by ∈x, ∈y, 
∈z, γxy, γyz, and γzx. The normal strain on plane ABC (the normal to plane 
ABC has direction cosines of l, m, and n) can be given by

	
Œ = Œ + Œ + Œ + + +l m n lm mn lnx y z xy yz zx

2 2 2 g g g 	 (2.129)
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This equation is similar in form to Equation 2.99 derived for normal stress. 
When we replace ∈x, ∈y, ∈z, γxy/2, γyz/2, and γzx/2, respectively, for σx, σy, σz, 
τxy, τyz, and τzx in Equation 2.99, Equation 2.129 is obtained.

If the strain components at a point in the Cartesian coordinate system 
(Figure 2.21) are known, the components in a new set of orthogonal axes 
can be given by (similar to Equation 2.103)

	

Œ

Œ

Œ
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z

x y x z

x y y z

x z y z
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1

1 1 1

1
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1
2

1
2

1
2

1
2

1
2

1 1 1 1

1 1 1 1

1 1 1 1

1

1

g g

g g

g g

ll m n
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m m

x

y

z

xy xz

xy yz
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1
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1
2

Œ

Œ

Œ

g g

g g

g g

22 3

1 2 3
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n m n

	 (2.130)

The equations for principal strains at a point can also be written in a 
form similar to that given for stress (Equation 2.115) as

	
Œ - Œ + Œ - =p p p

3 J J J1
2

2 3 0 	 (2.131)

where ∈p is the principal strain

	
J x y z1 =Œ +Œ +Œ 	 (2.132)

	
J x y y z z x

xy yz xz
2

2 2 2

2 2 2
=Œ Œ +Œ Œ +Œ Œ -Ê

ËÁ
ˆ
¯̃
-Ê
ËÁ

ˆ
¯̃
-Ê
ËÁ

ˆ
¯̃

g g g
	 (2.133)

	
J x y z x y z

xy yz zx yz xz xy
3

2 2

4 2 2 2
=Œ Œ Œ + -Œ Ê

ËÁ
ˆ
¯̃
-Œ Ê

ËÁ
ˆ
¯̃
-Œ Ê

ËÁ
g g g g g g ˆ̂

¯̃

2

	 (2.134)

J1, J2, and J3 are the strain invariants and are not functions of the direction 
cosines.
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The normal and shear strain relations for the octahedral planes are

	
Œ = Œ +Œ +Œoct

1
3

1 2 3[ ]( ) ( ) ( )p p p 	 (2.135)

	
goct = + +Œ -Œ Œ -Œ Œ -Œ2

3
1 2 2 3 3 1

2 2 2[ ] [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )p p p p p p 	 (2.136)

where
∈oct is the octahedral normal strain
γoct is the octahedral shear strain
∈p(l), ∈p(2), ∈p(3) are the major, intermediate, and minor principal strains, 

respectively

Equations 2.135 and 2.136 are similar to the octahedral normal and shear 
stress relations given by Equations 2.126 and 2.128.
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Chapter 3

Stresses and displacements 
in a soil mass
Two-dimensional problems

3.1 � INTRODUCTION

Estimating the increase in stress at various points and the associated 
displacement caused in a soil mass due to external loading using the theory 
of elasticity is an important component in the safe design of the foundations 
of structures. The ideal assumption of the theory of elasticity, namely that the 
medium is homogeneous, elastic, and isotropic, is not quite true for most nat-
ural soil profiles. It does, however, provide a close estimation of geotechnical 
engineers and, using proper safety factors, safe designs can be developed.

This chapter deals with two-dimensional problems (plane strain cases) 
involving stresses and displacements induced by various types of loading. 
The expressions for stresses and displacements are obtained on the assump-
tion that soil is a perfectly elastic material. Problems relating to plastic 
equilibrium are not treated in this chapter.

Stresses and displacements related to three-dimensional problems are 
treated in Chapter 4.

3.2 � VERTICAL LINE LOAD ON THE SURFACE

Figure 3.1 shows the case where a line load of q per unit length is applied at 
the surface of a homogeneous, elastic, and isotropic soil mass. The stresses 
at a point P defined by r and θ can be determined by using the stress function

	
f

p
q q= q

r sin 	 (3.1)

In the polar coordinate system, the expressions for the stresses are as follows:

	
s f f

qr
r r r

= ∂
∂

+ ∂
∂

1 1
2

2

2 	 (2.57)
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s f
q =

∂
∂

2

2r
	 (2.58)

and

	
t f

qqr
r r

= - ∂
∂

∂
∂

Ê
ËÁ

ˆ
¯̃

1
	 (2.59)

Substituting the values of ϕ in the previous equations, we get

	

s
p
q q

p
q

p
q

p
q q

p

r
r

q
r

q
r

q
r

q
r

q
r

= Ê
ËÁ

ˆ
¯̃
+ + -Ê

ËÁ
ˆ
¯̃

1 1

2

2sin

=

cos cos sin

coosq 	 (3.2)

Similarly

	 sq = 0 	 (3.3)

and

	 tqr = 0 	 (3.4)

q/unit length

x

dθ

τθr = τrθ

θ

σr

σθ

P(r,θ)

z

Figure 3.1  �Vertical line load on the surface of a semi-infinite mass.
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The stress function assumed in Equation 3.1 will satisfy the compatibility 
equation:

	

∂
∂

+ ∂
∂

+ ∂
∂

Ê
Ë
Á

ˆ
¯
˜
∂
∂

+ ∂
∂

+ ∂
∂

Ê
Ë
Á

ˆ
¯
˜=

2

2 2

2

2

2

2 2

2

2

1 1 1 1
0

r r r r r r r rq
f f f

q
	 (2.60)

Also, it can be seen that the stresses obtained in Equations 3.2 through 3.4 
satisfy the boundary conditions. For θ = 90°, r > 0, σr = 0, and at r = 0, σr is theo-
retically equal to infinity, which signifies that plastic flow will occur locally. 
Note that σr and σθ are the major and minor principal stresses at point P.

Using the earlier expressions for σr, σθ, and τrθ, we can derive the stresses 
in the rectangular coordinate system (Figure 3.2):

	 s = s q s q t q qq qz r rcos sin sin cos2 2 2+ - 	
(2.77)

or,

	

s
p

qz
q
r

q

x z

z

x z

qz
x z

= =
+ +

Ê

Ë
ÁÁ

ˆ

¯
˜̃ =

+
2 2 23

2 2 2 2

3
3

2 2 2cos
( )p p

	 (3.5)

Similarly

	 s s q s q t q qq qx r r= + +sin cos 2 sin cos2 2 	 (2.75)

or,

	
s

px
qx z

x z
=

+
2 2

2 2 2( )
	 (3.6)

q/unit length

θ

r =

cos θ =

sin θ =

z

x

z

σz

σx

x

x

σz

σx

τzx
τxz

τzx
τxz

x2 + z2

x2 + z2

x2 + z2

P

z

r

Figure 3.2  �Stresses due to a vertical line load in rectangular coordinates.
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and

	 t s q q s q q t q qq qxz r r= - + + -sin cos sin cos cos sin2 2( ) 	 (2.76)

or,

	
t

pxz
qxz

x z
=

+
2 2

2 2 2( )
	 (3.7)

For the plane strain case

	
s n s sy x z= +( ) 	 (3.8)

The values for σx, σz, and τxz in a nondimensional form are given in Table 3.1.

3.2.1 � Displacement on the surface (z = 0)

By relating displacements to stresses via strain, the vertical displacement w 
at the surface (i.e., z = 0) can be obtained as

	
w

E
q x C= - +2 1 2

p
n

ln 	 (3.9)

where
E is the modulus of elasticity
ν is Poisson’s ratio
C is a constant

Table 3.1  �Values of σz/(q/z), σx/(q/z), and τxz/(q/z) 
(Equations 3.5 through 3.7)

x/z σz/(q/z) σx/(q/z) τxz/(q/z)

0 0.637 0 0
0.1 0.624 0.006 0.062
0.2 0.589 0.024 0.118
0.3 0.536 0.048 0.161
0.4 0.473 0.076 0.189
0.5 0.407 0.102 0.204
0.6 0.344 0.124 0.207
0.7 0.287 0.141 0.201
0.8 0.237 0.151 0.189
0.9 0.194 0.157 0.175
1.0 0.159 0.159 0.159
1.5 0.060 0.136 0.090
2.0 0.025 0.102 0.051
3.0 0.006 0.057 0.019
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The magnitude of the constant can be determined if the vertical displace-
ment at a point is specified.

Example 3.1

For the point A in Figure 3.3, calculate the increase of vertical stress σz 
due to the two line loads.

Solution

The increase of vertical stress at A due to the line load q1 = 20 kN/m:

	
Given,

x
z
= =

2
2

1
m
m

From Table 3.1, for x/z = 1, σz/(q/z) = 0.159. So

	
sz

q
z

( ) . . .1
10 159 0 159

20
2

1 5= Ê
ËÁ

ˆ
¯̃
= Ê

ËÁ
ˆ
¯̃
= 9 kN/m2

The increase of vertical stress at A due to the line load q2 = 30 kN/m:

	
Given,

x
z
= =

6m
m2

3

From Table 3.1, for x/z = 3, σz/(q/z) = 0.006. Thus

	
sz

q
z

( ) . . .2
20 006 0 006

30
2

0= Ê
ËÁ

ˆ
¯̃
= Ê

ËÁ
ˆ
¯̃
= 09 kN/m2

So, the total increase of vertical stress is

	 s s sz z z= + = + =( ) ( ) . . .1 2
21 59 9 1 68 kN/m0 0

2 m

4 m
q1 = 20 kN/mq2 = 30 kN/m

A

2 m

Figure 3.3  �Two line loads acting on the surface.
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3.3 � VERTICAL LINE LOAD ON THE 
SURFACE OF A FINITE LAYER

Equations 3.5 through 3.7 were derived with the assumption that the homoge-
neous soil mass extends to a great depth. However, in many practical cases, a 
stiff layer such as rock or highly incompressible material may be encountered 
at a shallow depth (Figure 3.4). At the interface of the top soil layer and the 
lower incompressible layer, the shear stresses will modify the pattern of stress 
distribution. Poulos (1966) and Poulos and Davis (1974) expressed the verti-
cal stress σz and vertical displacement at the surface (w at z = 0) in the forms:

	
s

pz
q
h

I= 1 	 (3.10)

	
w

q
E

Iz= =0 2p
	 (3.11)

where I1 and I2 are influence values.
I1 is a function of z/h, x/h, and v. Similarly, I2 is a function of x/h and v. The 

variations of I1 and I2 are given in Tables 3.2 and 3.3, respectively, for v = 0.

3.4 � VERTICAL LINE LOAD INSIDE 
A SEMI-INFINITE MASS

Equations 3.5 through 3.7 were also developed on the basis of the 
assumption that the line load is applied on the surface of a semi-infinite 
mass. However, in some cases, the line load may be embedded. Melan 
(1932) gave the solution of stresses at a point P due to a vertical line load of 

Rigid layer

x

h

q/unit length

z

Figure 3.4  �Vertical line load on a finite elastic layer.
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q per unit length applied inside a semi-infinite mass (at point A, Figure 3.5). 
The final equations are given as follows:

	

s
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q

v
z d
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z d z d dz

r
dz d z x
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2
4
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v

z d
r

z d
r

zx
r( )

	 (3.12)

Table 3.2  Variation of I1 (v = 0)

x/h

z/h

0.2 0.4 0.6 0.8 1.0

0 9.891 5.157 3.641 2.980 2.634
0.1 5.946 4.516 3.443 2.885 2.573
0.2 2.341 3.251 2.948 2.627 2.400
0.3 0.918 2.099 2.335 2.261 2.144
0.4 0.407 1.301 1.751 1.857 1.840
0.5 0.205 0.803 1.265 1.465 1.525
0.6 0.110 0.497 0.889 1.117 1.223
0.8 0.032 0.185 0.408 0.592 0.721
1.0 0.000 0.045 0.144 0.254 0.357
1.5 −0.019 −0.035 −0.033 −0.018 0.010
2.0 −0.013 −0.025 −0.035 −0.041 −0.042
4.0 0.009 0.009 0.008 0.007 0.006
8.0 0.002 0.002 0.002 0.002 0.002

Table 3.3  Variation of I2 (v = 0)

x/h I2

0.1 3.756
0.2 2.461
0.3 1.730
0.4 1.244
0.5 0.896
0.6 0.643
0.7 0.453
0.8 0.313
1.0 0.126
1.5 −0.012
2.0 −0.017
4.0 −0.002
8.0 0
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Figure 3.6 shows a plot of σz/(q/d) based on Equation 3.12.

3.5 � HORIZONTAL LINE LOAD ON THE SURFACE

The stresses due to a horizontal line load of q per unit length (Figure 3.7) 
can be evaluated by a stress function of the form

	
f

p
q q= q

r cos 	 (3.15)

q/unit length

x

A

d

P(x, z)

r1

r2d

z

Figure 3.5  �Vertical line load inside a semi-infinite mass.
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Figure 3.6  �Plot of σz/(q/d) versus x/d for various values of z/d (Equation 3.12).
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τθr = τrθ
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Figure 3.7  �Horizontal line load on the surface of a semi-infinite mass.


