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Preface

This textbook is intended for use in an introductory graduate level course
that broadens (expands) the fundamental concepts acquired by students in
their undergraduate work. The introductory graduate course can be fol-
lowed by advanced courses dedicated to topics such as mechanical and
chemical stabilization of soils, geoenvironmental engineering, finite ele-
ment application to geotechnical engineering, critical state soil mechanics,
geosynthetics, rock mechanics, and others.

The first edition of this book was published jointly by Hemisphere
Publishing Corporation and McGraw-Hill Book Company of New York
with a 1983 copyright. Taylor & Francis Group published the second and
third editions with 1997 and 2008 copyrights, respectively. Compared to
the third edition, the text is now divided into 11 chapters. Stresses and
displacements in a soil mass are now presented in two chapters with two-
dimensional problems in Chapter 3 and three-dimensional problems in
Chapter 4. Permeability and seepage are now presented in two separate
chapters (Chapters 6 and 7). Similarly, the settlement of shallow founda-
tions is now presented in two chapters—elastic settlement in Chapter 10
and consolidation settlement in Chapter 11. Several new example problems
have been added. ST units have been used throughout the text.

Some major changes in this edition include the following:

e In Chapter 1, “Soil aggregate, plasticity, and classification,” a
more detailed description of the relationships between the maxi-
mum and minimum void ratios of granular soils is provided. The
American Association of State Highway and Transportation Officials
(AASHTO) soil classification system has been added to this chapter.
Sections on soil compaction procedures in the laboratory, along with
recently developed empirical relationships for maximum dry unit
weight and optimum moisture content obtained from Proctor com-
paction tests, have been summarized.

e Chapter 4, “Stresses and displacements in a soil mass: Three-
dimensional problems,” has new sections on vertical stress due to a

© 2010 Taylor & Francis Group, LLC xvii
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Preface

line load of finite length; vertical stress in Westergaard material due
to point load; line load of finite length; circularly loaded area; and
rectangularly loaded area.

The fundamental concepts of compaction of clay soil for the construc-
tion of clay liners in waste disposal sites as they relate to permeability
are discussed in Chapter 6, “Permeability.”

Several new empirical correlations for overconsolidation ratio and
compression index for clay soils have been added to Chapter 8,
“Consolidation.”

Chapter 9, “Shear strength of soils,” provides additional discussion
on the components affecting friction angle of granular soils, drained
failure envelopes, and secant residual friction angles of clay and clay
shale. Also added to this chapter are some new correlations between
field vane shear strength, preconsolidation pressure, and overconsoli-
dation ratio of clay soils.

Chapter 10, “Elastic settlement of shallow foundations,” has been
thoroughly revised and expanded.

Discussion related to precompression with sand drains has been added
to Chapter 11, “Consolidation settlement of shallow foundations.”
The parameters required for the calculation of stress at the interface
of a three-layered flexible system have been presented in graphical
form in the Appendix, which should make interpolation easier.

© 2010 Taylor & Francis Group, LLC
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Chapter |

Soil aggregate, plasticity,
and classification

1. INTRODUCTION

Soils are aggregates of mineral particles; and together with air and/or water
in the void spaces, they form three-phase systems. A large portion of the
earth’s surface is covered by soils, and they are widely used as construction
and foundation materials. Soil mechanics is the branch of engineering that
deals with the engineering properties of soils and their behavior under stress.

This book is divided into 11 chapters: “Soil Aggregate, Plasticity, and
Classification,” “Stresses and Strains: Elastic Equilibrium,” “Stresses and
Displacement in a Soil Mass: Two-Dimensional Problems,” “Stresses
and Displacement in a Soil Mass: Three-Dimensional Problems,” “Pore
Water Pressure due to Undrained Loading,” “Permeability,” “Seepage,”
“Consolidation,” “Shear Strength of Soil,” “Elastic Settlement of Shallow
Foundations,” and “Consolidation Settlement of Shallow Foundations.”
This chapter is a brief overview of some soil properties and their
classification. It is assumed that the reader has been previously exposed
to a basic soil mechanics course.

1.2 SOIL: SEPARATE SIZE LIMITS

A naturally occurring soil sample may have particles of various sizes. Over
the years, various agencies have tried to develop the size limits of gravel,
sand, silt, and clay. Some of these size limits are shown in Table 1.1.

Referring to Table 1.1, it is important to note that some agencies classify
clay as particles smaller than 0.005 mm in size, and others classify it as par-
ticles smaller than 0.002 mm in size. However, it needs to be realized that
particles defined as clay on the basis of their size are not necessarily clay
minerals. Clay particles possess the tendency to develop plasticity when
mixed with water; these are clay minerals. Kaolinite, illite, montmorillonite,
vermiculite, and chlorite are examples of some clay minerals.

© 2010 Taylor & Francis Group, LLC



2 Advanced Soil Mechanics

Table 1.1 Soil: separate size limits

Agency Classification Size limits (mm)
U.S. Department of Agriculture (USDA) Gravel >2
Very coarse sand 2-1
Coarse sand 1-0.5
Medium sand 0.5-0.25
Fine sand 0.25-0.1
Very fine sand 0.1-0.05
Silt 0.05-0.002
Clay <0.002
International Society of Soil Mechanics and Gravel >2
Foundation Engineering (ISSMFE)
Coarse sand 2-0.2
Fine sand 0.2-0.02
Silt 0.02-0.002
Clay <0.002
Federal Aviation Administration (FAA) Gravel >2
Sand 2-0.075
Silt 0.075-0.005
Clay <0.005
Massachusetts Institute of Technology (MIT) Gravel >2
Coarse sand 2-0.6
Medium sand 0.6-0.2
Fine sand 0.2-0.06
Silt 0.06-0.002
Clay <0.002
American Association of State Highway and Gravel 76.2-2
Transportation Officials (AASHTO) Coarse sand 2-0.425
Fine sand 0.425-0.075
Silt 0.075-0.002
Clay <0.002
Unified (U.S. Army Corps of Engineers, Gravel 76.2-4.75
U.S. Bureau of Reclamation, and American Coarse sand 4.75-2
Society for Testing and Materials) Medium sand 2-0.425
Fine sand 0.425-0.075

Silt and clay (fines) <0.075

Fine particles of quartz, feldspar, or mica may be present in a soil in the
size range defined for clay, but these will not develop plasticity when mixed
with water. It appears that it is more appropriate for soil particles with
sizes <2 or 5 pm as defined under various systems to be called clay-size
particles rather than clay. True clay particles are mostly of colloidal size
range (<1 pm), and 2 pm is probably the upper limit.

© 2010 Taylor & Francis Group, LLC



Soil aggregate, plasticity, and classification 3

1.3 CLAY MINERALS

Clay minerals are complex silicates of aluminum, magnesium, and iron.
Two basic crystalline units form the clay minerals: (1) a silicon—-oxygen
tetrahedron, and (2) an aluminum or magnesium octahedron. A silicon—
oxygen tetrahedron unit, shown in Figure 1.1a, consists of four oxygen
atoms surrounding a silicon atom. The tetrahedron units combine to
form a silica sheet as shown in Figure 1.2a. Note that the three oxygen
atoms located at the base of each tetrahedron are shared by neighbor-
ing tetrahedra. Each silicon atom with a positive valence of 4 is linked
to four oxygen atoms with a total negative valence of 8. However, each
oxygen atom at the base of the tetrahedron is linked to two silicon atoms.
This leaves one negative valence charge of the top oxygen atom of each
tetrahedron to be counterbalanced. Figure 1.1b shows an octahedral unit
consisting of six hydroxyl units surrounding an aluminum (or a magne-
sium) atom. The combination of the aluminum octahedral units forms a
gibbsite sheet (Figure 1.2b). If the main metallic atoms in the octahedral
units are magnesium, these sheets are referred to as brucite sheets. When
the silica sheets are stacked over the octahedral sheets, the oxygen atoms
replace the hydroxyls to satisfy their valence bonds. This is shown in
Figure 1.2c.

Some clay minerals consist of repeating layers of two-layer sheets. A two-
layer sheet is a combination of a silica sheet with a gibbsite sheet, or a
combination of a silica sheet with a brucite sheet. The sheets are about
7.2 A thick. The repeating layers are held together by hydrogen bonding
and secondary valence forces. Kaolinite is the most important clay mineral
belonging to this type (Figure 1.3). Other common clay minerals that fall
into this category are serpentine and halloysite.

The most common clay minerals with three-layer sheets are illite and
montmorillonite (Figure 1.4). A three-layer sheet consists of an octahedral
sheet in the middle with one silica sheet at the top and one at the bottom.

O Oxygen

@ Silicon

O Hydroxyl

. Aluminum or
magnesium

Figure 1.1 (a) Silicon—oxygen tetrahedron unit and (b) aluminum or magnesium octa-
hedral unit.
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® and O Silicon

Qand(D Oxygen

. Aluminum

O and (\:\/ Hydroxyl

@ Aluminum
® O Silicon

Figure 1.2 (a) Silica sheet, (b) gibbsite sheet, and (c) silica—gibbsite sheet. (After Grim, R.E.,
J. Soil Mech. Found. Div., ASCE, 85(2), 1-17, 1959.)

Repeated layers of these sheets form the clay minerals. Illite layers are
bonded together by potassium ions. The negative charge to balance the
potassium ions comes from the substitution of aluminum for some sili-
con in the tetrahedral sheets. Substitution of this type by one element for
another without changing the crystalline form is known as isomorphous
substitution. Montmorillonite has a similar structure to illite. However,
unlike illite, there are no potassium ions present, and a large amount of
water is attracted into the space between the three-sheet layers.

The surface area of clay particles per unit mass is generally referred to
as specific surface. The lateral dimensions of kaolinite platelets are about
1,000-20,000 A with thicknesses of 100-1,000 A. Illite particles have lateral
dimensions of 1000-5000 A and thicknesses of 50-500 A. Similarly, mont-
morillonite particles have lateral dimensions of 1000-5000 A with thick-
nesses of 10-50 A. If we consider several clay samples all having the same
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Y|
»

A number of
S repeating layers of

<«— Gibbsite sheet kaolinite form a
| G | kaolinite particle

<— Silica sheet

Elementary kaolinite layer

S
| o |
S
Figure 1.3 Symbolic structure for kaolinite.
S
S G
G S
S Water layers
S
S
G
G
S
S
Potassium Water layers
ions
S S
G G
S S

(a) (b)

Figure 1.4 Symbolic structure of (a) illite and (b) montmorillonite.

mass, the highest surface area will be in the sample in which the particle sizes
are the smallest. So it is easy to realize that the specific surface of kaolinite
will be small compared to that of montmorillonite. The specific surfaces
of kaolinite, illite, and montmorillonite are about 15, 90, and 800 m?/g,
respectively. Table 1.2 lists the specific surfaces of some clay minerals.
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6 Advanced Soil Mechanics

Table 1.2 Specific surface area and cation exchange capacity
of some clay minerals

Cation exchange

Clay mineral Specific surface (m?/g)  capacity (me/100 g)
Kaolinite 10-20 3
lllite 80-100 25
Montmorillonite 800 100
Chlorite 5-50 20
Vermiculite 5-400 150
Halloysite (4H,0) 40 12
Halloysite (2H,0) 40 12

Clay particles carry a net negative charge. In an ideal crystal, the positive
and negative charges would be balanced. However, isomorphous substitu-
tion and broken continuity of structures result in a net negative charge at
the faces of the clay particles. (There are also some positive charges at the
edges of these particles.) To balance the negative charge, the clay particles
attract positively charged ions from salts in their pore water. These are
referred to as exchangeable ions. Some are more strongly attracted than
others, and the cations can be arranged in a series in terms of their affinity
for attraction as follows:

APP* > Ca®* > Mg** > NH} >K* >H* > Na* > Li*

This series indicates that, for example, Al** ions can replace Ca?* ions, and
Ca?* ions can replace Na* ions. The process is called cation exchange. For
example,

Nag,, +CaCl, £ Cay,, + NaCl

Cation exchange capacity (CEC) of a clay is defined as the amount of
exchangeable ions, expressed in milliequivalents, per 100 g of dry clay.
Table 1.2 gives the CEC of some clays.

1.4 NATURE OF WATER IN CLAY

The presence of exchangeable cations on the surface of clay particles was
discussed in the preceding section. Some salt precipitates (cations in excess
of the exchangeable ions and their associated anions) are also present on
the surface of dry clay particles. When water is added to clay, these cations
and anions float around the clay particles (Figure 1.5).

© 2010 Taylor & Francis Group, LLC
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+ o+ - A
+ o+ o+
- - =
o
ki
+ -+ = .
= Cations
[
=
e 5
o
=
+ o+ o+ o+ °
Anions
-+ - %
Surface of >
clay particle Distance from surface of clay particle

Figure 1.5 Diffuse double layer.

Oxygen

Figure 1.6 Dipolar nature of water: (a) unsymmetrical arrangement of hydrogen atoms;
(b) dipole.

At this point, it must be pointed out that water molecules are dipolar,
since the hydrogen atoms are not symmetrically arranged around the oxygen
atoms (Figure 1.6a). This means that a molecule of water is like a rod with
positive and negative charges at opposite ends (Figure 1.6b). There are three
general mechanisms by which these dipolar water molecules, or dipoles, can
be electrically attracted toward the surface of the clay particles (Figure 1.7):

a. Attraction between the negatively charged faces of clay particles and
the positive ends of dipoles

b. Attraction between cations in the double layer and the negatively
charged ends of dipoles. The cations are in turn attracted by the nega-
tively charged faces of clay particles

c. Sharing of the hydrogen atoms in the water molecules by hydrogen
bonding between the oxygen atoms in the clay particles and the oxy-
gen atoms in the water molecules
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Clay Case (a)

particle

Case (b)
Dipole

Cation

Case (c)
Hydrogen

Figure 1.7 Dipolar water molecules in diffuse double layer.

The electrically attracted water that surrounds the clay particles is known
as double-layer water. The plastic property of clayey soils is due to the
existence of double-layer water. Thicknesses of double-layer water for typi-
cal kaolinite and montmorillonite crystals are shown in Figure 1.8. Since
the innermost layer of double-layer water is very strongly held by a clay
particle, it is referred to as adsorbed water.

‘}OO A Double-layer water
10A 2

Adsorbed
water

"~ Double-

Kaolinite
layer water ,

crystal 200 A

/Adsorbed water Vs
=4 ﬁ Montmorillonite

/ 7/ crystal
200 A

97

Figure 1.8 Clay water () typical kaolinite particle, 10,000 by 1,000 A and (b) typical
montmorillonite particle, 1,000 by 10 A. (After Lambe, T.W., Trans. ASCE,
125, 682, 1960.)

10A 3

(a) (b)
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1.5 REPULSIVE POTENTIAL

The nature of the distribution of ions in the diffuse double layer is
shown in Figure 1.5. Several theories have been presented in the past
to describe the ion distribution close to a charged surface. Of these, the
Gouy-Chapman theory has received the most attention. Let us assume
that the ions in the double layers can be treated as point charges, and
that the surface of the clay particles is large compared to the thickness
of the double layer. According to Boltzmann’s theorem, we can write
that (Figure 1.9)

-v.eF
=1y * 1.1
n M4 0) EXP KT ( )
-v_eF
_=n_ - 1.2
n n (0) exXp KT ( )

where
n, is the local concentration of positive ions at a distance x
n_is the local concentration of negative ions at a distance x
7. "_( are the concentration of positive and negative ions away from
the clay surface in the equilibrium liquid
@ is the average electric potential at a distance x (Figure 1.10)
v,, v_ are ionic valences
e is the unit electrostatic charge, 4.8 x 10-1° esu
K is the Boltzmann constant, 1.38 x 10-1¢ erg/K
T is the absolute temperature

@ Ions

" e x ——p| dx b

Clay
particle

Figure 1.9 Derivation of repulsive potential equation.
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S

0

Potential, ®

v

Distance from surface of clay, x
Figure 1.10 Nature of variation of potential ® with distance from the clay surface.

The charge density p at a distance x is given by
r=v,en, -v_en. (1.3)

According to Poisson’s equation

d’F _ —4pr
dx* 1

(1.4)

where A is the dielectric constant of the medium.
Assuming v, = v_and n, = n_, = n,, and combining Equations 1.1
through 1.4, we obtain

d’F _ 8pnyve . , veF
= h 1.5
dx* 1 VKT (1.3)

It is convenient to rewrite Equation 1.5 in terms of the following nondi-
mensional quantities

veF
= 1.6
Y= et (1.6)
_ veF
z KT (1.7)
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and
x=kx (1.8)
where @, is the potential at the surface of the clay particle and

2,2
2 _ Spmpev

- 1.9
KT (em™) (1.9)
Thus, from Equation 1.5

2

% =sinhy (1.10)

The boundary conditions for solving Equation 1.10 are

1. AtE =0,y =0and dy/de =0
2. AtE=0,y =gz, thatis, ® = @,

The solution yields the relation

(ez/Z +1)+(ez/2 _1)e-x

ey/2 -
(ez/Z + 1) _ (ez/Z _ 1)e—x

(1.11)

Equation 1.11 gives an approximately exponential decay of potential. The
nature of the variation of the nondimensional potential y with the nondi-
mensional distance is given in Figure 1.11.

For a small surface potential (<25 mV), we can approximate Equation 1.5 as

2
‘;; = X'F (1.12)
F =Fpe™ (1.13)

Equation 1.13 describes a purely exponential decay of potential. For this
condition, the center of gravity of the diffuse charge is located at a distance
of x = 1/x. The term 1/x is generally referred to as the double-layer thickness.

There are several factors that will affect the variation of the repulsive
potential with distance from the surface of the clay layer. The effect of
the cation concentration and ionic valence is shown in Figures 1.12 and
1.13, respectively. For a given value of ®, and x, the repulsive potential ®
decreases with the increase of ion concentration 7, and ionic valence v.

When clay particles are close and parallel to each other, the nature of
variation of the potential will be as shown in Figure 1.14. Note for this case
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12

Nondimensional potential, y

|
0 1 2 3

Nondimensional distance, £

Figure 1.1l Variation of nondimensional potential with nondimensional distance.

Potential, ®

v

Distance from clay particle, x

Figure 1.12 Effect of cation concentration on the repulsive potential.
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Potential, @

v

Distance from clay particle, x

Figure .13 Effect of ionic valence on the repulsive potential.

Clay Clay
particle particle
>

x

Figure 1.14 Variation of ® between two parallel clay particles.
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21>29> 23
ve(Dd

~ Yd =

i KT

v

E=xd

Figure I.15 Nature of variation of the nondimensional midplane potential for two paral-
lel plates.

thatat x = 0, ® = @, and at x = d (midway between the plates), ® = ®, and
d®/dx = 0. Numerical solutions for the nondimensional potential y = y,
(i.e., ® = ®,) for various values of z and & = «xd (i.e., x = d) are given by
Verweg and Overbeek (1948) (see also Figure 1.15).

1.6 REPULSIVE PRESSURE

The repulsive pressure midway between two parallel clay plates (Figure 1.16)
can be given by the Langmuir equation

B veF 4
=2n,KT Zcosh
P =2n %cos KT

-1- (1.14)

where p is the repulsive pressure, that is, the difference between the osmotic
pressure midway between the plates in relation to that in the equilibrium
solution. Figure 1.17, which is based on the results of Bolt (1956), shows
the theoretical and experimental variation of p between two clay particles.
Although the Guoy—Chapman theory has been widely used to explain
the behavior of clay, there have been several important objections to this
theory. A good review of these objections has been given by Bolt (1955).
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Clay V4 V4 Clay

particle 4—|—> particle
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Figure 1.16 Repulsive pressure midway between two parallel clay plates.
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\
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Experiment
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Figure 1.17 Repulsive pressure between sodium montmorillonite clay particles. (After
Bolt, G.H., Geotechnique, 6, 86, 1956.)
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1.7 FLOCCULATION AND DISPERSION
OF CLAY PARTICLES

In addition to the repulsive force between the clay particles, there is an
attractive force, which is largely attributed to the Van der Waal force. This
is a secondary bonding force that acts between all adjacent pieces of matter.
The force between two flat parallel surfaces varies inversely as 1/x> to 1/x*,
where x is the distance between the two surfaces. Van der Waal’s force is
also dependent on the dielectric constant of the medium separating the sur-
faces. However, if water is the separating medium, substantial changes in the
magnitude of the force will not occur with minor changes in the constitution
of water.

The behavior of clay particles in a suspension can be qualitatively visual-
ized from our understanding of the attractive and repulsive forces between
the particles and with the aid of Figure 1.18. Consider a dilute suspension of
clay particles in water. These colloidal clay particles will undergo Brownian
movement and, during this random movement, will come close to each

Repulsive force

Net force

v

Distance between
particles, x

Attractive force

v

Figure 1.18 Dispersion and flocculation of clay in a suspension.
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Figure 1.19 (a) Dispersion and (b) flocculation of clay.

other at distances within the range of interparticle forces. The forces of
attraction and repulsion between the clay particles vary at different rates
with respect to the distance of separation. The force of repulsion decreases
exponentially with distance, whereas the force of attraction decreases as
the inverse third or fourth power of distance, as shown in Figure 1.18.
Depending on the distance of separation, if the magnitude of the repulsive
force is greater than the magnitude of the attractive force, the net result will
be repulsion. The clay particles will settle individually and form a dense
layer at the bottom; however, they will remain separate from their neigh-
bors (Figure 1.19a). This is referred to as the dispersed state of the soil. On
the contrary, if the net force between the particles is attraction, flocs will be
formed and these flocs will settle to the bottom. This is called flocculated
clay (Figure 1.19b).

1.7.1 Salt flocculation and nonsalt flocculation

We saw in Figure 1.12 the effect of salt concentration, 7., on the repulsive
potential of clay particles. High salt concentration will depress the double
layer of clay particles and hence the force of repulsion. We noted earlier
in this section that the Van der Waal force largely contributes to the force
of attraction between clay particles in suspension. If the clay particles are
suspended in water with a high salt concentration, the flocs of the clay par-
ticles formed by dominant attractive forces will give them mostly an orien-
tation approaching parallelism (face-to-face type). This is called a salt-type
flocculation (Figure 1.20a).

Another type of force of attraction between the clay particles, which is
not taken into account in colloidal theories, is that arising from the elec-
trostatic attraction of the positive charges at the edge of the particles and
the negative charges at the face. In a soil-water suspension with low salt
concentration, this electrostatic force of attraction may produce a floccula-
tion with an orientation approaching a perpendicular array. This is shown
in Figure 1.20b and is referred to as nonsalt flocculation.
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(a) (b)

Figure 1.20 (a) Salt and (b) nonsalt flocculation of clay particles.

1.8 CONSISTENCY OF COHESIVE SOILS

The presence of clay minerals in a fine-grained soil will allow it to be remolded
in the presence of some moisture without crumbling. If a clay slurry is dried,
the moisture content will gradually decrease, and the slurry will pass from
a liquid state to a plastic state. With further drying, it will change to a
semisolid state and finally to a solid state, as shown in Figure 1.21. In 1911,
A. Atterberg, a Swedish scientist, developed a method for describing the
limit consistency of fine-grained soils on the basis of moisture content.
These limits are the liquid limit, the plastic limit, and the shrinkage limit.

The liquid limit is defined as the moisture content, in percent, at which
the soil changes from a liquid state to a plastic state. The moisture contents
(in percent) at which the soil changes from a plastic to a semisolid state
and from a semisolid to a solid state are defined as the plastic limit and
the shrinkage limit, respectively. These limits are generally referred to as
the Atterberg limits. The Atterberg limits of cohesive soil depend on sev-
eral factors, such as the amount and type of clay minerals and the type of
adsorbed cation.

Moisture
» content
decreasing
Liquid Plastic Semisolid Solid
state state state state
Liquid Plastic Shrinkage
limit limit limit

Figure 1.2] Consistency of cohesive soils.
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1.8.1 Liquid limit

The liquid limit of a soil is generally determined by the Standard
Casagrande device. A schematic diagram (side view) of a liquid limit
device is shown in Figure 1.22a. This device consists of a brass cup and a
hard rubber base. The brass cup can be dropped onto the base by a cam
operated by a crank. To perform the liquid limit test, one must place a
soil paste in the cup. A groove is then cut at the center of the soil pat with
the standard grooving tool (Figure 1.22b). By using the crank-operated
cam, the cup is lifted and dropped from a height of 10 mm. The moisture
content, in percent, required to close a distance of 12.7 mm along the
bottom of the groove (see Figure 1.22¢ and d) after 25 blows is defined as
the liquid limit.

-

46.8 M
w- 97 mm?‘ 54 mm

on

(a) (b)

Section
— 11 p—
mm
-7 * .
A
— — 1
2 mm

Figure 1.22 Schematic diagram of (a) liquid limit device, (b) grooving tool, (c) soil pat at
the beginning of the test, and (d) soil pat at the end of the test.
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Figure 1.23 Flow curve for the determination of the liquid limit for a silty clay.

It is difficult to adjust the moisture content in the soil to meet the required
12.7 mm closure of the groove in the soil pat at 25 blows. Hence, at least three
tests for the same soil are conducted at varying moisture contents, with the
number of blows, N, required to achieve closure varying between 15 and 35.
The moisture content of the soil, in percent, and the corresponding number of
blows are plotted on semilogarithmic graph paper (Figure 1.23). The relation-
ship between moisture content and log N is approximated as a straight line.
This line is referred to as the flow curve. The moisture content corresponding
to N = 25, determined from the flow curve, gives the liquid limit of the soil.
The slope of the flow line is defined as the flow index and may be written as

wy —-w,
[ =% 115
" log(N,/N)) (1.15)

where
I} is the flow index
w is the moisture content of soil, in percent, corresponding to N, blows
w, is the moisture content corresponding to N, blows

Note that w, and w, are exchanged to yield a positive value even though the
slope of the flow line is negative. Thus, the equation of the flow line can be
written in a general form as

w=-IglogN+C (1.16)
where C is a constant.
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From the analysis of hundreds of liquid limit tests in 1949, the U.S. Army
Corps of Engineers, at the Waterways Experiment Station in Vicksburg,
Mississippi, proposed an empirical equation of the form

~ tanb

E
LL = A— ~ 1.17
WwN %25 - ( )

where
N is the number of blows in the liquid limit device for a 12.7 mm
groove closure
why, is the corresponding moisture content
tan p = 0.121 (but note that tan B is not equal to 0.121 for all soils)

Equation 1.17 generally yields good results for the number of blows
between 20 and 30. For routine laboratory tests, it may be used to deter-
mine the liquid limit when only one test is run for a soil. This procedure
is generally referred to as the one-point method and was also adopted by
ASTM under designation D-4318 (ASTM, 2010). The reason that the one-
point method yields fairly good results is that a small range of moisture
content is involved when N = 20-30.

Another method of determining the liquid limit, which is popular in
Europe and Asia, is the fall cone method (British Standard—BS 1377).
In this test, the liquid limit is defined as the moisture content at which a
standard cone of apex angle 30° and weight of 0.78 N (80 gf) will penetrate
a distance d = 20 mm in 5 s when allowed to drop from a position of point
contact with the soil surface (Figure 1.24a). Due to the difficulty in achiev-
ing the liquid limit from a single test, four or more tests can be conducted at
various moisture contents to determine the fall cone penetration, d, in 5 s.
A semilogarithmic graph can then be plotted with moisture content w ver-
sus cone penetration d. The plot results in a straight line. The moisture
content corresponding to d = 20 mm is the liquid limit (Figure 1.24b). From
Figure 1.24b, the flow index can be defined as

_ wy(%) =wi(%)

(1.18)
logd, -logd,

FC

where w,, w, are the moisture contents at cone penetrations of d; and d,,
respectively.

1.8.2 Plastic limit

The plastic limit is defined as the moist content, in percent, at which the soil
crumbles when rolled into threads of 3.2 mm diameter. The plastic limit
is the lower limit of the plastic stage of soil. The plastic limit test is simple
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Weight, W=0.78 N

Soil

|<— 55 mm —>|
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Figure 1.24 (a) Fall cone test and (b) plot of moisture content versus cone penetration
for determination of liquid limit.

and is performed by repeated rolling of an ellipsoidal size soil mass by hand
on a ground glass plate. The procedure for the plastic limit test is given by
ASTM Test Designation D-4318 (ASTM, 2010).

As in the case of liquid limit determination, the fall cone method can be
used to obtain the plastic limit. This can be achieved by using a cone of
similar geometry, but with a mass of 2.35 N (240 gf). Three to four tests at
varying moist contents of soil are conducted, and the corresponding cone
penetrations d are determined. The moisture content corresponding to a cone
penetration of d = 20 mm is the plastic limit. Figure 1.25 shows the liquid
and plastic limit determined by the fall cone test for Cambridge Gault clay
reported by Wroth and Wood (1978).
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Figure 1.25 Liquid and plastic limits for Cambridge Gault clay determined by the fall cone test.

The difference between the liquid limit and the plastic limit of a soil is
defined as the plasticity index, PI

PI=LL-PL (1.19)
where

LL is the liquid limit

PL is the plastic limit

Sridharan et al. (1999) showed that the plasticity index can be correlated
to the flow index as obtained from the liquid limit tests. According to their
study

PL(%) = 4.1215(%) (1.20)
and
PI(%) = 0.741xc(%) (1.21)
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1.9 LIQUIDITY INDEX

The relative consistency of a cohesive soil can be defined by a ratio called
the liquidity index LI. It is defined as

_wy-PL _wy-PL
LL-PL  PI

LI (1.22)

where wy is the natural moisture content. It can be seen from Equation
1.22 that, if wy = LL, then the liquidity index is equal to 1. Again, if
wy = PL, the liquidity index is equal to 0. Thus, for a natural soil deposit
which is in a plastic state (i.e., LL > wy > PL), the value of the liquidity
index varies between 1 and 0. A natural deposit with wy > LL will have a
liquidity index greater than 1. In an undisturbed state, these soils may be
stable; however, a sudden shock may transform them into a liquid state.
Such soils are called sensitive clays.

1.10 ACTIVITY

Since the plastic property of soil is due to the adsorbed water that
surrounds the clay particles, we can expect that the type of clay minerals
and their proportional amounts in a soil will affect the liquid and plastic
limits. Skempton (1953) observed that the plasticity index of a soil lin-
early increases with the percent of clay-size fraction (percent finer than
2p by weight) present in it. This relationship is shown in Figure 1.26.

Soil 1

Soil 2

Plasticity index

v

Percentage of clay-size fraction (<2p)

Figure 1.26 Relationship between plasticity index and percentage of clay-size fraction
by weight.
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Table 1.3 Activities of clay minerals

Mineral Activity (A)
Smectites -7
llite 0.5-1
Kaolinite 0.5
Halloysite (4H,0) 0.5
Halloysite (2H,0) 0.1
Attapulgite 0.5-1.2
Allophane 0.5-1.2

The average lines for all the soils pass through the origin. The correla-
tions of PI with the clay-size fractions for different clays plot separate
lines. This is due to the type of clay minerals in each soil. On the basis
of these results, Skempton defined a quantity called activity, which is the
slope of the line correlating PI and percent finer than 2p. This activity A
may be expressed as

A= n | (1.23)
(percentage of clay-size fraction by weight)

Activity is used as an index for identifying the swelling potential of clay
soils. Typical values of activities for various clay minerals are given in
Table 1.3.

Seed et al. (1964a) studied the plastic property of several artificially pre-
pared mixtures of sand and clay. They concluded that, although the rela-
tionship of the plasticity index to the percent of clay-size fraction is linear
(as observed by Skempton), it may not always pass through the origin. This
is shown in Figure 1.27. Thus, the activity can be redefined as

A= PI
percentof clay-size fraction - C¢

(1.24)

where C’ is a constant for a given soil. For the experimental results shown
in Figure 1.27, C’' = 9.

Further works of Seed et al. (1964b) have shown that the relationship
of the plasticity index to the percentage of clay-size fractions present in a
soil can be represented by two straight lines. This is shown qualitatively
in Figure 1.28. For clay-size fractions greater than 40%, the straight line
passes through the origin when it is projected back.
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O Commercial bentonite
® Bentonite/kaolinite—4:1
A Bentonite/kaolinite—1.5:1
A Kaolinite/bentonite—1.5:1
B Kaolinite/bentonite—4:1
O Kaolinite/bentonite—9:1
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Figure 1.27 Relationship between plasticity index and clay-size fraction by weight for
kaolinite/bentonite clay mixtures. (After Seed, H.B. et al., J. Soil Mech. Found.
Eng. Div., Am. Soc. Civ. Eng., 90(SM4), 107, 1964.)

I.11 GRAIN-SIZE DISTRIBUTION OF SOIL

For a basic understanding of the nature of soil, the distribution of
the grain size present in a given soil mass must be known. The grain-
size distribution of coarse-grained soils (gravelly and/or sandy) is
determined by sieve analysis. Table 1.4 gives the opening size of some
U.S. sieves.

© 2010 Taylor & Francis Group, LLC



Soil aggregate, plasticity, and classification 27
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Figure 1.28 Simplified relationship between plasticity index and percentage of clay-size
fraction by weight. (After Seed, H.B. et al., J. Soil Mech. Found. Eng. Div., Am.
Soc. Civ. Eng., 90(SM6), 75, 1964.)

Table 1.4 U.S. standard sieves

Sieve no. Opening size (mm)
3 6.35
4 4.75
6 3.36
8 2.38
10 2.00
16 1.19
20 0.84
30 0.59
40 0.425
50 0.297
60 0.25
70 0.21
100 0.149
140 0.105
200 0.075
270 0.053

The cumulative percent by weight of a soil passing a given sieve is referred
to as the percent finer. Figure 1.29 shows the results of a sieve analysis for a
sandy soil. The grain-size distribution can be used to determine some of the
basic soil parameters, such as the effective size, the uniformity coefficient,
and the coefficient of gradation.
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Figure 1.29 Grain-size distribution of a sandy sail.

The effective size of a soil is the diameter through which 10% of the total
soil mass is passing and is referred to as D,,. The uniformity coefficient C,
is defined as

- Do

C, =
Dy

(1.25)

where Dy, is the diameter through which 60% of the total soil mass is passing.
The coefficient of gradation C_is defined as

c.= Dx) (1.26)
(Dgo)(Dro)

where Dy, is the diameter through which 30% of the total soil mass is passing.
A soil is called a well-graded soil if the distribution of the grain sizes
extends over a rather large range. In that case, the value of the uniformity
coefficient is large. Generally, a soil is referred to as well graded if C,, is larger
than about 4-6 and C_ is between 1 and 3. When most of the grains in a soil
mass are of approximately the same size—that is, C, is close to 1—the soil is
called poorly graded. A soil might have a combination of two or more well-
graded soil fractions, and this type of soil is referred to as a gap-graded soil.
The sieve analysis technique described earlier is applicable for soil grains
larger than No. 200 (0.075 mm) sieve size. For fine-grained soils, the pro-
cedure used for determination of the grain-size distribution is hydrometer
analysis. This is based on the principle of sedimentation of soil grains.
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1.12 WEIGHT-VOLUME RELATIONSHIPS

Figure 1.30a shows a soil mass that has a total volume V and a total weight W.
To develop the weight—volume relationships, the three phases of the soil mass,
that is, soil solids, air, and water, have been separated in Figure 1.30b. Note that

W =W, +W, (1.27)
and, also

V=V.+V, +V, (1.28)

V.=V, +, (1.29)
where

W. is the weight of soil solids
W, is the weight of water

V. is the volume of the soil solids
V., is the volume of water

V. is the volume of air

The weight of air is assumed to be zero. The volume relations commonly
used in soil mechanics are void ratio, porosity, and degree of saturation.

Void ratio e is defined as the ratio of the volume of voids to the volume
of solids:

V.
e=—- (1.30)
Vs
Weight Volume Weight Volume
ry ry T
Air Va
FE=1 ¢
W V = W T T water Vi,
T Soil %
Wi solids Vs
v _v l AL
(a) (b)

Figure 1.30 Weight—volume relationships for soil aggregate: (a) soil mass of volume V;
(b) three phases of the soil mass.
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Porosity n is defined as the ratio of the volume of voids to the total volume:
n=-—2" (1.31)

Also, V=V, +V,
and so

I A ) A
Vo+ Ve (VWVO)+(VL/V,) 1+e

(1.32)

Degree of saturation S, is the ratio of the volume of water to the volume
of voids and is generally expressed as a percentage:

S,(%)=§//—W¥100 (1.33)

u

The weight relations used are moisture content and unit weight. Moisture
content w is defined as the ratio of the weight of water to the weight of soil
solids, generally expressed as a percentage:

w(%)=%¥100 (1.34)

S

Unit weight v is the ratio of the total weight to the total volume of the soil
aggregate:

v 1.35
9= (1.35)

This is sometimes referred to as moist unit weight since it includes the
weight of water and the soil solids. If the entire void space is filled with
water (i.e., V, = 0), it is a saturated soil; Equation 1.35 will then give us the
saturated unit weight y,,..

The dry unit weight v, is defined as the ratio of the weight of soil solids
to the total volume:

(1.36)

gd:V

Useful weight—volume relations can be developed by considering a soil
mass in which the volume of soil solids is unity, as shown in Figure 1.31.
Since V, = 1, from the definition of void ratio given in Equation 1.30, the
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Air
oL
W, =wGyyy __ Water _ _ | V,,=wG;

| !

W= Ggyy Soil V=1

l solids l

Figure 1.3] Weight—volume relationship for V, = I.

volume of voids is equal to the void ratio e. The weight of soil solids can
be given by

W =Gig,Vs =Gy, (sinceV =1)
where
G, is the specific gravity of soil solids

Y. is the unit weight of water (9.81 kN/m?)

From Equation 1.34, the weight of water is W, = wW, = wG.y,,. So the
moist unit weight is

_W_W+W, _Gag, twGg, _ Gay(l+w)

= = 1.37
d \% V. +V, 1+e 1+e ( )
The dry unit weight can also be determined from Figure 1.31 as
W,  G,g,
=== 1.38
& V  1+e ( )
The degree of saturation can be given by
s, _V _Wilgy _wGg.lgy _ wG (1.39)
V. Vi e e
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For saturated soils, S, = 1. So, from Equation 1.39,
e =wG, (1.40)

By referring to Figure 1.32, the relation for the unit weight of a saturated
soil can be obtained as

W _W+W, _Ggy tegy (1.41)
v 14 1+e '

Sar

Basic relations for unit weight such as Equations 1.37, 1.38, and 1.41 in
terms of porosity 7 can also be derived by considering a soil mass that has a
total volume of unity as shown in Figure 1.33. In this case (for V = 1), from
Equation 1.31, V, =n.So, V.= V-V, =1 -n.

- — Water — —

I
]

<

I
I
|I
|l
—
I

o

|
|
|
L |
o
=
= |
|
|
|
—Pldi<

o~
I
_

W,
s Iyw solids

Figure 1.32 Weight—volume relation for saturated soil with V, = |.

Wo=wGy,(1-n) | _ _ Water  _

=y
v
7

Ws = Gst(l —n) Soll V.=(1-n)
solids s

+«————>

Figure 1.33 Weight—volume relationship for V = I.
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The weight of soil solids is equal to (1 - #)G,y,, and the weight of water
W, = wW, = w(1l - n)Gy,,. Thus, the moist unit weight is

g= W Wit Wy _(1-n)Gg, +u(l -nG.g,

\% \% 1
=G,g,(1 -n)(1+w) (1.42)
The dry unit weight is
@ =% = (1-n)G.ge (1.43)
If the soil is saturated (Figure 1.34),
G = U = (1= G, +n, =[G, -n(G, -1, (1.44)

Table 1.5 gives some typical values of void ratios and dry unit weights
encountered in granular soils.

- _ — A
— ~ Water = ~

szn)/w _ _ o Vv=}’l

- V=
Soil
V.=(1-n)
W= Gst(l -n) solids s

v

Figure 1.34 Weight—volume relationship for saturated soil with V = 1.

Table 1.5 Typical values of void ratios and dry unit weights for granular soils

Void ratio, e Dry unit weight, y,
Soil type Maximum ~ Minimum  Minimum (kN/m3)  Maximum (kN/m?3)
Gravel 0.6 0.3 16 20
Coarse sand 0.75 0.35 15 19
Fine sand 0.85 0.4 14 19
Standard Ottawa sand 0.8 0.5 14 17
Gravelly sand 0.7 0.2 15 22
Silty sand | 0.4 13 19
Silty sand and gravel 0.85 0.15 14 23
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Example 1.1

For a soil in natural state, given e = 0.8, w = 24%, and G, = 2.68.

a. Determine the moist unit weight, dry unit weight, and degree of
saturation.

b. If the soil is completely saturated by adding water, what would
its moisture content be at that time? Also, find the saturated unit
weight.

Solution
Part a:

From Equation 1.37, the moist unit weight is

_Ga.(1+w)
1+e

Since y,, = 9.81 kN/m3,

g= (2.68)(9.81)(1+0.24) _ 1811 kN/m’
1+0.8

From Equation 1.38, the dry unit weight is

_ G, _(2.68)(9.81)
1+e 1+0.8

=14.61kN/m?

From Equation 1.39, the degree of saturation is

G

S.(%) = wG; 4100 = (0.24)(2.68)
e

¥100 =80.4%

Part b:

From Equation 1.40, for saturated soils, ¢ = wG,, or

(%) = Gi¥1oo = %seloo =29.85%

From Equation 1.41, the saturated unit weight is

_Gg, +eg, _9.81(2.68+0.8)
1+e 1+0.8

=18.97 kN/m*

Sat
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1.13 RELATIVE DENSITY AND RELATIVE
COMPACTION

Relative density is a term generally used to describe the degree of compac-
tion of coarse-grained soils. Relative density D, is defined as

€max — €

D, = (1.45)
€max ~ €min
where
€nax 18 the maximum possible void ratio

€in 18 the minimum possible void ratio
e is the void ratio in natural state of soil

Equation 1.45 can also be expressed in terms of dry unit weight of the soil:

gi(max) =G87gw Or  €min =G579W—1 (1.46)
1+e,n gy(max)

Similarly,

€max = ngw _1 (1.47)
gy(min)
and

e=G% g (1.48)

U

where y,(max), y,(min), and y, are the maximum, minimum, and natural-
state dry unit weights of the soil. Substitution of Equations 1.46 through
1.48 into Equation 1.45 yields

E g -g(min) f
L4 (max) - gy(min) © (1.49)

gy(max) ~
qj -]

D, =

H

Relative density is generally expressed as a percentage. It has been used
by several investigators to correlate the angle of friction of soil, the soil
liquefaction potential, etc.

Another term occasionally used in regard to the degree of compaction of
coarse-grained soils is relative compaction, R, which is defined as

R- & (1.50a)
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Comparing Equations 1.49 and 1.50a,

R,

= o (1.50b)
1-D,(1-R,)

C

where R, = y4(min)/y,(max).
Lee and Singh (1971) reviewed 47 different soils and gave the approxi-
mate relation between relative compaction and relative density as

R, =80+0.2D, (1.50¢)

where D, is in percent.

1.14 RELATIONSHIP BETWEEN e, .., AND e

max min

The maximum and minimum void ratios for granular soils described in
Section 1.13 depend on several factors such as

Grain size

Grain shape

Nature of grain-size distribution

Fine content F, (i.e., fraction smaller than 0.075 mm)

Following are some of the correlations now available in the literature related
to e, and e, of granular soils.

max min

e Clean sand (F, = 0%-5%)

Miura et al. (1997) conducted an extensive study of the physical characteris-
tics of about 200 samples of granular material, which included mostly clean
sand, some glass beads, and lightweight aggregates (LWA). Figure 1.35
shows a plot of e, versus e,;, obtained from that study, which shows that

Crmax 21.62¢:, (1.51)

Cubrinovski and Ishihara (2002) analyzed a large number of clean sand
samples based on which it was suggested that

emax =0.072 +1.53emin (1.52)

The data points upon which Equation 1.52 is based and an additional 55 data
points for clean sand given by Patra et al. (2010) are shown in Figure 1.36.
From this figure, it appears that Equation 1.51 may be taken as a good aver-
age approximation. The difference in the angularity or roundness of the
particles of different soils is another major factor causing the scatter.
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Figure 1.35 Plot of e, versus e, based on the results of Miura et al. (1997).

® Cubrinovski and Ishihara (2002)
© Patra et al. (2010)
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Figure 1.36 Plot of e, versus e, for clean sand.
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Based on best-fit linear regression lines, Cubrinovski and Ishihara (2002)
also provided the following relationships for other soils:

e Sand with fines (5% < F. < 15%)

emax = 0.25 +1.37¢ein (1.53)
e Sand with fines and clay (15% < F. < 30%; P. = 5%-20%)

o = 0.44 +1.21¢,,, (1.54)
e Silty soils (30% < F. < 70%; P. = 5%-20%)

Cmax = 0.44 +1.32¢,, (1.55)

where
F. is the fine fraction for which grain size is smaller than 0.075 mm
P. is the clay-size fraction (<0.005 mm)

Based on a very large database, Cubrinovski and Ishihara (1999, 2002) devel-
oped a unique relationship between e, — e, and median grain size D,. The
database included results from clean sand, sand with fines, and sand with clay,
silty soil, gravelly sand, and gravel. This relationship is shown in Figure 1.37.
In spite of some scatter, the average line can be given by the relation

€max = €min = 0.23 +& (156)
Dso(mm)

It appears that the upper and lower limits of e, — e,.;, versus D, as shown
in Figure 1.37 can be approximated as

e Lower limit

€max = €min = 0.16 +M (1.57)
Dso(mm)
e Upper limit
€max ~ €min =O-29+M (158)
Dso(mm)

1.15 SOIL CLASSIFICATION SYSTEMS

Soil classification is the arrangement of soils into various groups or subgroups to
provide a common language to express briefly the general usage characteristics
without detailed descriptions. At the present time, two major soil classification
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1.0
O Clean sands (F.=0% —5%)
A Sands with fines (5% < F,< 15%)
® Sands with clay (15% < F.<30%, P.=5% —20%)
084 A a4 a A Silty soils (30% < F,<70%, P, = 5% —20%)
A a4 <& Gravelly sands (F, < 6%, P, = 17% —36%)
A A O Gravels
£ La
€
T PR
é 0.6 - A A
A‘M; -
\\r
:; A\? 0.06
o ‘A .
g ? €max— €min=0-23 + Deg
S
§ 0.4 -
)
2
0.2
0.0 ey s o e — ——

0.1 1.0 10

Median grain size, D5, (mm)

Figure 1.37 Plot of e, — €,.;, versus median grain size (Ds;). (Redrawn after Cubrinovski
and Ishihara, Soils Found., 42(6), 65-78, 2002.)

systems are available for general engineering use. They are the unified system
and the American Association of State Highway and Transportation Officials
(AASHTO) system. Both systems use simple index properties such as grain-
size distribution, liquid limit, and plasticity index of soil.

1.15.1 Unified system

The unified system of soil classification was originally proposed by A.
Casagrande in 1948 and was then revised in 1952 by the Corps of Engineers
and the U.S. Bureau of Reclamation. In its present form [also see ASTM
D-2487, ASTM (2010)], the system is widely used by various organizations,
geotechnical engineers in private consulting business, and building codes.

Initially, there are two major divisions in this system. A soil is classified
as a coarse-grained soil (gravelly and sandy) if more than 50% is retained
on a No. 200 sieve and as a fine-grained soil (silty and clayey) if 50% or
more is passing through a No. 200 sieve. The soil is then further classified
by a number of subdivisions, as shown in Table 1.6.

© 2010 Taylor & Francis Group, LLC



40 Advanced Soil Mechanics

(sauyy ou Jo

MS 40} BLIS11ID OM] 33 Sunaaw JON| M3J) spues A|[oAe.S ‘spues papeJd Al1ood ds
€ pue | usamiag
(“a)(°q) olg (ssuy ou
3 =" 9< g = §o) 10 Md}) spues A||9AeJ3 ‘spues papeJ3-||oAA MS (saul ou Jo may) spues ues|D
(ana1s 4 "oN Buissed
uodRY 3SIBOD JO %0G<) SPUBS
(8€'1 @134 93s)
o/ UeYd J91ea.8 xapur Aapnsed
UM dulj-y dA0qE s)wl| 319qUa1y saumxiw Aep—pues—|aAe.3 ‘s|aAe.S Aoke|D) 9)5)
(8¢ 24n314 99s) ¢y UBYD SSO| XBpUI
Apnseld Jo sull-y mojaq suwi| S49queny Sa4NIXIW J[Is—pues—[dAe.S ‘sjoAe.S LIS WD SaUL UM S|DARBID
(sauly ou 1o May) saamxiw
AMD J0} BLIS1IID OM] 33 Sunaaw 0N pues—|aAe.S ‘s|oAeIS pape.d A|Joog do
€ puUB | Usamiog
(“a)(°'q) olg (seuly ou 40 Mmay)
3 =D Y g = "D seunixiw pues—[oAEIS S|9ARIS papER.S-|[oAA MD S9UIJ OU 1O M3} YIIM S|9AR.ID)
(aAat1s 4 "oN Buissed
UONDE.) 9SUBOD JO %(0G>) S|OABID
«(2A31s 007 ON
Suissed 90g>) s|los paureas-asaeor)
oUONDIIISSD]D 10 DLISIID sawipu |p2IdAL sjoquiAs dno.o suoisiAlp Jojyy

wia1sAs UONEBIYISSE|D |IOS PalIun 9°| d|qpL

© 2010 Taylor & Francis Group, LLC



41

Soil aggregate, plasticity, and classification

*(8€°| 24n314 995) S|OQWIAS [BNp SPaU 1| 'SISBD SUIJISP.IOq dJ. / PUE {, U9aMIDq Xapul A1dnse|d pue aulj-y 9A0qE SUWI| 849G4eNY 4
"D8-dS ‘WS—dS "DS—MS WS—MS "DS—dD 'WO—dD "DD-MD WO~AD SE Yans pauinbau sjoquihs [enp
—aull4ap40q:00T "ON Buissed %7 [-%G DS 'IWS DD ‘WD 007 ©N 8Buissed %7 | <:dS AAS dD AMD 00 ©N Suissed %G :sauly jo a8eIuaduad uo paseq UONBIYISSED) .

‘|los d1uedio

Aly3iy pue 1ead 9 ‘Aepd Jo ais d1uedio ‘O Ladnseid mol 7 ajis ‘| “Adnsed y3iy ‘H Aep D ‘papeusd Aluood f (pues ‘S (papeud-||om AA {[oAeJS ‘D) aue sjoquiAs dnoun)

8€'| 24n3iy 935
8¢'| 24ndig 993

8¢"| aIn34 233
8€'| 24n3i4 235
8¢"| aIn314 935
8¢€'| @4ndig 993

(8¢ 24n314 985) ¢z ueyYl 421E43 XBpUI
Apnsed yum suij-y aroqe sawi| 319quany

(8€°| @4n314 995) ¢y UBYD SS9 XOPUI
Apnseld Jo sul-y mojaq suwi 84aqueny

sjios 21uedio Alysiy Jsyro pue iydnw aesq
syjis o1ueduo
‘{(Awonsed ySiy o1 winipaw) sAepd ouediQ
sAepd ey {(Aonseld ysiy) sAepd sjuediou|
2Jis Jnse sjlos Ais 4o Apues auly
SNO3JBWOIEIP IO SNOJBIIW ‘SIS djued.Iou|
(Aaonsed
Moj) shejp Ayis o1uelo ‘syjis oluediQ
sAe]> ued)| ‘sAed Ajis ‘she|d Apues ‘sAe|d Ajjoae.3
{(Aonsed wnipsw 031 Moj) sAepd d1ueSiou|

spues auly AaAe[d .o Ais
£4NoJ4 >20. tspues auly AJ4aA ts3|is d1uediou|

saimxiw Aej>—pues ‘spues Aake|D)

S2JMIXIW 1|Is—pues ‘spues KIS

d

HO
HD

HIW

10

1O

W

N

WS

syis d1ueduo A|y3iH

(0§ uey
Ja1e2u8 3w pinbiy) Aepd pue sijig

(0§ uey
s3] 31Wi| pinby) Aejd pue sijis

(3A315 00T ©°N
Buissed 9%0g<) s|los paures3-auly

(sauly jo unowre
9|qerdaudde) sauly yum spueg

© 2010 Taylor & Francis Group, LLC



42 Advanced Soil Mechanics
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Figure 1.38 Plasticity chart.
Example 1.2

For a soil specimen, given the following,

Passing No. 4 sieve = 92% Passing No. 40 sieve = 78%
Passing No. 10 sieve = 81%  Passing No. 200 sieve = 65%
Liquid limit = 48 Plasticity index = 32

classify the soil by the unified classification system.

Solution

Since more than 50% is passing through a No. 200 sieve, it is a fine-
grained soil, that is, it could be ML, CL, OL, MH, CH, or OH. Now, if
we plot LL = 48 and PI = 32 on the plasticity chart given in Figure 1.38,
it falls in the zone CL. So the soil is classified as CL.

1.15.2 AASHTO classification system

This system of soil classification was developed in 1929 as the Public Road
Administration Classification System. It has undergone several revisions,
with the present version proposed by the Committee on Classification of
Materials for Subgrades and Granular Type Roads of the Highway Research
Board in 1945 [ASTM (2010) Test Designation D-3282].

The AASHTO classification system in present use is given in
Table 1.7. According to this system, soil is classified into seven major
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Table 1.7 Classification of highway subgrade materials

General classification

Granular materials (35% or less of total sample passing No.
200 sieve)

Group classification

A-1 A2

A-l-a  A-I-b A3 A-2-4  A-25 A-2-6 A-2-7

Sieve analysis (percent
passing)

No. 10

No. 40

No. 200

Characteristics of
fraction passing

No. 40

Liquid limit

Plasticity index

Usual types of
significant
constituent materials

General subgrade
rating

50 max.
30 max. 50 max. 50 min.
15 max. 25 max. 10 max. 35 max. 35 max. 35 max. 35 max.

40 max. 4| min. 40 max. 4| min.
6 max. NP 10 max. [0max. Il min. |l min.

Stone fragments, Fine Silty or clayey gravel and sand
gravel,and sand  sand

Excellent to good

General classification

Silt—clay materials (more than 35% or total sample passing No.

200 sieve)
A-7
A-7-52
Group classification ~ A-4 A-5 A-6 A-7-6°
Sieve analysis (percent
passing)
No. 10
No. 40
No. 200 36 min. 36 min. 36 min. 36 min.
Characteristics of
fraction passing
No. 40
Liquid limit 40 max. 41 min. 40 max. 41 min.
Plasticity index 10 max. 10 max. I'l min. Il min.
Usual types of Silty soils Clayey soils

significant
constituent materials

General subgrade
rating

Fair to poor

@ For A-7-5,PI < LL - 30.
> For A-7-6,Pl > LL — 30.
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groups: A-1 through A-7. Soils classified into Groups A-1, A-2, and A-3 are
granular materials, where 35% or less of the particles pass through the No.
200 sieve. Soils where more than 35% pass through the No. 200 sieve are
classified into groups A-4, A-5, A-6, and A-7. These are mostly silt and clay-
type materials. The classification system is based on the following criteria:

1. Grain size
Gravel: Fraction passing the 75 mm sieve and retained on No. 10 (2 mm)
U.S. sieve
Sand: Fraction passing the No. 10 (2 mm) U.S. sieve and retained on
the No. 200 (0.075 mm) U.S. sieve
Silt and clay: Fraction passing the No. 200 U.S. sieve
2. Plasticity: The term silty is applied when the fine fractions of the soil
have a plasticity index of 10 or less. The term clayey is applied when
the fine fractions have a plasticity index of 11 or more.
3. If cobbles and boulders (size larger than 75 mm) are encountered, they
are excluded from the portion of the soil sample on which classifica-
tion is made. However, the percentage of such material is recorded.

To classify a soil according to Table 1.7, the test data are applied from
left to right. By the process of elimination, the first group from the left into
which the test data will fit is the correct classification.

For the evaluation of the quality of a soil as a highway subgrade material,
a number called the group index (GI) is also incorporated with the groups
and subgroups of the soil. The number is written in parentheses after the
group or subgroup designation. The group index is given by the equation

GI = (F = 35)[0.2 +0.00S(LL - 40)] + 0.01(F - 15)(PI - 10) (1.59)

where
F is the percent passing the No. 200 sieve
LL is the liquid limit
PI is the plasticity index

The first term of Equation 1.59—that is, (F - 35)[0.2 + 0.005(LL - 40)]—
is the partial group index determined from the liquid limit. The second
term—that is, 0.01(F - 15) (PI — 10)—is the partial group index deter-
mined from the plasticity index. Following are the rules for determining
the group index:

1. If Equation 1.59 yields a negative value for GI, it is taken as 0.

2. The group index calculated from Equation 1.59 is rounded off to the
nearest whole number (e.g., GI = 3.4 is rounded off to 3; GI = 3.5 is
rounded off to 4).
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3. There is no upper limit for the group index.

4. The group index of soils belonging to groups A-1-a, A-1-b, A-2-4,
A-2-5, and A-3 is always 0.

5. When calculating the group index for soils that belong to groups
A-2-6 and A-2-7, use the partial group index for PI, or

GI =0.01(F -15)(PI -10) (1.60)

In general, the quality of performance of a soil as a subgrade material is
inversely proportional to the group index.

Example 1.3

Classify the following soil by the AASHTO classification system.
Passing No. 10 sieve: 100%
Passing No. 40 sieve: 92%
Passing No. 200 sieve: 86%

Liquid limit (LL): 70
Plasticity index (PI): 32

Solution

Percent passing the No. 200 sieve is 86%. So, it is a silty clay material
(i.e., A-4, A-5, A-6, or A-7) as shown in Table 1.7. Proceeding from left
to right, we see that it falls under A-7. For this case, PI = 32 < LL - 30.
So, this is A-7-5. From Equation 1.59

GI =(F-35)[0.2+0.005(LL -40)] +0.01(F -15)(PI - 10)
Now, F = 86; LL = 70; PI = 32; so

GI =(86 -35)[0.2+0.005(70 -40)] +0.01(86 -15)(32 -10)
=33.47 233

Thus, the soil is A-7-5(33).

1.16 COMPACTION

Compaction of loose fills is a simple way of increasing the stability and
load-bearing capacity of soils, and this is generally achieved by using
smooth-wheel rollers, sheepsfoot rollers, rubber-tired rollers, and vibratory
rollers. In order to write the specifications for field compaction, Proctor
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compaction tests are generally conducted in the laboratory. A brief descrip-
tion of the Proctor compaction test procedure is as follows:

1.16.1 Standard Proctor compaction test

A standard laboratory soil compaction test was first developed by Proctor
(1933), and this is usually referred to as the standard Proctor test (ASTM des-
ignation D-698). The test is conducted by compaction of three layers of soil in
a mold that is 944 cm? in volume. Each layer of soil is subjected to 25 blows by
a hammer weighing 24.6 N with a 304.8 mm drop. From the known volume
of the mold, weight of moist compacted soil in the mold, and moisture content
of the compacted soil, the dry unit weight of compaction can be determined as

o = Weight of moist soil in the mold
oist

Volume of the mold

- Gmoist

% 1+w

where
Ymoise 18 the moist unit weight of compacted soil
Y4 is the dry unit weight of compacted soil
w is the moisture content of soil

The test can be repeated several times at various moist contents of soil.
By plotting a graph of y, against the corresponding moisture content, the
optimum moisture content v, and the maximum dry unit weight v,y
can be obtained (Figure 1.39). Also plotted in Figure 1.39 is the variation of

Yzav VS- W

Dry unit weight, yq

I
w,
v opt

v

Moisture content, w (%)

Figure 1.39 Nature of variation of v, versus w.
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the dry unit weights, assuming the degree of saturation to be 100%. These
are the theoretical maximum dry unit weights that can be attained for a
given moisture content when there will be no air in the void spaces. With
the degree of saturation as 100%

e =wG; (1.61)

The maximum dry unit weight at a given moisture content with zero air
voids can be given by (Equation 1.38)

_Go_ Go _ 9 (1.62)

T l+e 1+wG, (1/G)+w

Gav

where v,,, is the zero-air-void unit weight (dry).
For standard Proctor compaction test, the compaction energy E can be
expressed as

24.5N/blow)(3layers)(25blows/layer)(0.3048 m)

E= ( 6\ 3
(944/10°)m

=593,294N-m/m’ 2 593kN-m/m’

1.16.2 Modified Proctor compaction test

With the development of heavier compaction equipment, the standard
Proctor test has been modified for better representation of field conditions.
In the modified Proctor test (ASTM designation D-1577), the same mold
as in the standard Proctor test is used. However, the soil is compacted in
5 layers, with a 44.5 N hammer giving 25 blows to each layer. The height
of drop of the hammer is 457.2 mm. Hence, the compactive effort in the
modified Proctor test is equal to

(25blows/layer)(5layers)(44.5 N/blow)(0.4572 m)

E =
(944/10°)m’

=2,694,041N-m/m’ 2 2604 kN-m/m’

The maximum dry unit weight obtained from the modified Proctor test
will be higher than that obtained from the standard Proctor test due to the
application of higher compaction energy. It will also be accompanied by a
lower optimum moisture content compared to that obtained from the stan-
dard Proctor compaction test.
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1.17 EMPIRICAL RELATIONSHIPS FOR PROCTOR
COMPACTION TESTS

Omar et al. (2003) presented the results of modified Proctor compaction
tests on 311 soil samples. Of these samples, 45 were gravelly soil (GP,
GP-GM, GW, GW-GM, and GM), 264 were sandy soil (SP, SP-SM,
SW-SM, SW, SC-SM, SC, and SM), and two were clay with low plasticity
(CL). Based on the tests, the following correlations were developed:

Tamay) =[4,804,574G, =195.55(LL)* +156,971(R#4)*° -9,527,830]"°
(1.63)

In(wep) =1.19521074(LL)* -1.964G, -6.617 2107 (R#4) +7.651
(1.64)

where
Pd(max) 18 the maximum dry density
W, 1s the optimum moisture content (%)
G, is the specific gravity of soil solids
LL is the liquid limit, in percent
R#4 is the percent retained on No. 4 sieve

For granular soils with less than 12% fines (i.e., finer than No. 200 sieve),
relative density may be a better indicator for end product compaction speci-
fication in the field. Based on laboratory compaction tests on 55 clean sands
(less than 5% finer than No. 200 sieve), Patra et al. (2010) provided the
following relationships:

D, = AD5y (1.65)

A =0.216InE - 0.850 (1.66)

B = -0.03InE +0.306 (1.67)
where

D, is the maximum relative density of compaction achieved with com-
paction energy E, kN-m/m?
D;, is the median grain size, mm

Gurtug and Sridharan (2004) proposed correlations for optimum mois-
ture content and maximum dry unit weight with the plastic limit PL of
cohesive soils. These correlations can be expressed as
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Weop(%) =[1.95 - 0.38(log E)|(PL) (1.68)
Qi) (KN/m?) = 22680183 on (%) (1.69)
where

PL is the plastic limit, %
E is the compaction energy, kN-m/m?

For modified Proctor test, E ~ 2700 kN/m3. Hence,

Wope(%) 2 0.65(PL)

Giimax) (KN/m?) @ 22.68¢70-012(°L)

Osman et al. (2008) analyzed a number of laboratory compaction test
results on fine-grained (cohesive) soil, including those provided by
Gurtug and Sridharan (2004). Based on this study, the following cor-
relations were developed:

Wope(%) 2 (1.99 -0.165In E)(PI) (1.70)

Q(many(KN/M?) @ L = Mw, (%) (1.71)
where

L =14.34+1.195InE (1.72)

M =-0.19+0.0731nE (1.73)

W, is the optimum moisture content, %

PI is the plasticity index, %

Yd(may 18 the maximum dry unit weight, kN/m?
E is the compaction energy, kN-m/m?

DiMatteo et al. (2009) analyzed the results of 71 fine-grained soils and pro-
vided the following correlations for optimum moisture content w,, and max-
imum dry unit weight y,,,,, for modified Proctor tests (E = 2700 kN-m/m?)

max

Wo( %) = -0.86(LL)+3.04E%:+2.2 (1.74)
AG:
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Gimax (KN /m?) = 40.316 (u/;gf% )(PI°'32) -24 (1.75)

where
LL is the liquid limit, %
PI is the plasticity index, %
G, is the specific gravity of soil solids

Example 1.4

For a sand with 4% finer than No. 200 sieve, estimate the maximum
relative density of compaction that may be obtained from a modified
Proctor test. Given Dg, = 1.4 mm.

Solution

For the modified Proctor test, E = 2696 kN-m/m?>.
From Equation 1.66

A =0.216InE -0.850 =(0.216)(In 2696)-0.850 =0.856
From Equation 1.67
B =-0.03InE +0.306 = -(0.03)(In 2696) +0.306 = 0.069

From Equation 1.65

D, = AD;E =(0.856)(1.4)%%° =0.836 =83.6%

Example 1.5

For a silty clay soil given LL = 43 and PL = 18. Estimate the maximum
dry unit weight of compaction that can be achieved by conducting
modified Proctor test. Use Equation 1.71.

Solution

For the modified Proctor test, E = 2696 kN-m/m?3.
From Equations 1.72 and 1.73

L =14.34+1.195InE =14.34 +1.195In(2696) = 23.78

M =-0.19+0.073InE = -0.19 +0.073In(2696) = 0.387
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From Equation 1.70

Wope (%) = (1.99 =0.165 In E)(P1)
=[1.99 -0.1651n(2696)](43 - 18)
=17.16%

From Equation 1.71

Giman) = L = Mgy, = 23.78 -(0.387)(17.16) = 17.14 kN/m®
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Chapter 2

Stresses and strains

Elastic equilibrium

2.1 INTRODUCTION

An important function in the study of soil mechanics is to predict the
stresses and strains imposed at a given point in a soil mass due to cer-
tain loading conditions. This is necessary to estimate settlement and to
conduct stability analysis of earth and earth-retaining structures, as well
as to determine stress conditions on underground and earth-retaining
structures.

An idealized stress—strain diagram for a material is shown in Figure 2.1.
At low stress levels, the strain increases linearly with stress (branch ab),
which is the elastic range of the material. Beyond a certain stress level, the
material reaches a plastic state, and the strain increases with no further
increase in stress (branch bc). The theories of stresses and strains presented
in this chapter are for the elastic range only. In determining stress and
strain in a soil medium, one generally resorts to the principles of the theory
of elasticity, although soil in nature is not fully homogeneous, elastic, or
isotropic. However, the results derived from the elastic theories can be judi-
ciously applied to the problem of soil mechanics.

2.2 BASIC DEFINITION AND SIGN
CONVENTIONS FOR STRESSES

An elemental soil mass with sides measuring dx, dy, and dz is shown in
Figure 2.2. Parameters 6,, 6,, and o, are the normal stresses acting on the
planes normal to the x, y, and z axes, respectively. The normal stresses are
considered positive when they are directed onto the surface. Parameters
Toys Tyws Tyo> Toys Tows and T, are shear stresses. The notations for the shear
stresses follow.
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Elastic Plastic

b c

Stress

v

Strain

Figure 2.1 |dealized stress—strain diagram.
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Figure 2.2 Notations for normal and shear stresses in a Cartesian coordinate system.
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If 7; is a shear stress, it means the stress is acting on a plane normal to
the 7 axis, and its direction is parallel to the j axis. A shear stress 7 is con-
sidered positive if it is directed in the negative j direction while acting on
a plane whose outward normal is the positive i direction. For example, all
shear stresses are positive in Figure 2.2. For equilibrium

ty =t (2.1)
txz =1—71 (22)
t,=t, (2.3)

Figure 2.3 shows the notations for the normal and shear stresses in
a polar coordinate system (two-dimensional case). For this case, o, and
oy are the normal stresses, and t,, and 714, are the shear stresses. For
equilibrium, 7,4 = 14, Similarly, the notations for stresses in a cylindri-
cal coordinate system are shown in Figure 2.4. Parameters o,, 6,4, and
o, are the normal stresses, and the shear stresses are 7,y = 6,,, 6y, = 6,0,

and 7,, = T,

v
®

Figure 2.3 Notations for normal and shear stresses in a polar coordinate system.
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Figure 2.4 Notations for normal and shear stresses in cylindrical coordinates.
2.3 EQUATIONS OF STATIC EQUILIBRIUM
Figure 2.5 shows the stresses acting on an elemental soil mass with sides

measuring dx, dy, and dz. Let y be the unit weight of the soil. For equilib-
rium, summing the forces in the x direction

AF. =

H}v]\ =34

~ o~ E ~ R
x _gsx +aidx - dydz+ itzx _%tzx +atzx dz ~'dxdy
E ox -e I E 9z -e

E B at,,
+ 1t —At.+—2-dy~"dxdz=0
Jijty %ty 9y -

or

&+6&+6&=0

(2.4)
9x 9y 9z

© 2010 Taylor & Francis Group, LLC



Stresses and strains 57

dx
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l Ty
I
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4 | T, 4 dz
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i ot
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| oT 2 ‘_’ Txy Txy + Y dx
1Ty + Y dy X
T, : oy v ;
Ty 9Ty oo, + RALIPN
0, —Pp) | Tyx + dy 3 o
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Figure 2.5 Derivation of equations of equilibrium.
Similarly, along the y direction, ¥F, = 0, or
98, Ot 9% _ (2.5)

dy Ox 9z

Along the z direction

AE = %Sz —%sz +aidz:~dxdy +%txz -}E\gz +9% dx:'dydz
I E 9z e T E ox -0
+3r, —pt. + 25 dy = dxdz+ ddxdydz) =0

I E gy -

The last term of the preceding equation is the self-weight of the soil mass.
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Thus

0s: 0t Ot (2.6)
9z Ox ay
Equations 2.4 through 2.6 are the static equilibrium equations in the
Cartesian coordinate system. These equations are written in terms of total
stresses.
They may, however, be written in terms of effective stresses as

s, =s¢+u=s¢+qg,h (2.7)

where
s¢ is the effective stress
u is the pore water pressure
Y., is the unit weight of water
b is the pressure head

Thus

ds, =as$+ ah

2.8
ox ox S ox (2.8)
Similarly
ds, @
osy _osf, o (2.9)
dy 9y ay
and
0s, _0s¢ 0k (2.10)

oz oz g’”&

Substitution of the proper terms in Equations 2.4 through 2.6 results in

Os¢ Ot Ot Oh_, (2.11)
9x 9y 9z ox
67554.%4.%4.%%:0 (212)
dy ox 9z oy
0s¢, Oty 0. b _ . (2.13)
oz ox dy oz

where v’ is the effective unit weight of soil. Note that the shear stresses will
not be affected by the pore water pressure.
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ow—g—P ot
ox

0
Gx%} Oyt aj:‘ dx

v
z

Figure 2.6 Derivation of static equilibrium equation for a two-dimensional problem in
Cartesian coordinates.

In soil mechanics, a number of problems can be solved by two-dimensional
stress analysis. Figure 2.6 shows the cross-section of an elemental soil prism
of unit length with the stresses acting on its faces. The static equilibrium equa-
tions for this condition can be obtained from Equations 2.4 through 2.6 by
substituting 7, = 7,, = 0, 7,, = 7,, = 0, and do,/dy = 0. Note that 7, =7_,. Thus

9s: 9t _ (2.14)
dx 0z
ds, Jdt,

< 4+ 9% _g-0 215
a9z ox J ( )

Figure 2.7 shows an elemental soil mass in polar coordinates. Parameters
o, and o, are the normal components of stress in the radial and tangential
directions, and t,, and 7,4 are the shear stresses. In order to obtain the static
equations of equilibrium, the forces in the radial and tangential directions
need to be considered. Thus
AF = Ef:s,rdq—%s, 498 dr~(r +dr)dq-

I E ar °

E . B S -
+ fsqdrsindq/2 +gsq + aidq:drsmdqlz;
I E aq

+Ef:tq,drcosdq/2—%‘tq, +aaidq:drcosdq/2'+qrdqdr)cosq=0
I B a - °
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v

Figure 2.7 Derivation of static equilibrium equation for a two-dimensional problem in
polar coordinates.

Taking sin d6/2 ~ d6/2 and cos d6/2 = 1, neglecting infinitesimally small
quantities of higher order, and noting that d(c,7)/dr = #(do,/dr) + o, and
To, = T,9, the previous equation yields

9s,  10tg s/ -5q -gcosg=0 (2.16)
ar r dq r
Similarly, the static equation of equilibrium obtained by adding the com-
ponents of forces in the tangential direction is

108q ,0%s |, 2 | (ing=0 (2.17)
r 09 ar v

The stresses in the cylindrical coordinate system on a soil element are
shown in Figure 2.8. Summing the forces in the radial, tangential, and
vertical directions, the following relations are obtained:

9s,  1otq 0t s, -sq _, (2.18)
or r dq 09z r
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J0,

o, + dz
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Figure 2.8 Equilibrium equations in cylindrical coordinates.
Otg 11984, 9% 265 (2.19)
or r dq 9z r
Oty 10ty 95 & (2.20)

ar r dq 9z r

2.4 CONCEPT OF STRAIN

Consider an elemental volume of soil as shown in Figure 2.9a. Owing to
the application of stresses, point A undergoes a displacement such that its
components in the x, y, and z directions are u, v, and w, respectively. The
adjacent point B undergoes displacements of u# + (du/dx)dx, v + (dv/dx)dx,
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4 o

(@) (b)

Figure 2.9 Concept of strain: (a) elemental volume of soil measuring dx dy dz; (b) rotation
of sides AB and AC of the elemental volume.

and w + (dw/dx)dx in the x, y, and z directions, respectively. So, the change
in the length AB in the x direction is # + (du/dx)dx — u = (Ju/dx)dx. Hence,
the strain in the x direction, &,, can be given as

E—d -=o" (2.21)

e, = (% (2.22)
= (2.23)
oz

where €, and €, are the strains in the y and z directions, respectively.

Owing to stress application, sides AB and AC of the element shown in
Figure 2.9a undergo a rotation as shown in Figure 2.9b (see A’B” and A’C").
The small change in angle for side AB is «,, the magnitude of which may
be given as [(dv/0x)dx](1/dx) = dv/dx, and the magnitude of the change in
angle a, for side AC is [(du/dy)dy|(1/dy) = du/dy. The shear strain v,, is
equal to the sum of the change in angles «;, and a,. Therefore

ou Jv
= — 4+ —

(2.24)
dy OJx

Gy
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Similarly, the shear strains y,, and y,, can be derived as

ou dw
=__ 4+

< 2.25
& 9z O9x ( )
and
v Jdw
=+
* T 52 ay (2.26)

Generally, in soil mechanics, the compressive normal strains are considered
positive. For shear strain, if there is an increase in the right angle BAC
(Figure 2.9b), it is considered positive. As shown in Figure 2.9b, the shear
strains are all negative.

2.5 HOOKE’S LAW

The axial strains for an ideal, elastic, isotropic material in terms of the
stress components are given by Hooke’s law as

ou 1

CEx=a—x =E[Sx -v(sy +s,)] (2.27)
my=% =%[sy s, +s.)] (2.28)
and
€= = Lis, Cus, +s,)] (2.29)
oz E
where

E is the Young’s modulus
v is the Poisson’s ratio

Form the relation given by Equations 2.27 through 2.29, the stress com-
ponents can be expressed as

vE E
e (@, +E, +E) G, 2.30
S = a2y & TE I (2.30)
vE
= (@ +E, +E)+ € 2.31
S = roioay) & O TGS (230)
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vE E
s;=—— (€, +E@, +E)+ —G,
(1+v)(1-2v) 1+v

The shear strains in terms of the stress components are

t.
Gy = Ey
_te
iz G
and
-5
gyz G

where shear modulus

2.6 PLANE STRAIN PROBLEMS

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

A state of stress generally encountered in many problems in soil mechanics
is the plane strain condition. Long retaining walls and strip foundations
are examples where plane strain conditions are encountered. Referring to
Figure 2.10, for the strip foundation, the strain in the y direction is zero
(i.e., €, = 0). The stresses at all sections in the xz plane are the same, and the
shear stresses on these sections are zero (i.e., 7,, =7,, = 0 and 1, = 7, = 0).

s Yyx

Thus, from Equation 2.28

Sy, =vU(s, +ts,)

Substituting Equation 2.37 into Equations 2.27 and 2.29

© 2010 Taylor & Francis Group, LLC

(2.37)

(2.38)



Stresses and strains 65

k N Strip foundation

Figure 2.10 Strip foundation: plane strain problem.

and

E v
€= b= Vs, 2.39
E FPrq-, % (2.39)

Since 7,, =0 and 7, = 0

Gy =0 g.=0 (2.40)
and
t
= =z 2.41
G = (2.41)

2.6.1 Compatibility equation

The three strain components given by Equations 2.38, 2.39, and 2.41 are
functions of the displacements # and w and are not independent of each
other. Hence, a relation should exist such that the strain components give
single-valued continuous solutions. It can be obtained as follows. From
Equation 2.21, €, = du/dx. Differentiating twice with respect to z

€, _ du

- 2.42
87>  9x 9z ( )
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From Equation 2.23, €, = dw/dz. Differentiating twice with respect to x

ow, _ dw
ax* 9z ox’

(2.43)

Similarly, differentiating vy, (Equation 2.25) with respect to x and z

2 3 3
O%: _ Ou , Ow (2.44)
Ox9dz 0Oxdz"° Ox" 9z

Combining Equations 2.42 through 2.44, we obtain

3 @, +62 € _ g
9z ax?  9xdz

(2.45)

Equation 2.45 is the compatibility equation in terms of strain compo-
nents. Compatibility equations in terms of the stress components can also
be derived. Let E’ = E/(1 - v?) and v’ = v/(1 - v). So, from Equation 2.38,
€, = 1/E'(o, - v'o,). Hence

3*€, 1Ed’s, %s,”
2 T AL TV 5T
oz E¢g 9z 9z" -

(2.46)

Similarly, from Equation 2.39, €, = (1/E’)(s, - v's,). Thus

o€, 1Ed&’s, 9’s,”
ax* =E%ax2 - ax* - (2:47)

Again, from Equation 2.41

b _2040), _ 201408
e E =7 E¢

te (2.48)

3’g. _ 2(1+v9 ¢,

dx 9z E¢ 06x09z

Substitution of Equations 2.46 through 2.48 into Equation 2.45 yields

2 2 52 25" 2
3 szx +6 szz —U¢Aa Szz +6 Szx ~=2(1+v<}& (2.49)
a2z 9x 3oz x> - dx 9z
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From Equations 2.14 and 2.15

igasx L9t ~+ggasz +9% 420
OxEdx 9z - 9zEdz Ix -

or

2 E 2 2 ~
Ot _ _Eo S 49 S -+ 99 (2.50)
9x 9z EOx 0z" - 09z

Combining Equations 2.49 and 2.50

Eg* 8% " )
A +—5 (s, *+s,)=(1+v§—
Bt ! 2= <76z(c_a)

For weightless materials, or for a constant unit weight vy, the previous
equation becomes

E 2 2 ~
il +a‘92 (s, +5.)=0 (2.51)
E@" X -

Equation 2.51 is the compatibility equation in terms of stress.

2.6.2 Stress function

For the plane strain condition, in order to determine the stress at a given
point due to a given load, the problem reduces to solving the equations of
equilibrium together with the compatibility equation (Equation 2.51) and
the boundary conditions. For a weight-less medium (i.e., y = 0), the equa-
tions of equilibrium are

9s: 9% _ (2.14)
ox 0z
9s: 4 9% _ (2.15)
oz ox

The usual method of solving these problems is to introduce a stress func-
tion referred to as Airy’s stress function. The stress function ¢ in terms of
x and z should be such that

(2.52)
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2
s, =§ (2.53)
2

The aforementioned equations will satisfy the equilibrium equations. When
Equations 2.52 through 2.54 are substituted into Equation 2.51, we get

4 4 4
S S w5 =0 (2.55)
X X < z

So, the problem reduces to finding a function ¢ in terms of x and z such that
it will satisfy Equation 2.55 and the boundary conditions.

2.6.3 Compatibility equation in polar coordinates

For solving plane strain problems in polar coordinates, assuming the
soil to be weightless (i.e., y = 0), the equations of equilibrium are (from
Equations 2.16 and 2.17)

ds, +16t,q+s,—sq -0
or r 9qg r

laiq.%.pzit’q =0
r 99 ar 7

The compatibility equation in terms of stresses can be given by

Es* 18 1 8*°
= + = + ~(s, + =0 2.56
Aﬁ@ﬁ ror r* aq2 _(s sq) ( )

The Airy stress function ¢ should be such that

19f 1 8°f

S, =t (2.57)
ror r aq2
9*f

Sq =W (258)
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) SO,
_lof 10 _ oElof” (2.59)

b ?gq_;araq__ar%raq‘

The previous equations satisfy the equilibrium equations. The compat-
ibility equation in terms of stress function is

Eo> 10 1 o8> 'Ed’f 19f 19"
Agt-—tm A+t ~=0 (2.60)
gor: ror r oq -g0r° ror r aq -

Similar to Equation 2.37, for the plane strain condition

G, = V(0, + Gp)

Example 2.1

The stress at any point inside a semi-infinite medium due to a line load
of intensity g per unit length (Figure 2.11) can be given by a stress
function

f=Axtan 7~ -
.-

[makdlea

where A is a constant. This equation satisfies the compatibility equa-
tion (Equation 2.55). (a) Find o,, o,, 6,, and 7,,. (b) Applying proper
boundary conditions, find A.

Line load,
q/unit length
v >

v
z

Figure 2.11 Stress at a point due to a line load.
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Solution
Part a:
_ 1Bz
f=Axtan™ 3 -
Ex

The relations for o,, o, o, and 7, are given in Equations 2.52
through 2.54.

T
of _ 1 1 A
o, - ax 2. 2
9z 1+(z/x)” x  1+(z/x)
. T 2w

Ay (x2 +z2)2

T ox?
ot _ Atan' 2 - Az 3 =Atan'1£— ?xzz
dx x [T+ (z/x)"]x x  (x"+27)
s LOE_ A 2 A 2Ax%z

° ax? 1+(z/x) x* x> +2> (x> +2*)

_ Az Az | 2Ax%z 242
X +d xP 4+ (P + ) (x* +2%)?

. 8t

" 9x 9z
% _ Atan 2 - ?xzz

x x  (x"+27)

’f _ A 1 Ax 2AxZ?

x93z 1+(z/x? x x*+22 (x> +2°)
or

*f _ 2AxZ’
dxdz (x*+2%)
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. Ff _ 2Ax7’
0 axar (kP +)
s, =U(s +s)=vi’: 24z 242> °
y x z %'(xz +z2)2 (xz +z2)2 N
2Azv S o 2Azv
- + =_
(2 +2°) (" +27%) (2 +2)

Part b: Consider a unit length along the y direction. We can write

B - 2AZ
q= USZ)(l)(dx) - U (xz +Z2)2 dx
202 8 «x - dx
= - r3 +TT -
222 %xz g [&2+z2 -
= AE Y+ tan” E- = _A(p/2+p/2) = -Ap
Ex™ +2 4 2
A=-1
P
So
_ 2gxz < - 2g%° e = 2gxz?
x p(xZ +z2)2 2 p(xl +ZZ)2 z

p(xl +z2)2

We can see that at z = 0 (i.e., at the surface) and for any value of x # 0,
c,, 6,, and 1., are equal to zero.

2.7 EQUATIONS OF COMPATIBILITY
FOR THREE-DIMENSIONAL PROBLEMS

For three-dimensional problems in the Cartesian coordinate system as

shown in Figure 2.2, the compatibility equations in terms of stresses are
(assuming the body force to be zero or constant)

2
—zsx+ 1 78Q2 =O
1+v ox

(2.61)
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2
2, 1 2 _ (2.62)
1+vay
2 1 8%
—"s, + =0 (2.63)
1+v az
1 8%
—’t,, ; (2.64)
+v 9xdy
2
4 90 (2.65)
1+vaydz
2 1 8%
2t = 2.66
& 1+vdxdz ( )
where

and

®=0,+0,+0,

The compatibility equations in terms of stresses for the cylindrical coor-
dinate system (Figure 2.4) are as follows (for constant or zero body force):

g+ 1 99 g (2.67)

) +16Q 4 at,,

s, 7_77+— + 0 2.68
S 1+v ar? aq rz(s 8) = ( )
E
_zsq+LAlaQ LI L 2P O (2.69)
l+vgror r*oqd - r* dq r
2
_2p 4 1 90 _%_%%:0 (2.70)
1+vordz r~ r° dq
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1 &8 Eleo -~ 4 2 9
YoY% T —(sq-5,)=0 2.71
1+vor %raq - G (8q ) ( )

_rTGq

2
2 4 1 1970 +%6trz_%q=0 (2.72)
1+vrdqdz r dq r

2.8 STRESSES ON AN INCLINED PLANE
AND PRINCIPAL STRESSES FOR
PLANE STRAIN PROBLEMS

The fundamentals of plane strain problems are explained in Section 2.5.
For these problems, the strain in the y direction is zero (i.e., T,, = 7,, = 0;
T,, =T, = 0) and 6, is constant for all sections in the plane.

If the stresses at a point in a soil mass (i.e., 6, 6,, 6,, T,..(= T,,)) are known
(as shown in Figure 2.12a), the normal stress ¢ and the shear stress T on
an inclined plane BC can be determined by considering a soil prism of unit
length in the direction of the y axis. Summing the components of all forces
in the 7 direction (Figure 2.12b) gives

XF,=0
6 dA = (o, cos 0)(dA cos 0) + (o, sin 0)(dA sin 6)
+ (T, sin 0)(dA cos 0) + (1., cos 0)(dA sin 0)

where dA is the area of the inclined face of the prism. Thus

s =s,cos’q+s,sin’ g+2t, singcosq

~

~+

X

Sx;'sz =55 _c0s2q+t, sin2q (2.73)

[eak=Nes )Y
[eaboNea
0n

Similarly, summing the forces in the s direction gives
AE =0
tdA = —(s,sing)(dAcosq) + (s, cosq)(dAsing)
+(t,, cosq)(dAcosqg) - (t., sing)(dAsinq)
t=-s,singcosg+s,singcosq+ t,,(cos’ q-sin’ q)

Sy -5, "

=t,, cos2g- 5 -sin2q (2.74)

sk ea

Note that 6, has no contribution to ¢ or 7.
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z Principal plane

I
I
/ :
I
Unit o, :
length !
= |

A C !

<
<
-
Q

4 ‘\6< AB=BCcos 6
AC=BCsin

B
(b)

Figure 2.12 (a) Stresses on an inclined plane for the plane strain case; (b) soil prism of
unit length in the direction of y-axis.

2.8.1 Transformation of stress components from
polar to Cartesian coordinate system

In some instances, it is helpful to know the relations for transformation of
stress components in a polar coordinate system to a Cartesian coordinate sys-
tem. This can be done by a principle similar to that demonstrated earlier for
finding the stresses on an inclined plane. Comparing Figures 2.12 and 2.13,
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v
z

Figure 2.13 Transformation of stress components from polar to Cartesian coordinate
system.

it is obvious that we can substitute o, for o,, o, for o,, and t,, for 1, in
Equations 2.73 and 2.74 to obtain o, and ., as shown in Figure 2.13. So

s, =s,sin’ g+ sqcoszq+2t,qsinqcosq (2.75)

t,, = -s4singcosqg+ s, singcosg+ t,q(cos2 g-sin®q) (2.76)
Similarly, it can be shown that

s, =s,cos’q+ sqsinzq—Zt,qsinqcosq (2.77)

2.8.2 Principal stress

A plane is defined as a principal plane if the shear stress acting on it is zero.
This means that the only stress acting on it is a normal stress. The normal
stress on a principal plane is referred to as the principal stress. In a plane
strain case, 6, is a principal stress, and the xz plane is a principal plane.
The orientation of the other two principal planes can be determined by
considering Equation 2.74. On an inclined plane, if the shear stress is zero,
it follows that

Sy —S;

t.,cos2q= 2

~sin2g

ek =Nes ¥
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tan2q= 2t (2.78)
sx - Sz

From Equation 2.78, it can be seen that there are two values of 6 at right
angles to each other that will satisfy the relation. These are the directions
of the two principal planes BC' and BC” as shown in Figure 2.12. Note
that there are now three principal planes that are at right angles to each
other. Besides c,, the expressions for the two other principal stresses can
be obtained by substituting Equation 2.78 into Equation 2.73, which gives

sy = 205+ gs"; Tt 2.79)
< _S:+s, Es, -s, :2+ ) (2.80)
pB3) > A5 o e
where 6,;, and o5, are the principal stresses. Also
Sp)*tSp3) =Sx +S; (2.81)

Comparing the magnitude of the principal stresses, Gp(1) > Oy = G0 > Opp3)e
Thus 6,), 6, and o, are referred to as the major, intermediate, and
minor principal stresses. From Equations 2.37 and 2.81, it follows that

Sy =v[spn) +Sy3)] (2.82)

2.8.3 Mohr’s circle for stresses

The shear and normal stresses on an inclined plane (Figure 2.12) can also
be determined graphically by using Mohr’s circle. The procedure to con-
struct Mohr’s circle is explained later.

The sign convention for normal stress is positive for compression and
negative for tension. The shear stress on a given plane is positive if it tends
to produce a clockwise rotation about a point outside the soil element, and
it is negative if it tends to produce a counterclockwise rotation about a point
outside the element (Figure 2.14). Referring to plane AB in Figure 2.12a,
the normal stress is +o, and the shear stress is +t,,. Similarly, on plane
AC, the stresses are +6, and -t,,. The stresses on planes AB and AC can
be plotted on a graph with normal stresses along the abscissa and shear
stresses along the ordinate. Points B and C in Figure 2.15 refer to the stress
conditions on planes AB and AC, respectively. Now, if points B and C are
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Figure 2.14

Shear stress
(+ve)

(-ve)

Figure 2.15

Negative
shear stress

Positive }
shear stress @

Sign convention for shear stress used for the construction of Mohr’s circle.

Positive
shear stress

A

|
Op(1) g
5
>
P; Normal stress
e (+ve)
< o g
< o, »
< o, >
Mohr’s circle.

joined by a straight line, it will intersect the normal stress axis at O’. With
O’ as the center and O'B as the radius, if a circle BP; CP; is drawn, it will
be Mohr’s circle. The radius of Mohr’s circle is

O®B =+OD* + BD* =

(2.83)
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Any radial line in Mohr’s circle represents a given plane, and the
coordinates of the points of intersection of the radial line and the circumfer-
ence of Mohr’s circle give the stress condition on that plane. For example,
let us find the stresses on plane BC. If we start from plane AB and move
an angle 0 in the clockwise direction in Figure 2.12, we reach plane BC. In
Mohr’s circle in Figure 2.15, the radial line O’B represents the plane AB.
We move an angle 26 in the clockwise direction to reach point F. Now the
radial line O’F in Figure 2.15 represents plane BC in Figure 2.12. The coor-
dinates of point F will give us the stresses on the plane BC.

Note that the ordinates of points P, and P; are zero, which means
that O'P, and O'P, represent the major and minor principal planes, and
OP, = o, and OP; = 5,3

S<1)=OP1=OO¢+oq)1=Sx+Sz+ gs -5, ° +1§
2 E 2

Sy =OP, =00¢-O@, = 5x *8: _ |BSx=8: +1i
2 i 2

The previous two relations are the same as Equations 2.79 and 2.80. Also
note that the principal plane O’P, in Mohr’s circle can be reached by moving
clockwise from O’B through angle BO'P, = tan™! 21, /(c, - 6,)]. The other
principal plane O’P; can be reached by moving through angle 180° + tan-!
[27,./(6, - ©,)] in the clockwise direction from O’B. So, in Figure 2.12, if
we move from plane AB through angle (1/2) tan™! |27 /(c, - ©,)], we will
reach plane BC’, on which the principal stress 6, acts. Similarly, moving
clockwise from plane AB through angle 1/2{180° + tan™! [21_/(c, - 6,)]} =
90° + (1/2) tan™' 27, /(c, - ©,)] in Figure 2.12, we reach plane BC”, on
which the principal stress o, acts. These are the same conclusions as
derived from Equation 2.78.

2.8.4 Pole method for finding stresses
on an inclined plane

A pole is a unique point located on the circumference of Mohr’s circle. If a
line is drawn through the pole parallel to a given plane, the point of inter-
section of this line and Mohr’s circle will give the stresses on the plane. The
procedure for finding the pole is shown in Figure 2.16.

Figure 2.16a shows the same stress element as Figure 2.12. The corre-
sponding Mohr’s circle is given in Figure 2.16b. Point B on Mohr’s circle
represents the stress conditions on plane AB (Figure 2.16a). If a line is drawn
through B parallel to AB, it will intersect Mohr’s circle at P. Point P is the
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A
> x g
o, k=
—
A £z
C w
sz
oxib
o
0/ stress
B
v

(@) (b)

Figure 2.16 Pole method of finding stresses on an inclined plane: (a) stress element;
(b) corresponding Mohr’s circle.

pole for Mohr’s circle. We could also have found pole P by drawing a line
through C parallel to plane AC. To find the stresses on plane BC, we draw
a line through P parallel to BC. It will intersect Mohr’s circle at F, and the
coordinates of point F will give the normal and shear stresses on plane AB.

Example 2.2

The stresses at a point in a soil mass are shown in Figure 2.17 (plane
strain case). Determine the principal stresses and show their direc-
tions. Use v = 0.35.

Solution

Based on the sign conventions explained in Section 2.2,

s, =+100 kN/m?, s, =+50kN/m?, and t, =-25kN/m’

=Sx+sz+ Esx sz:+1;2€
z

S +
14 2 % 2 -

+(=25)? =(75 % 35.36) kN/m?

_50+100 , Jgso-1oo °

2 \RA 2 -

E

o, = 110.36 kN/m? 6,3 = 39.64 kN/m?

Sy = V10,0 + O] = (0.35)(110.36 + 39.34) = 52.5 kN/m?

© 2010 Taylor & Francis Group, LLC



80 Advanced Soil Mechanics

> x 6,=100 kN/m?
B K 2 C
/
/
/
/
//
k{zs; K T, =25 kN/m?
/
Y 2250 %/ 5. = 50 kN/m2
v 4 *
oy
z !y

Vs

/17

5/
A
/ 2 »
/
/
/

/ 110.36 kN/m?

39.64 kN/m?

7

Figure 2.17 Determination of principal stresses at a point.

From Equation 2.78

anaqe 2t _ 229
s.-s. (50-100)

2q=tan"'(1) = 45cand 2250s0 q=22.5wand 112.50

Parameter Spi) 'is acting on the xz plane. The directions of 6,;, and 6,
are shown in Figure 2.17.

Example 2.3
Refer to Example 2.2.

a. Determine the magnitudes of 6,;) and ;) by using Mohr’s circle.
b. Determine the magnitudes of the normal and shear stresses on
plane AC shown in Figure 2.17.

Solution

Parta: For Mohr’scircle, on plane AB,6,=50kN/m?andt,,=-25 kN/m?.
On plane BC, o, = +100 and 7, +25 kN/m?. For the stresses, Mohr’s
circle is plotted in Figure 2.18. The radius of the circle is

OH = JO9) +(HIP =257 +25* =35.36 kN/m?
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H (100, 25)

P,
>
>

Normal stress

Shear stress
e}

All units are in kN/m?

Figure 2.18 Mohr’s circle for stress determination.

G, = 00"+ O'P =75 +35.36 =110.36 kN/m?
6,5 = 00"+ O'P; =75 - 35.36 = 39.64 kN/m?

The angle GO'Py = 20 = tan™'(JG/O’]) = tan"'(25/25) = 45°. So, we
move an angle 6 = 22.5° clockwise from plane AB to reach the minor
principal plane, and an angle 6 = 22.5 + 90 = 112.5° clockwise from
plane AB to reach the major principal plane. The orientation of the
major and minor principal stresses is shown in Figure 2.17.

Part b: Plane AC makes an angle 35°, measured clockwise, with plane
AB. If we move through an angle of (2)(35°) = 70° from the radial line
O’'G (Figure 2.18), we reach the radial line O’K. The coordinates of K
will give the normal and shear stresses on plane AC. So

7=0'Ksin25° = 35.36 sin25° = 14.94 kN/m?

6=00"-0Kcos25°=75-35.36 cos25° = 42.95 kN/m?
Note: This could also be solved using Equations 2.73 and 2.74:

t=t, coqu—gs’“ 5z ~sin2q
E 2 -
where
T, = =25 kN/m?
0 =35°

o, = +50 kN/m?
6, = +100 kN/m? (watch the sign conventions)
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So

t=-25c0s70 -}2\50 100 %6170 = -8.55 - (23.49)
=14.94 kKN/m?

s =gs" ;— Sz ;+gs" ; Sz ;c052q+ t,, sin2g
=§50 +100 :+E350 -100 Ecos70 +(-25)sin70

2 - B

E
75-8.55-23.49 =42.96 kN/m?

2.9 STRAINS ON AN INCLINED PLANE
AND PRINCIPAL STRAIN FOR
PLANE STRAIN PROBLEMS

Consider an elemental soil prism ABDC of unit length along the y direction
(Figure 2.19). The lengths of the prism along the x and z directions are AB =
dx and AC = dz, respectively. When subjected to stresses, the soil prism is
deformed and displaced. The length in the y direction still remains unity.
A'B"D"C" is the deformed shape of the prism in the displaced position.

)

dz dl

!

z

Figure 2.19 Normal and shear strains on an inclined plane (plane strain case).
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If the normal strain on an inclined plane AD making an angle 6 with the
x axis is equal to €,

ADeE= AD(1+E) = dI(1 +@) (2.84)
where AD = dI.

Note that the angle B"A’C” is equal to (/2 - y,,). So the angle A’'C"D" is
equal to +(n/2 +v,,). Now

(ADY = (ACH +(COH - 2(ALCHCOGCcos(p/2 + g.,) (2.85)
ALE= AC(l+@,) =dz(1+ €,) = dl(sinq)(1 + &,) (2.86)
CeD¢= AB¢=dx(1 +&,) = dl(cosq)(1+E,) (2.87)

Substitution of Equations 2.84, 2.86, and 2.87 into Equation 2.85 gives

1+@)>*dl)? =[dl(sing)(1+&,)] +[dl(cosq(1+E,)]*
+2(dl)*(sing)(cos @)(1+ &, )(I+ &,) sin g, (2.88)

Taking sin v,, = y,, and neglecting the higher order terms of strain such as
€, E2,E2,E, gy, €, G, - E, gy, Equation 2.88 can be simplified to

1+2€ = (1+2@,)sin’ g+ (1 +2E,) cos” g+ 24, singcosq

E =@, cos’q+C, sin2q+%sin2q (2.89)
or
E, +E, G, -G Ger .
E=—"= Ly X 2 cos2g+ =2sin2 2.90
> > a+ a ( )

Similarly, the shear strain on plane AD can be derived as
g=g,cos2g-(E, -E,) sin2q (2.91)
Comparing Equations 2.90 and 2.91 with Equations 2.73 and 2.74, it

appears that they are similar except for a factor of 1/2 in the last terms of
the equations.
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The principal strains can be derived by substituting zero for shear strain
in Equation 2.91. Thus

ranzq=ﬁ (2.92)
x T My

There are two values of 0 that will satisfy the aforementioned relation.
Thus, from Equations 2.90 and 2.92, we obtain

o

~ 2 ~

E, +E EE, -G, =  Eq,

E == 4 [0 S 2.93
b 5 \/% 2 - 'h) (2.93)

where €, = principal strain. Also note that Equation 2.93 is similar to
Equations 2.79 and 2.80.

2.10 STRESS COMPONENTS ON AN INCLINED
PLANE, PRINCIPAL STRESS, AND OCTAHEDRAL
STRESSES: THREE-DIMENSIONAL CASE

2.10.1 Stress on an inclined plane

Figure 2.20 shows a tetrahedron AOBC. The face AOB is on the xy plane
with stresses 6, T,,, and 7, acting on it. The face AOC is on the yz plane
subjected to stresses 6,, T,,, and t,,. Similarly, the face BOC is on the xz

i > x

Normal to plane ABC;
unit vector =§

Figure 2.20 Stresses on an inclined plane—three-dimensional case.
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plane with stresses o, T,,, and 7,,. Let it be required to find the x, y, and z

components of the stresses acting on the inclined plane ABC.
Let i, j, and k be the unit vectors in the x, y, and z directions, and let s
be the unit vector in the direction perpendicular to the inclined plane

ABC:
s = cos(s, x)i+ cos(s,y)J+ cos(s, 2)k (2.94)

If the area of ABC is dA, then the area of AOC can be given as dA(s-i) =
dA cos(s, x). Similarly, the area of BOC = dA(s+j) = dA cos(s, y), and the
area of AOB = dA(s-k) = dA cos(s, z).
For equilibrium, summing the forces in the x direction, YF, = 0:
Do dA = [0, cos(s, X) + T, cos(s, y) + T,, cos(s, 2)|dA
or

Psx = S5 €O8(s, x) + t,, COS(s, y) + L, cOS(S, Z) (2.95)

where p,, is the stress component on plane ABC in the x direction.
Similarly, summing the forces in the y and z directions

Psy = tyy cos(s, x) + s, cos(s,y) + t,, cos(s, z) (2.96)

Ds: =ty COS(s,X) + t,, cos(s,y) + s, cos(s,z) (2.97)
where p,, and p,, are the stress components on plane ABC in the y and z

directions, respectively. Equations 2.95 through 2.97 can be expressed in
matrix form as

psx sx tyx ‘l-vcz COS(S,X)
Py|=1ty Sy ty|jcos(s,y) (2.98)
bs:| |te te  S.|c0s(s,2)

The normal stress on plane ABC can now be determined as

S = Pe COS(S, X) + Psy COS(S,Y) + D, COS(S,2)
=s,cos(s,x) + S, cos*(s,y) + s, cos’(s,z) + 2t,, cos(s, x) cos(s,y)

+2t,, cos(s, y)cos(s, z) + 2t,, cos(s, x) cos(s, ) (2.99)
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The shear stress t on the plane can be given as

t= (P2 +p3 + 2 )5

(2.100)
2.10.2 Transformation of axes

Let the stresses in a soil mass in the Cartesian coordinate system be given
If the stress components in a new set of orthogonal axes (x;, y,, z;) as

shown in Figure 2.21 are required, they can be determined in the following
manner. The direction cosines of the x,, y,, and z, axes with respect to the
x, v, and z axes are shown:

Following the procedure adopted to obtain Equation 2.98, we can write

lex Sy tyx tzx ll
Pay| =ty 8y &y
px1z txz tyz sz ny

(2.101)

where p.,.,Pxy» and py,, are stresses parallel to the x, y, and z axes and are
acting on the plane perpendicular to the x, axis (i.e., y,z, plane).

¥ %

v
z

Figure 2.21 Transformation of stresses to a new set of orthogonal axes.
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We can now take the components of p,,.,p.,, and p,,, to determine the
normal and shear stresses on the y,z, plane, or

Sx; = llpxlx +m1px1y +n1px1z
Lo = lprwc +mypyyy t1Ds .

txlzl = lprlx + m3px1y + n3px1z
In a matrix form, the previous three equations may be expressed as

le ll nmy n lex
tay| =h My m|pay, (2.102)

txlzl 13 ms n3 lez

In a similar manner, the normal and shear stresses on the x,z; plane
(i.e., Sy5tyx > and t,;,) and on the x,y, plane (i.e., s;,,t,, and ty,y,) can
be determined. Combining these terms, we can express the stresses in the
new set of orthogonal axes in a matrix form. Thus

S tylxl tz1x1 ll my nq|| Sy tyx tzx l1 lz 13

oy Sy, Ty | = L m m ty Sy ty|m my  mg
tua Yia Su l3 my M|ty t. S:||m ny n3
(2.103)

Note: 1., =7,,T,=T,,and 1, =1

xz°

Solution of Equation 2.103 gives the following relations:

s, =lis, +mlzsy +nis, +2mmt,, + 2t + 2lmit,, (2.104)
Sy, = s, +m§sy +m3s, +2mymt,, +2mbht, +2Lmst,, (2.105)
s, =l3s, +m§sy +nis, +2mynst,, + 2nslst,, + 2lmst,, (2.106)

tuy =t = hhs, tmmys, +mmys, +(mn, +myng)t,

+ (71112 + nzl1)tzx + (11m2 + lzm1)tcy (2.107)
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g]z] = tmx] = l1l3Sx + mmss, +mnzs, + (m1n3 + msmy )tyz

+(mls + n3h )ty + (Lims + lymy )t (2.108)

ty1zl = tll)’l = lzl3Sx +m2m35y +nyn3s, +(m2n3 +m3n2)tyz

+(mals + m3hy )t + (L + lsmy )t (2.109)

2.10.3 Principal stresses

The preceding procedure allows the determination of the stresses on any
plane from the known stresses based on a set of orthogonal axes. As dis-
cussed earlier, a plane is defined as a principal plane if the shear stresses act-
ing on it are zero, which means that the only stress acting on it is a normal
stress. This normal stress on a principal plane is referred to as a principal
stress. In order to determine the principal stresses, refer to Figure 2.20, in
which x, y, and z are a set of orthogonal axes. Let the stresses on planes
OAC, BOC, and AOB be known, and let ABC be a principal plane. The
direction cosines of the normal drawn to this plane are [, 7, and n with
respect to the x, y, and z axes, respectively. Note that

Pam*+n* =1 (2.110)

If ABC is a principal plane, then the only stress acting on it will be a
normal stress c,. The x, y, and z components of o, are ¢,/, 6,m, and o,n.
Referring to Equations 2.95 through 2.97, we can write

ol=cl+t,m+1,n

or
(sx=s,)l+tm+t,mn=0 (2.111)
Similarly
tyl+(s, -s,)m+t,m=0 (2.112)
tol +tm+(s, -s,)n =0 (2.113)
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From Equations 2.110 through 2.113, we note that /, 7, and 7 cannot all be
equal to zero at the same time. So

(sx-s,) B ==
tyy (sy -s,) t, |=0 (2.114)
t t,  (s.-8s,)
or
s, -Iisy+Is,-1;=0 (2.115)
where
Iy =s,+s,+s, (2.116)
I, =s,s, +s,s, +s,s, - ﬁy - tﬁz -t (2.117)
I; =s,s,8, +2t,t t. -s,t, -s,t, -s.t, (2.118)

I,, I,, and I; defined in Equations 2.116 through 2.118 are independent of
direction cosines and hence independent of the choice of axes. So, they are
referred to as stress invariants.

Solution of Equation 2.115 gives three real values of o,. So there are
three principal planes and they are mutually perpendicular to each other.
The directions of these planes can be determined by substituting each ¢, in
Equations 2.111 through 2.113 and solving for [, 72, and 7, and observing
the direction cosine condition for I? + m? + n? = 1. Note that these values
for [, m, and # are the direction cosines for the normal drawn to the plane
on which o, is acting. The maximum, intermediate, and minimum values
of o, are referred to as the major principal stress, intermediate principal
stress, and minor principal stress, respectively.

2.10.4 Octahedral stresses

The octahedral stresses at a point are the normal and shear stresses acting
on the planes of an imaginary octahedron surrounding that point. The
normals to these planes have direction cosines of +1y/3 with respect to
the direction of the principal stresses (Figure 2.22). The axes marked 1, 2,
and 3 are the directions of the principal stresses 6, ), 6, and o,;. The
expressions for the octahedral normal stress o, can be obtained using

oct
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Toct

Normal to octahedral plane,

C
V() + (Po)* + () direction cosine 1/v/3, 1/~/3, 1/+/3

v
3

Figure 2.22 Octahedral stress.

Equations 2.95 through 2.97 and 2.99. Now, compare planes ABC in
Figures 2.20 and 2.22. For the octahedral plane ABC in Figure 2.22

Ps1 = sy (2.119)
psl = sp(Z)m (2.120)
Ps3 = span (2.121)

where pg, p.,, and p.; are stresses acting on plane ABC parallel to the
principal stress axes 1, 2, and 3, respectively. Parameters [, 72, and # are the
direction cosines of the normal drawn to the octahedral plane and are all
equal to 1/4/3. Thus, from Equation 2.99

_n2 2 2
Socr = li8y0) + M8y + 11803

1
= g[spm +5,0) +5,0)] (2.122)
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The shear stress on the octahedral plane is
(2.123)

o = \/[(psl )2 + (psl)z + (ps3)2] - séct

where 1, is the octahedral shear stress, or

- (2.124)

1 2 2
toer = gx/[spm =50l *sp) = spa)]” +Isps - spwl

The octahedral normal and shear stress expressions can also be derived
as a function of the stress components for any set of orthogonal axes x, y, z.

From Equation 2.116

11 =const =s, + S, + S; =Sy + Sy2) + Sy3) <2.125)
So
1 1
Soct = g[spu) +s,0) tsp3)] = E(Sx +s,+s;) (2.126)
Similarly, from Equation 2.117
I, =const =(s,s, +s,5, +5,5,) - ﬁy - tﬁz -t
(2.127)

= 8p1Sp2) ¥ 8p2)8pi3) T 8p3)Sp(1)

Combining Equations 2.124, 2.125, and 2.127 gives

oot =% (sx - sy)z +(sy - sz)z +(sz - sx)z +6tf2\'y +66Z +6t’2‘1 (2'128)
Example 2.4

The stresses at a point in a soil mass are as follows:

o, = 50 kN/m? 7., = 30 kN/m?
6, = 40 kN/m? T,. = 25 kN/m?
o, = 80 kN/m? T, = 25 kN/m?

Determine the normal and shear stresses on a plane with direction

cosines [ =2/3,m =2/3,and n = 1/3.
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Solution

From Equation 2.98

Do |52  ty |l
boy| =ty 8y  t|m
Ds: t.; t-wz S;||n

The normal stress on the inclined plane (Equation 2.99) is

G =pul+p,m+pen
= > + o,m* + o n? + 2t Im + 2t mn + 21 In
= 50(2/3)% + 40(2/3)> + 80(1/3)> + 2(30)(2/3)(2/3)
+2(25)(2/3)(1/3) + 2(25)(2/3)(1/3) = 97.78 kN/m?

Doe = 0,0 + Tom + Tm = 50(2/3) + 30(2/3) + 25(1/3)
=33.33+20 + 8.33 = 61.66 kN/m>

Doy = Tl + 0m + 1, = 30(2/3) + 40(2/3) + 25(1/3)
=20 +26.67 + 8.33 = 55 kN/m?

Do =Tl + T, m + o, = 25(2/3) + 25(2/3) + 80(1/3)
=16.67 + 16.67 + 26.67 = 60.01 kIN/m?

The resultant stress is

p=p2 +p] +p% =V61.66" +55° +60.01° =102.2 kN/m’

The shear stress on the plane is

t=p> -s? =/102.2> =97.78? =29.73 kN/m®

Example 2.5

At a point in a soil mass, the stresses are as follows:
6,=25kN/m? 1, =30kN/m?
6,=40kN/m> 1, =-6 kN/m?
6, =17 kN/m? T, = =10 kN/m?

Determine the principal stresses and also the octahedral normal and
shear stresses.
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Solution
From Equation 2.114

(sx=sy) Y ta
ty (sy=s) ty |=0
t.. t,. (s. _Sp)
(25-s,) 30 -10
30 (40-s,) -6 |= s; —825127 +1069s, -800 =0
-10 -6 (17 -s,)

The three roots of the equation are
G, = 65.9 kN/m?
Gy = 15.7 kN/m?

Gy = 0.4 kN/m?

0]
&
I

[spm) +5p2) +Sp3]

W= W

(65.9+15.7 +0.4) = 27.33 kN/m?

1 2 2 2
Toer =§\/[Sp(1> =sp)l” +Ispe) = Spe)]” +spe) = Sp0)]

=% (65.9-15.7 +(15.7 -0.4)> +(0.4 - 65.9)* =27.97 kN/m*

2.11 STRAIN COMPONENTS ON AN INCLINED
PLANE, PRINCIPAL STRAIN, AND OCTAHEDRAL
STRAIN: THREE-DIMENSIONAL CASE

We have seen the analogy between the stress and strain equations derived
in Sections 2.7 and 2.8 for the plane strain case. Referring to Figure 2.20,
let the strain components at a point in a soil mass be represented by €, €,
€., Yay» Yyes and v,,. The normal strain on plane ABC (the normal to plane
ABC has direction cosines of [, 72, and 1) can be given by

€ = '€, + m’€, + n’E, +Imgq,, + mng,, +Ing,, (2.129)
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This equation is similar in form to Equation 2.99 derived for normal stress.
When we replace €,, €, €,, 1,,/2, V,./2, and v,,/2, respectively, for 6,, 5,, 5,
Toys Tyes and T, in Equat1on 2.99, Equation 2.129 is obtained.

If the straln components at a point in the Cartesian coordinate system
(Figure 2.21) are known, the components in a new set of orthogonal axes
can be given by (similar to Equation 2.103)

1 1
€, z Gy b 5 Gz
oo e
2 Gy Y1 ) 5 Dz
1 1
z Gx121 E Y121 (Ez1
x y 74
L my n 1 2 i A L I
=L m m 5 Gy E, 5 G|l My, M (2.130)
I ms n3 1 1 n my UE]
= Yz E gyz (EZ

The equations for principal strains at a point can also be written in a
form similar to that given for stress (Equation 2.115) as

€ -/ € +], &, -]5=0 (2.131)

where €, is the principal strain

J1 =G, +G, +C, (2.132)
~ 2 ~ 2 A~ 2
Egy, ~ Eg.,  Eg."
|, =G,E, +G,E, +E,G, ég"z - é%: - %gxz - (2.133)
~ 2 A 2 ~ 2
" E - E ~ E -
J5 =G,E,E, +7%‘%fgz €, égzy - - égxz - -G, A%: (2.134)

J15 ]2, and J; are the strain invariants and are not functions of the direction
cosines.
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The normal and shear strain relations for the octahedral planes are

1
Eocc= g[@p(l) + @) +Ep3)l (2.135)
_ % 2 2 2 2 1
Foer = 5 (@) = Ep)I” +[Epi) = Ep3) " +[Epi3) = Eppr] (2.136)
where
€. is the octahedral normal strain

oct

Yoe: 18 the octahedral shear strain
€, €p(2)» €p(3) are the major, intermediate, and minor principal strains,
respectively

Equations 2.135 and 2.136 are similar to the octahedral normal and shear
stress relations given by Equations 2.126 and 2.128.
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Chapter 3

Stresses and displacements
in a soil mass

Two-dimensional problems

3.1 INTRODUCTION

Estimating the increase in stress at various points and the associated
displacement caused in a soil mass due to external loading using the theory
of elasticity is an important component in the safe design of the foundations
of structures. The ideal assumption of the theory of elasticity, namely that the
medium is homogeneous, elastic, and isotropic, is not quite true for most nat-
ural soil profiles. It does, however, provide a close estimation of geotechnical
engineers and, using proper safety factors, safe designs can be developed.

This chapter deals with two-dimensional problems (plane strain cases)
involving stresses and displacements induced by various types of loading.
The expressions for stresses and displacements are obtained on the assump-
tion that soil is a perfectly elastic material. Problems relating to plastic
equilibrium are not treated in this chapter.

Stresses and displacements related to three-dimensional problems are
treated in Chapter 4.

3.2 VERTICAL LINE LOAD ON THE SURFACE

Figure 3.1 shows the case where a line load of g per unit length is applied at
the surface of a homogeneous, elastic, and isotropic soil mass. The stresses
at a point P defined by  and 0 can be determined by using the stress function

f=grqsinq (3.1
p

In the polar coordinate system, the expressions for the stresses are as follows:

18f 1 8°f
= E i —

- Y= 2.57
ror 1’ aq2 ( )

r
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q/unit length

and

_ 9 Elof”
=2 B0t

ar%r oq -

Substituting the values of ¢ in the previous equations, we get

18 .2 1E oo
Sr =*%gq51nq~+ngrcosq+ﬁrcosq—grqsmq~
rEp - r'Ep p p -
=2—qcosq
pr
Similarly
sq4=0
and
tg=0
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The stress function assumed in Equation 3.1 will satisfy the compatibility
equation:

Eo> 10 1 o8* Ee’f 10f 19"
Ast-——+t+5—5A5+t——+5—"=0 (2.60)
gor- ror r aqz-ﬁar ror 1 aq -

Also, it can be seen that the stresses obtained in Equations 3.2 through 3.4
satisfy the boundary conditions. For 0 = 90°, 7> 0, 6, = 0, and at 7 = 0, o, is theo-
retically equal to infinity, which signifies that plastic flow will occur locally.
Note that o, and 6, are the major and minor principal stresses at point P.

Using the earlier expressions for 6,, 64, and 1,4, we can derive the stresses
in the rectangular coordinate system (Figure 3.2):

s, =s,cos’q+ sqsin2 g-2t4singcosq (2.77)
or,
2 2q E Y
q . .3 q 2z - qz
s, =—tcos’q= A z = (3.5)
) oV + 22 §\/x2 +22 - plx*+2)
Similarly
S, =s,sin” g+ sqcos2q+2t,qsinqcosq (2.75)
or,
2
L. 1 (3.6)
plx” +27)

q/unit length

z
N
r\
A O,
N z
NTox

N
O, O.
r=\x2+22 x‘i' P %x

z
cos 0= Tax
Y x2+z2 ——X——Pp
c
. z
sin 0 = d
X%+ 22

Figure 3.2 Stresses due to a vertical line load in rectangular coordinates.
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Table 3.1 Values of o,/(q/z), 6,/(q/z), and t,,/(q/z)
(Equations 3.5 through 3.7)

xlz c,/(q/z) c,/(q/z) T,,/(q/2)
0 0.637 0 0
0.1 0.624 0.006 0.062
0.2 0.589 0.024 0.118
0.3 0.536 0.048 0.16l
0.4 0.473 0.076 0.189
0.5 0.407 0.102 0.204
0.6 0.344 0.124 0.207
0.7 0.287 0.141 0.201
0.8 0.237 0.151 0.189
0.9 0.194 0.157 0.175
1.0 0.159 0.159 0.159
1.5 0.060 0.136 0.090
2.0 0.025 0.102 0.051
3.0 0.006 0.057 0.019
and
t,, = -s4singcosqg+ s, singcosqg+ t,q(coszq -sin’q) (2.76)
or,
2qx2*
th=—— 53 (3.7)
4 p(xZ + zZ )2
For the plane strain case
Sy, =n(s, +s,) (3.8)

The values for 6., 6,, and 7, in a nondimensional form are given in Table 3.1.

3.2.1 Displacement on the surface (z = 0)

By relating displacements to stresses via strain, the vertical displacement w
at the surface (i.e., z = 0) can be obtained as
_21-n?

w—;qun‘xHC (3.9)

where
E is the modulus of elasticity
v is Poisson’s ratio
C is a constant
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q,=30 kN/m q1=20 kN/m

—— 4 m——>

e—2m

Figure 3.3 Two line loads acting on the surface.

The magnitude of the constant can be determined if the vertical displace-
ment at a point is specified.

Example 3.1

For the point A in Figure 3.3, calculate the increase of vertical stress o,
due to the two line loads.

Solution
The increase of vertical stress at A due to the line load ¢; = 20 kN/m:
2m

Given,ﬁ ==——=1
zZ 2m

From Table 3.1, for x/z = 1, 6,/(q/z) = 0.159. So

=0.159229 72 159 kN/m?
E2 -

The increase of vertical stress at A due to the line load ¢, = 30 kN/m:

Given, ¥ =2 =3
Z 2m

From Table 3.1, for x/z = 3, 6./(q/z) = 0.006. Thus

5.0 =0.006 222 ~=0.006 37 Z=0.09 kN/m>
EX -

[=ak—Nes )l

So, the total increase of vertical stress is

S; = 8;0) + S:2) T 1.59+0.09 =1.68 kN/m2
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q/unit length

Rigid layer

Figure 3.4 Vertical line load on a finite elastic layer.

3.3 VERTICAL LINE LOAD ON THE
SURFACE OF A FINITE LAYER

Equations 3.5 through 3.7 were derived with the assumption that the homoge-
neous soil mass extends to a great depth. However, in many practical cases, a
stiff layer such as rock or highly incompressible material may be encountered
at a shallow depth (Figure 3.4). At the interface of the top soil layer and the
lower incompressible layer, the shear stresses will modify the pattern of stress
distribution. Poulos (1966) and Poulos and Davis (1974) expressed the verti-
cal stress o, and vertical displacement at the surface (w at z = 0) in the forms:

q
=17 3.10
S ph 1 ( )
q
o =1 ] 3.11
Wr=0 oF 2 ( )

where I, and I, are influence values.
I, is a function of z/h, x/h, and v. Similarly, I, is a function of x/h and v. The
variations of I, and I, are given in Tables 3.2 and 3.3, respectively, for v = 0.

3.4 VERTICAL LINE LOAD INSIDE
A SEMI-INFINITE MASS

Equations 3.5 through 3.7 were also developed on the basis of the
assumption that the line load is applied on the surface of a semi-infinite
mass. However, in some cases, the line load may be embedded. Melan
(1932) gave the solution of stresses at a point P due to a vertical line load of
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Table 3.2 Variation of [, (v = 0)

z/h

x/h 0.2 0.4 0.6 0.8 1.0

0 9.891 5.157 3.641 2.980 2.634
0.1 5.946 4516 3.443 2.885 2.573
0.2 2.341 3.251 2.948 2.627 2.400
0.3 0918 2.099 2.335 2.261 2.144
0.4 0.407 1.301 1.751 1.857 1.840
0.5 0.205 0.803 1.265 1.465 1.525
0.6 0.110 0.497 0.889 1.117 1.223
0.8 0.032 0.185 0.408 0.592 0.721
1.0 0.000 0.045 0.144 0.254 0.357
I.5 -0.019 -0035 -0.033 -0.018 0.010
20 -0.013 -0.025 -0.035 -0.041 -0.042
4.0 0.009 0.009 0.008 0.007 0.006
8.0 0.002 0.002 0.002 0.002 0.002

Table 3.3 Variation of I, (v = 0)

x/h I,
0.1 3.756
02 2.461
03 1.730
04 .244
0.5 0.896
06 0.643
0.7 0.453
0.8 0313
1.0 0.126
1.5 -0.012
2.0 -0.017
40 -0.002
8.0 0

q per unit length applied inside a semi-infinite mass (at point A, Figure 3.5).
The final equations are given as follows:

gB 1 Iz-dP  (z+d)(z+d)]+2dz] 8dz(d+2)x*
SZ - 7% I 4 + 4 - 6
PEZ(1 -v)5 # &) )

. 5 an
N 1-2v Ez—d+3z+d_4zx o

41-v)B 2
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Figure 3.5 Vertical line load inside a semi-infinite mass.

g® 1 Ez-dix*  (z+d)x*+2d*) -2dx*  8dz(d +z)x*~
Sy =—T1 I P + 7 + 3 .
pg2l-v)T n ) 61 e
_2p Bd - 2 3
. 1-2v zf\d 2z +z+23d +4zic 9 (3.13)
4(1 —U)E n 1) 15 ‘@
= = 2 2 2 2 -
£ = ﬂ? 1 +Iil(z —4d) L2 —Zciz -d . 8dz(d6+ )"
p@a2l-v) T n 7 16} e
1-2v E1 1  4zd+2)7,
+ e e e 3.14
at-otd w oA o4

13

Figure 3.6 shows a plot of ¢,/(q/d) based on Equation 3.12.

3.5 HORIZONTAL LINE LOAD ON THE SURFACE

The stresses due to a horizontal line load of ¢ per unit length (Figure 3.7)
can be evaluated by a stress function of the form

f=grqcosq (3.15)
p
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1.0

0.8

z
= =15
\d
0.6
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d

Figure 3.6 Plot of c,/(q/d) versus x/d for various values of z/d (Equation 3.12).

q/unit length

v
z

Figure 3.7 Horizontal line load on the surface of a semi-infinite mass.
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