
1

Propagation Delay Acceleration in Blockchain Network

Thesis Submitted to

College of Computer Science and Information System of

Umm AlQura University In partial fulfillment of the requirements for

The Degree of Master of Science

BY

Rayan Saeed Alsulamy

43780300

UMM ALQURA UNIVERSITY

SUPERVISED BY

 Dr Khalid Altarmisi

Academic Year 1441/2020

2

Acknowledgments

I would like to express sincere gratitude to my major advisor Doctor Khalid

Altarmisi. I am deeply indebted to him for his guidance on my research and my

course works. The door of his office was always open whenever I ran into a spot of

trouble or had a question about my research or writing. He was very patient with

me and always encouraged me during the whole process. I would like also to

acknowledge the continuous support of the XDean of College of Computer and

Information Systems (CIS) at Umm Al-Qura University (Dr. Fahad Al-Dosari), the

Vice XDean of CIS for Research and Graduate Studies (Dr. Waleed Al-Asmari), and

all faculty members and staff in the CIS.

3

Dedication

This thesis is dedicated to my parents who always support and help me. This work

is also dedicated to my family, who have been a source of support and

encouragement during the challenges of graduate school and life. This work is also

dedicated to my supervisor and my friends.

4

Abstract

Blockchain is a new revolutionary technology that was essentially developed to

eliminate centralized authority on the internet. Since its inception, it has expanded

rapidly, and new decentralized applications and currencies have been developed.

Its security makes transactions immutable and more trustworthy in an

environment of anonymity which combine three main technologies. First concept

of public key infrastructure and digital signatures for proofing the ownership of

transactions within a public network. Second peer 2 peer for a direct connection

between the participants without third party. Lastly consensus protocol in which

making sure to reach an agreement among most of the participants in the network.

However, it still has many vulnerabilities and issues that must be studied and

addressed. One of the challenges of blockchain that brings a lot of security issues

is the delay in the propagation among the blockchain network. In this thesis, a new

method will be proposed to enhance the delay propagation and specifically to

minimize transaction verification by using Different Digital Signature Cryptosystem.

5

 ملخص الرسالة

سلسلة الكتل هي تقنية ثورية جديدة تم تطويرها بشكل أساسي للتخلص من أي سلطة مركزية على الشبكة

 وعملات ةجديد ةلا مركزي اتتطوير تطبيق بواسطتها اكتسبت توسعاً سريعاً وتمالعنكبوتية منذ نشأتها

تحافظ على سرية الهوية . بسبب أمانها الذي يجعل المعاملات غير قابلة للتغيير وأكثر ثقة في بيئة رقمية

 لإثبات الرقمية والتوقيعات العام للمفتاح التحتية البنية الأول المفهوم. رئيسية تقنيات ثلاث بين تجمع والتي

. ثالث طرف دون المشاركين بين المباشر للاتصال تقنية النظير للنظير. عامة شبكة داخل المعاملات ملكية

مع لكن . و.الشبكة في المشاركين معظم بين اتفاق إلى التوصل من التأكد فيه يتم توافقي بروتوكول وأخيرًا

سلسلة ذلك ، لا يزال لديها العديد من نقاط الضعف والقضايا التي يجب دراستها ومعالجتها. أحد تحديات

. في هذه سلسلة الكتلالتي تسبب الكثير من المشكلات الأمنية هو التأخير في الانتشار بين شبكة الكتل

التحقق من المعاملات على وجه التحديد ، سيتم اقتراح طريقة جديدة لتعزيز انتشار التأخير وتقليل لرسالةا

 توقيع رقمي مختلف. ر وباستخدام نظام تشفي

6

Table of Contents
1. Chapter 1 Introduction .. 10

1.1. Brief history .. 10

1.2. What is Blockchain ... 11

1.3. Blockchain applications ... 12

1.3.1. Bitcoin ... 12

1.3.2. Ethereum .. 12

1.4. Components of Blockchain .. 13

1.4.1. Cryptography .. 13

1.4.2. Peer 2 peer ... 14

1.4.3. Game theory ... 14

1.5. Blockchain Structure .. 15

2. Chapter 2 Bitcoin network ... 17

2.1. Structure ... 17

2.2. How Bitcoin works ... 17

2.2.1. Creating an address .. 17

2.2.2. Create transactions .. 18

2.2.3. Propagation mechanism .. 19

2.2.4. Proof of work.. 20

2.3. Bitcoin Technical Challenges ... 21

2.3.1. Scalability ... 21

2.3.2. Usability .. 21

2.3.3. Throughput ... 21

2.3.4. Majority attacks ... 22

2.3.5. Double spending attack ... 22

2.3.6. Inconsistency .. 23

2.3.7. Forking .. 23

2.3.8. Eclipse attack .. 24

2.4. Problem statement .. 25

2.5. Contribution ... 25

2.6. Organization ... 25

3. Chapter 3: Blockchain cryptography (ECC) ... 26

3.1. Introduction ... 26

7

3.2. Definition .. 26

3.3. Point addition ... 27

3.4. How point addition works in ECC .. 28

3.5. Doubling and addition ... 29

3.6. Finite field and subgroup ... 30

3.7. Digital signature ECDSA ... 31

4. Chapter 4 NTRU Cryptography .. 33

4.1. Introduction ... 33

4.2. Parameters and spaces .. 33

4.3. Example of encryption and decryption ... 35

4.4. NTRUSign .. 36

4.4.1. Parameters ... 36

4.4.2. Key Generation ... 36

4.4.3. Signing .. 36

4.4.4. Verification ... 36

5. Chapter 5 NTRU and ECC Comparison .. 37

5.1. Introduction ... 37

5.2. Key size: .. 37

5.3. Previous Research: ... 37

5.4. Conclusion .. 42

6. Chapter 6: Accelerating propagation delay by using NTRU verification process 43

6.1. Introduction ... 43

6.2. Proposed method .. 43

6.3. The model ... 43

6.4. Implementation ... 46

6.5. The results .. 46

6.5.1. First Scenario .. 47

6.5.2. Second Scenario ... 48

6.5.3. Third Scenario .. 49

6.5.4. Fourth Scenario .. 50

6.5.5. Fifth Scenario .. 51

6.6. Conclusion and future work .. 53

7. References .. 54

8

List of tables

Table 1 Doubling and addition for 540P ... 30

Table 2 Security levels of NTRU .. 33

Table 3 Key sizes and their level of security ... 37

Table 4 ECC and NTRU encryption and decryption [17] ... 39

Table 5 Comparison of NTRUSign, ECDSA, RSA [19] ... 40

Table 6 Comparison of NTRU, ECC and RSA on a server and on a constrained device [20] 41

Table 7 Encryption and decryption speeds of various cryptosystems [21] ... 41

Table 8 The five scenarios of the proposed method .. 46

Table 9 First scenario, 5 Linked Nodes .. 47

Table 10 Second scenario, 10 Linked Nodes ... 48

Table 11 Third scenario, 100 Linked Nodes .. 49

Table 12 Fourth scenario, 1000 Linked Nodes .. 50

Table 13 Fifth scenario, 10000 Linked Nodes ... 51

List of abbreviation

ECC Elliptic curve Cryptography

NTRU N-Th Degree Truncated Polynomial Ring

ECDSA Elliptic curve digital signature Algorithm

NTRUSign NTRU digital signature

POW proof of work protocol

POS proof of stake protocol

TLS Transport Layer Security

PGP Pretty Good Privacy

SSH Secure Shell protocol

9

List of figures

Figure 1 Sign and verify a message by using a digital signature ... 13

Figure 2 Peer 2 peer network ... 14

Figure 3 Chain of blocks representing each hash depends on previous hashes ... 15

Figure 4 Binary Tree .. 16

Figure 5 Alice using the output value from Joe as an input value to Bob [7] ... 19

Figure 6 Exchange transactions and Blocks between the nodes in Bitcoin network 20

Figure 7 Majority attack .. 22

Figure 8 Double spending attack .. 22

Figure 9 Two miners established two blocks at nearly the same time ... 23

Figure 10 Eclipse attack... 24

Figure 11 Singularity ... 27

Figure 12 secp256K1 curve ... 27

Figure 13 ECC a simple example of two points addition .. 28

Figure 14 tangent line ... 29

Figure 15 Elliptic curve over F197 ... 31

Figure 16 Digital signature ECDSA ... 32

Figure 17 Comparing encryption in ECC and NTRU[16] .. 38

Figure 18 Comparing decryption in ECC and NTRU[16] .. 38

Figure 19 ECC and NTRU key generation [17] ... 39

Figure 20 ECC and NTRU encryption time [17] ... 40

Figure 21 ECC and NTRU decryption time [17] ... 40

Figure 23 The structure of the proposed method .. 43

Figure 24 The structure of the proposed method .. 44

Figure 25 The structure of the proposed method .. 44

Figure 26 The structure of the proposed method .. 45

Figure 27 NTRU and ECDSA comparison time with 5 linked nodes, 100 and 1000 Total nodes 47

Figure 28 NTRU and ECDSA comparison time with 5 linked nodes, 100 and 1000 Total nodes 48

Figure 29 NTRU and ECDSA comparison time with 10 linked nodes, 100 and 1000 Total nodes 48

Figure 30 NTRU and ECDSA comparison time with 10 linked nodes, 10,000 and 100,000 Total nodes 49

Figure 31 NTRU and ECDSA comparison time with 100 linked nodes, 1000 and 10,000 Total nodes 49

Figure 32 NTRU and ECDSA comparison time with 100 linked nodes, 100,000 and 1000,000 Total nodes

 .. 50

Figure 33 NTRU and ECDSA comparison time with 1000 linked nodes, 10,000 Total nodes 51

Figure 34 NTRU and ECDSA comparison time with 1000 linked nodes, 100,000 and 1000,000 Total nodes

 .. 51

Figure 35 NTRU and ECDSA comparison time with 10,000 linked nodes, 100,000 and 1000,000 Total

nodes ... 52

10

Chapter 1 Introduction
Brief history

For any process of buying and selling commodities through the internet, there is a

need for a trusted third party to deal with to complete the process of buying and

selling. As a consequence, there is a need to trust those third parties and provide

them with private information only for verification processes while exposing most

information is not necessary. As a result, there was an attempt to protect users’

privacy in the late 1980s under the name of CypherPunk. The goal of this act is to

protect the privacy and security of people’s information by using cryptography

technologies. As Erick Hughes, a CypherPunk activist posted in 1993, “in the

electronics age” people should have a choice to reveal their private information to

whom they want and hide it from whom they want in the network. Indeed, this

idea spread widely even though it was against laws causing large illegitimate

internet actions [1]. The first implementation of this concept was in 1999 by a music

sharing app called Napster which was founded by Sean Parker and Shawn Fanning

with a protocol known as peer 2 peer protocol. A lot of music was shared illegally

by using Napster.

Another sharing file system called BitTorrent was founded by Bram Cohen in 2001.

BitTorrent works by using BitTorrent Client for connecting with other clients.

Swarms in BitTorrent exchange by requesting pieces of files (download) and send

files that were requested (uploading). But with all its popularity, it still has one vital

weakness, which is that the client’s IP address can very easily be exposed.

In addition to the previous two attempts, there were many other attempts that

tried to share data through the network. The two closest to what is known as

Blockchain are B-money and Bit-Gold.

B-money was published in 1998 by Wei Dai. This publication was the first

distributed system that dealt with hash cash. Wei described two protocols of which

the first one is not practical [2]. In the second protocol, every one of the

participants is known in the network by just a public key. The public key acts as an

11

ID for each one in the network. All the participants in the network are known by

maintaining a database that contains all participants’ IDs, which is distributed

separately. The creation of money happened by solving computational problems

and the amount is determined by the difficulty of the problem. The transferring of

money in B-money had similar functionalities that exist nowadays in common

crypto currencies. Wei used a consensus protocol in which each party of the

network must approve the transaction. He used also digital signatures to verify the

identity of the sender and receiver. Unfortunately, his protocols remained as a

proposal and were never applied in a real environment. Nevertheless, Satoshi

referenced Wei Dai’s proposal in his paper as one of the inspirations for Bitcoin

The second idea was Bit-Gold. A crypto system that appeared in 1998 by Nick Szabo

with also the same idea as Bitcoin. However, it was not applied like B-money. Some

researchers said it was a precursor of the bitcoin because it was based on the Proof

of Work (POW) protocol and used a Byzantine Fault Tolerance peer to peer

network. Differing from Bitcoin, Bit-Gold used a method that depends on a quorum

of addresses that was vulnerable to Sybil attack[3].

What is Blockchain

Blockchain technology is a general name of an intelligent idea that emerged in 2008

by an unknown person named Satoshi Nakamoto[4]. The main concept of the

Blockchain is building a trust-based decentralized network and eliminating any

rules of centralized authority inside it.

The word Blockchain contains two parts. A block, which refers to the container that

holds all the data in the network during a period of time and chain which refers to

the process of stacking each block to the previous one to perform a chain.

Blockchain is based on a decentralized peer 2 peer system which adopts ledgers to

keep a record of all transactions that took place inside the network. The main

properties of Blockchain are transparency and immutability, where transparency

means that each node inside the blockchain network has a copy of the same data

12

shared over the network, which means that all the data is shared transparently. For

this reason, the data is immutable so changing or tampering it is nearly impossible.

Within a specific timeframe, all the transactions will be contained in a single block.

An algorithm is initiated to find this block and then that block will be stacked with

other blocks to create a chain.

All the nodes in the blockchain network also act as witnesses as a result of having

a copy of all the information of events inside the network which makes block

tampering nearly impossible. For this reason, utilizing of blockchain technology

evolved very quickly after initiating the first blockchain application[5].

Blockchain applications

In the early days of Blockchain, it was not known to the public and it was not until

digital currencies appeared, that use blockchain technology came to the surface.

One of the most popular applications of blockchain is Bitcoin.

Bitcoin

The author Satoshi defined Bitcoin in his white paper as “A purely peer-to-peer

version of electronic cash would allow online payments to be sent directly from one

party to another without going through a financial institution.”[1] The valuable

digital unit in the Bitcoin is called a Bitcoin. Users can use the digital Bitcoin unit to

buy and sell assets, transfer money, and exchange bitcoin with other

cryptocurrencies.

Ethereum

In 2015, Vitlaik Buterin launched Ethereum which is the first programmable digital

currency. The digital unit of the Ethereum is called ETH. It is also completely

decentralized. Ethereum spreads quickly because it uses a smart contract. The core

difference between Bitcoin and Ethereum is that Ethereum is based on a smart

contract that the programmer can build in an application to accomplish a user’s

13

demands, and the application can be used in a decentralized network. Ethereum

has many applications now like financial applications, games and decentralized

market applications[6][7].

Besides these two applications of Blockchain, Blockchain technology is not

restricted to only cryptocurrency, it also used in economics, medicine, software

engineering, and the internet of things.

Components of Blockchain

Blockchain stands for three parts.

Cryptography, which uses ECC (Elliptic Curve Cryptosystems) that is based

on PKI (Public Key Infrastructure). It uses two public and private keys. A public key

is represented as a locker for data while the private key is represented as a key that

can open the lock. In addition, Blockchain uses a specific algorithm in ECC which is

called Elliptic Curve Digital Signature Algorithm (ECDSA). This algorithm helps in

proofing the user’s ownership of the signature without exposing the private key.

ECDSA works by using the private key to encrypt a message and the public key to

verify the signed message as encrypted from that private key (see Figure 1).

Figure 1 Sign and verify a message by using a digital signature

14

Peer 2 peer. This concept is based on eliminating the role of third parties for

providing the process of verification and building trust. As a result, each participant

in the network can connect and share data directly with other participants by

following specific rules that were found to ensure trust amongst all of them. Figure

2.

Figure 2 Peer 2 peer network

Game theory A consensus algorithm’s goal is to reach an agreement amongst most

of the nodes in the network for every process confirmation. The two most popular

types of consensus protocols are Proof of Work (POW) and Proof of Stake (POS)

that are used in Bitcoin and Ethereum respectively. POW works by solving hash

puzzles that need huge computational power to find a hash with a SHA256

algorithm which meets difficulty requirements. On the other hand, POS works by

locating the nodes with a higher amount of currency. According to POS, the one

who owns more money in POS has less chance to be an attacker and a higher

chance to be a new block initiator. In addition, there are many other protocols used

in digital currencies. All those protocols work to ensure that all nodes are in a

consensus statement.

15

Blockchain Structure

As previously mentioned, Blockchain is based on a decentralized network that does

not need a third party. All nodes work as a distributed ledger. Blockchain contains

chains of blocks and every block can be known by a hash algorithm in its header.

Each block header also refers to a previous block or a parent block until reaching

the genesis block which is the first block in the chain (see Figure 3) [7].

Figure 3 Chain of blocks representing each hash depends on previous hashes

16

Each block performs a number of transactions that contain the processes for

transferring services from one node to another node. In addition, the transactions

in the blocks will be performed in a tree called a binary tree (see Figure 4). Every

two transactions will be hashed in one parent until it ends up with only one root

hash called the Merkle tree which is used to provide immutability and integrity.

Figure 4 Binary Tree

17

Chapter 2 Bitcoin network
One of the most popular examples of Blockchain is Bitcoin. In this section, Bitcoin

will be explained step by step.

Structure

The structure of Bitcoin is based on a P2P network which is represented as a

number of nodes that are connected with each other directly. There are several

types of nodes in the blockchain.

The first type of nodes is miners. In a Bitcoin network, only 10 percent of the nodes

work as miners which are responsible for hashing and putting the transactions

inside a block every 10 minutes. Meanwhile, the rest of the nodes are divided into

two types.

The second type is full nodes that obtain a full copy of all the blockchain data in

their local storage.

The last type is lightweight nodes. They do not obtain the full blockchain database,

but they can still verify and propagate transactions in the network. For both

propagation and verification, Bitcoin uses Elliptic Curve Cryptosystems and the

hash function.

How Bitcoin works

Creating an address

In Bitcoin, the wallet software is responsible for generating the public and private

keys. After initiating a new wallet, the wallet will start to generate an anonymous

random number with the size 2256 by using the SHA256 hash algorithm as a private

key. After that, it generates a public key by using Elliptic Curve Cryptosystem KPub =

Kpriv * G in which G is a constant point called the generator point. Finding the private

key from the public key is nearly impossible because it’s a one-way process.

 After having the public key, the wallet will derive the address from the public key.

The address of the node is represented by a number beginning with 1 and it’s

18

necessary for sending and receiving bitcoin. The address is a result of the public key

hashed with SHA256 then hashed with Race Integrity Primitive Evaluation Message

Digest (RIPEMD) KPub hash = RIPEMD(SHA256(KPub)[7]. Finally encoding the KPub hash

with CheckSum58 to make a readable address. CheckSum58 contains all the

numbers plus the alphabet but [I , l , 0 , O] are omitted to avoid ambiguity.

Create transactions

Transactions are the main container for transferring data from one address to

another address inside a Bitcoin network. Transactions consist of inputs and

outputs. An input is an amount of money that the sender wants to send to the

receiver. An output is the amount of money that the receiver will get. The output

as it is shown in Figure 5 is usually slightly less than the input because of the fees

which the miners will collect for inserting the transaction in a block. The transaction

also must be signed with the sender’s private key and include his public key inside

the transaction for his ownership to be verified. The transaction input is derived

from previous output, and from one input more than one output can be initialized.

For example, let’s assume that Alice, who has an established address, wants to send

Bitcoin to Bob’s address. Alice will create a transaction that describes the amount

of Bitcoin which will be sent to Bob’s address as an input which is derived from the

previous output from Joe (see Figure 5). Alice will sign the transaction with her

private key and propagate it to the network [1], [7].

19

Figure 5 Alice using the output value from Joe as an input value to Bob [7]

Finally, all the nodes in the network will verify the transaction with the time they

receive it by using Alice’s public key which is embedded in the transaction. After

Bob receives the transaction, the funds will be unconfirmed until it is embedded

inside a block. Bob waits 10 minutes until the process of proof of work protocol,

which will be explained later, is completed in order for the funds to be embedded

inside the block.

Propagation mechanism

The Blockchain propagation mechanism differs from application to application.

One of the most common examples of such a mechanism is the Gossip protocol.

Bitcoin uses the Gossip protocol to propagate a transaction in the network. For

Example, if Node 1 has a transaction to send then Node 1 will send an inv message

to its peer Node 2 to check if Node 2 has seen the transaction before or not. If Node

2 does not have the transaction in its transactions list, then Node 2 will send

getData to Node 1 to fetch the full transaction (see Figure 6).

20

Figure 6 Exchange transactions and Blocks between the nodes in Bitcoin network

Proof of work

Proof of work is a bitcoin algorithm constructed to reach consensus among miners

and determine which miner among thousands of miners could establish the block.

All the miners must brute force a mathematical puzzle until reaching the

predetermined hash. If the result was founded by one of the miners first, he has a

priority to establish a block and put all the transactions in the last 10 minutes and

propagate the block. If the block is confirmed by 51% of miners, then the block will

be valid, and the miner will get a reward. The difficulty of the hashing puzzle

increases based on the number of blocks per hour[7][8]. Furthermore, the

algorithm voting system is based on the computational power of the node instead

of the IP.

21

Bitcoin Technical Challenges

Even though Bitcoin was designed to solve original network obstacles like single

failure and single authority, it still is suffering from some issues and needs more

time to overcome its problems. For example:

Scalability

Every day most of the Bitcoin network is growing quickly, as a result, it is making

propagation time in the network slower.

Usability

In Bitcoin, miners compete for Bitcoin rewards by solving a mathematical puzzle

that takes 10 minutes to find a solution and that needs high energy-consuming

power hardware like GPUs and special servers.

Throughput

Services like visa can do 2000 transactions per second, however, Bitcoin needs 10

minutes for each transaction’s confirmation.

22

Bitcoin issues

Even though Bitcoin is secure, it still suffering some risk issues. For example:

Majority attacks

In Bitcoin, an attacker who acquires 51% of the hash power of the network has the

ability to confirm and reject any transactions and blocks in the network. In 2014 a

mining pool called Gash.io possessed 42% of hash power in bitcoin (see Figure 7)

[9].

Figure 7 Majority attack

Double spending attack

An attacker can spend the same coins in two transactions. This attack can be

applied by exploiting the time between the initial transaction and confirmation

time in the first transaction and propagate the second transaction (see Figure 8).

Figure 8 Double spending attack

23

Inconsistency

While the Bitcoin network is growing, inconsistencies between nodes are getting

harder, which will increase the risk of issues like double spending, forking and

eclipse attacks.

 Forking

Forking is the most common problem related to the delay in propagation which

occurs when two nodes find the result and propagate two blocks nearly at the same

time. For this reason, the blockchain will be separated into two paths and each path

will be mined separately by a group of nodes. The chain that becomes longer and

has more block associated with it, eventually will be authorized if the nodes which

have the shorter chain of blocks were notified about the longer one. The shorter

one will be forged and it is called orphan blocks (see Figure 9).

Figure 9 Two miners established two blocks at nearly the same time

24

Eclipse attack

Eclipse attacks happen when the attacker controls all the outgoing and ingoing

connections for a specific node and can isolate the node from the network (see

Figure 10).

Figure 10 Eclipse attack

25

Problem statement

One of the most important research problems in Blockchain is the propagation
delay. The propagation delay is combination of two parts transmission time and
verification time. The verification time is the time is taken to verify a block or a
transaction while need accessing to stored disc [10].

The importance of this research problem is that it causes some vulnerabilities such
as fork and double spending attacks, in which they must be considered.

Contribution

Based on our studies, we classified the enhancement propagation delay
solutions into four categories:

1. Change consensus protocol
2. Minimize verification time
3. Propagation protocol
4. Network topology

 After reviewing previous works, a new method for propagation time will
be proposed to reduce the verification time by using NTRU cryptosystem
digital signature instead of ECDSA, and as a result, it will minimize the
propagation delay.

Organization

This thesis is organized as follows. Chapter 1 introduced blockchain and Bitcoin.
Chapter 2 explains ECC cryptosystem in more detail. Chapter 3 offers an
explanation of NTRU cryptosystem. Then, chapter 4 compares NTRU and ECC in
encryption and digital signature. Lastly, chapter 5 which contains details about
how to accelerate propagation delay by using the NTRUSign verification process.

26

Chapter 3: Blockchain cryptography (ECC)

Introduction

ECC is an abbreviation of Elliptic curve cryptography. Which is one of the most

popular asymmetric cryptosystems. It was conducted by Neal Koblitz and Victor

S. Miller in 1985 and started to be widely used from 2004 to 2005. ECC is

adopted by a number of famous technologies like TLS, PGP and SSH. In 2008,

after using ECC in Bitcoin by Satoshi, it spread to be adopted by most Blockchain

applications. The reason for choosing ECC instead of RSA is that the 2048 key

size of RSA provides the same security level of 224bit key size of ECC [11].

Using ECC in Blockchain for securing the identity could provide two properties:

1- The encryption process should be a one-way trap door in which encrypted

data is infeasible.

2- Proving of knowing private key without revealing the private key.

Definition

To define ECC more technically, it is all the points in the curve which satisfy the

equation y2 = x3 + ax + b and for avoiding singularity which is invalid curve (see

Figure 11), the condition 4a3 + 27b2 ≠ 0 is used. Bitcoin uses the secp256k1

algorithm which defines the parameters of an elliptic curve, and its equation is

y2 = x3 + 7 [12] (see Figure 12).

27

Figure 11 Singularity

Figure 12 secp256K1 curve

Point addition

Adding two points to get a third point in the curve happened by the following

method. Drawing a line between the two points, the third point which intersects

with the curve should be the third point. For example, two point p (1,2) + Q(3,4)

= R(-3,2). R is the inverse of point -R in x-axis (see Figure 13).

28

Figure 13 ECC a simple example of two points addition

How point addition works in ECC

To add a point in an Elliptic curve, first, the base point P should be determined in

the curve, for example in secp256 the x-coordinate and y-coordinate of point P is

predefined as:

 x-coordinate

550662630222773436695787188951685343262506034537775941755001

87360389116729240

y-coordinate

326705100207588169780830851305070431844712733806592432759389

04335757337482424

Then, adding P to itself repeatedly, but how to add P point to itself while there are

infinite probabilities lines. In this case, we obtain a tangent line to get the 2P point

(see Figure 14)[13].

29

Figure 14 tangent line

Doubling and addition

In this case, it was performed with just two points of addition. However, what if
addition points was n times and n for instance was 540. Then it needs 539
additional points (P1 + P2 + P3 + ……. + Pn-1), so this method is not practical. Then for
minimizing that, there is a method called doubling and addition where 540 with
bits 1000011100 can be converted to power of two:

540P = 29 * 1 + 28 * 0 + 27 * 0 + 26 * 0 + 25 * 0 + 24 * 1 + 23 * 1 + 22 *
1 + 21 * 0 + 20 * 0

 = 29P + 24P + 23P + 22P

In this method, 540 was performed just in 9 doubles and 4 additions as is shown in
table 1.

30

Table 1 Doubling and addition for 540P

Finite field and subgroup

In the real situation of an elliptic curve, instead of generating points over the real
number R, it will be over a finite field Fp. So, the definition will be as if ECC is all the
points over a finite field. In addition, the ECC over Fp keeps the properties of an
abelian group [12]. The field is performed in the equation of y2 = x3 + ax + b by
adding mod P to be like y2 = x3 + ax + b (mod P). That will make the production of
points happen cyclically and shrink the number of points in the field. For example,
if an elliptic curve has F197 and has order N 216 then based on Lagrange’s theorem
that n (the order of subgroup) should be a divisor of N. By taking the smallest divisor
in which nP = 0, we can find the order of the subgroup. In F197 the divisors are 1, 2,
3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216. P ≠ 0 , 2P ≠ 0 … 8P = 0. Consequently,
the order of the subgroup of the previous example is 8 which produces 0 (see Figure
15).

31

Figure 15 Elliptic curve over F197

Digital signature ECDSA

To sign a message in an Elliptic curve we need Alice (who will sign the message)
public key HA and Alice private key DA. Alice will sign the hash of the message z, not
the message itself (transaction in Blockchain). Now a random integer k from n to
n – 1 is chosen. After that p = kG, in which G is the generator point, is calculated.
Then r = xP (mod n), where xP is x coordinate of the point P, is also calculated. If r =
0 then another k is chosen. The multiplicative inverse of k based on k * k-1 mod n =
1 is calculated. Then, s = k-1 (z + r DA) mod n is calculated. If s = 0 then another k is
chosen [14].

Lastly, the signed message is sent to Bob. The question here is how Bob could verify
the signature?

After receiving the hash message from Alice, Bob will do the following calculation:

1- U1 = s-1 z mod n.
2- U2 = s-1 r mod n.
3- P = u1G + u2 HA.

If 𝑟 = 𝑥𝑝 𝑚𝑜𝑑 𝑛 then the signature is valid

Bob has to know the public key of Alice HA, r, and s. The figure shows how the digital
signature works (see Figure 16).

32

Figure 16 Digital signature ECDSA

Alice Bob

If r = 0

If s = 0 True

33

Chapter 4 NTRU Cryptography

Introduction

NTRU is a post quantum cryptosystem which is based on a different mathematical
problem from ECC. NTRU’s name is an abbreviation of N-Th Degree Truncated
Polynomial Ring. The objects in NTRU are based on all the truncated polynomial in

ring 𝑅 =
𝑧[𝑥]

(𝑥𝑛−1)
 which has degree N-1 and integer coefficient [15].

NTRU was published in 1996 by three mathematicians: Jill Pipher, Jiffrey Hofsein,
and Joseph H. Severman. The three inventors of NTRU proclaimed that NTRU
creation keys are simple with a high speed and low consumption of memory[16].
NTRU is based on a very difficult problem called closest lattice vector problem
(CVP), while in the ECC cryptosystem based on a discrete mathematics problem. As
a result, it supposed that there is no polynomial time algorithm that can solve it
[15], [17]. As a result, NTRU is more suitable for resisting quantum computers and
faster than the other regular cryptosystems.

Parameters and spaces

NTRU uses six parameters, the first three can determine the level of the security in
NTRU as is shown in Table 2.

Table 2 Security levels of NTRU

Parameters N q p

Moderate security 167 128 3

Standard security 251 128 3

High security 347 128 3

Very high security 501 256 3

N: polynomial with degree N-1 is better to be prime to acquire more security

q: large prime modulus number for reducing the coefficient

p: small prime modulus number for reducing the coefficient

f: polynomial private key

g: polynomial for generating the public key (should be private)

r: random polynomial for blinding

d: coefficient

Lf: set of polynomials for which private key will be chosen.

34

Lg: set polynomial for which another private key will be chosen.

Lm: set of polynomials for plaintext space and coefficient lie between −
𝑝−1

2
 and

𝑝−1

2

Lr: set of polynomials where the blinding value will be chosen.

Key generation (Alice)

• Choosing a private polynomial f from set Lf

• Calculate f * f-1 ≡ 1 (mode p) and f * f-1 ≡ 1 (mode q). If the inverse f-1 does
not exist then go back to the first step.

• Calculate public key h = g*fq (mode q).

• Publish N, h, p, q, Lf, Lg, Lr and Lm to Bob.

• Keep f, fp private.

Encryption (Bob)

• Put the message m as polynomial set m = Lm.

• Choose random r for blinding the message from Lr.

• Calculate e ≡ p * r * h + m (mod q).

Decryption (Alice)

• Calculate a = f*e (mode q).

• Choose the coefficient of a to be set between -q/2 and q/2.

• Calculate m ≡ fp * a (mode p). Center lifting mod p to get the original
message.

35

Example of encryption and decryption

The parameters will get the values

N = 7

P = 3

q = 41

d = 2

Bob

F(x) = x6 - x4 + x3 + x2 – 1

g(x) = x6 + x4 – x2 -x

Fq(x) = f(x)-1 (mod q) = 8x6 + 26x5 + 31x4 + 21x3 + 40x2 + 2x + 37 (mod 41)

Fp(x) = f(x)-1 (mod p) = x6 + 2x5 + x3 + x2 + x + 1 (mod 3)

h(x) = p * Fq * g (mod q) = 19x6 + 38x5 + 6x4 + 32x3 + 24x2 + 37x + 8 (mod
41)

sending h and (N, p, q, d) to Alice

m(x) = -x5 + x3 + x2 - x +1

r(x) = x6 – x5 + x – 1

e(x) = 31x6 + 19x5 + 4x4 + 2x3 + 40x2 + 3x + 25 (mod 41)

a = f*e (mod q)

a = x6 + 10x5 + 33x4 + 40x2 + x + 40 (mod 41)

b = a (mod p)

b = x6 + 10x5 – 8x4– x2 + x – 1 (mod 3)

c = Fp(x) * b(x)

c = 2x5 + x3 + x2 + 2x + 1 (mod 3)

m = -x5 + x3 + x2 – x + 1

36

NTRUSign

NTRUSign is digital signature based on solving approximate closest vector problem.
In this section NTRUSign basic operations will be covered as follows [18].

Parameters

N: polynomial with degree N-1 is better to be prime to acquire more security

q: large prime modulus number for reducing the coefficient

d: coefficient

Key Generation

Choosing f, g randomly from 𝑅𝑞 =
𝒛𝒒[𝒙]

(𝒙𝒏−𝟏)
 which number of ones in f, g are df , dg

respectively.

Check if f has inverse, else go back to step1.

Find two small polynomials 𝐹, 𝐺 ∈ 𝑅 in which 𝑓 ∗ 𝐺 − 𝑔 ∗ 𝐹 = 𝑞

Compute ℎ = 𝑓−1 ∗ 𝑔 (𝑚𝑜𝑑𝑞)

Public is h. private are f,g

Signing

Assume message m ∈ R

Then the signer will calculate the equation

𝑥 = ⌈−(1 𝑞⁄) ∗ 𝑚 ∗ 𝐹⌋

𝑦 = ⌈(1 𝑞⁄) ∗ 𝑚 ∗ 𝑓⌋

𝑠 = 𝑥 ∗ 𝑓 + 𝑦 ∗ 𝐹

Send (𝑚, 𝑠) to the receiver

Verification

check if ‖𝑠𝑚𝑜𝑑𝑞, (𝑠 ∗ ℎ − 𝑚)𝑚𝑜𝑑𝑞‖ < NormBound, then accept the signature,

else the signature is invalid. NormBound is Bound distance between two lattice

points

37

Chapter 5 NTRU and ECC Comparison
Introduction:

In this chapter, a comparison between ECC and NTRU will be studied. First, key sizes
between both ECC and NTRU will be shown. Then the previous studies that
compared ECC and NTRU in terms of speed will be mentioned.

Key size:

In cryptography key size is specified by bits and can determine the security of the
cryptography. The minimum length of the key to be considered secure is 80bit. 128

bits is the most used these days for more security. The table below describes the
key sizes of ECC and NTRU and their security level.

Table 3 Key sizes and their level of security

Security level (bits) NTRU (bits) ECC (bits)

80 2008 163

112 3033 224

128 3501 256

192 5193 384

256 7690 512

In the table above, the public key size for both ECC and NTRU and their security
level in bits can be observed. ECC has less public key size comparing with NTRU, but
that does not affect the speed of NTRU [17].

Previous Research:

There are a number of researchers that covered the study of the comparison
between ECC and NTRU Cryptosystems for both security and speed.

Miri Jamel, et al [16] proposed a way to substitute the symmetric crypto
system which is used in Ad-Hoc protocol with asymmetric cryptosystems. Miri
analyzed the performance of the most popular public key cryptosystems to
implement with a certificateless scheme for Ad-Hoc Ultra-Wideband Impulse Radio
(UWB-IR) networks which are RSA, NTRU and ECC. The comparison was
implemented by Java Code and the results were in encryption and decryption.

38

Encryption and decryption

When comparing encryption and decryption, Miri compared ECC and NTRU
Cryptosystems, and it was concluded that NTRU is easier for key generation, faster
in encryption (see Figure 17) and decryption (see Figure 18), and more efficient for
consuming power [16].

Figure 17 Comparing encryption in ECC and NTRU[16]

Figure 18 Comparing decryption in ECC and NTRU[16]

Nguyen compared between ECC and NTRU in key size, key generation,
encryption and decryption time, the code was compiled on Pentium4 process with
2,4GHz, 1GB RAM, and Windows XP operating system [17]. The table shows the
comparison results.

39

Table 4 ECC and NTRU encryption and decryption [17]

Table 4 shows the values of ECC as the minimum and maximum value of all
operations that were done.

Nguyen presented the results in graphs as follows. figures 19 to 21 shows NTRU
and ECC minimum values in key generation, encryption, and decryption
respectively.

Figure 19 ECC and NTRU key generation [17]

40

Figure 20 ECC and NTRU encryption time [17]

Figure 21 ECC and NTRU decryption time [17]

As a result, we can see that NTRU is much faster than ECC [17].

The NTRUSign original paper Jeffry Hoffestan, et al [19] explained NTRUSign in
detail and compared NTRUSign with ECDSA in both signing the message and
verifying by using Pentium Machine 800 MHs[19]. The results of this comparison is
described in table 5.

Table 5 Comparison of NTRUSign, ECDSA, RSA [19]

 NTRUSign-251 ECDSA-163 RSA-1024

Keygen (μs) 180,000 1424 500,000

Sign (μs) 500 1424 9090

Verify (μs) 303 2183 781

41

Juliet [20] proclaimed that because of the evolution of computer technologies
toward the quantum, the need for using alternative post quantum resistance like
NTRU is necessary. In the research, NTRU was stated to be a better alternative for
RSA and ECC as a result of being faster and lower consumption. The comparison of
performance between NTRU, ECC, and RSA was applied on server 800MHz Pentium
III processor Using C code, and portable device with the following results (see Table
6).

Table 6 Comparison of NTRU, ECC and RSA on a server and on a constrained device [20]

 Speed on server Speed on portable device

Function Units of
measurement

NTRU
251

ECC 163 RSA
1024

NTRU
251

ECC 163 RSA
1024

Encryption Block/sec 22727 48 1280 21 0.4 0.5

Decryption Block/sec 10869 55 110 12 1.3 0.036

The result shows that NTRU outperformed ECC in both the server and portable
device in encryption and decryption.

Seo [21] compared RSA, ECC and two post quantum cryptosystems NTRU and
Lizard. The comparison was in the speed of three parts: encryption, decryption, and
key generation. The implementation was written in C Code and tested on IMAC
with i7 CPU 3,7GHz. The security of each cryptosystem is around 128 bits. The
results were implemented thousands of times for accuracy and are displayed in
Table 7 and Figure 22.

Table 7 Encryption and decryption speeds of various cryptosystems [21]

42

From the above-mentioned data, it can be noticed that NTRU is faster than ECC in
encryption, decryption, and key generation.

Conclusion

Through the previous works, there is an agreement that NTRU has superior
performance and better efficiency. In addition, using NTRU postquantum
cryptosystems instead of ECC can enhance the capability of Blockchain.

43

Chapter 6: Accelerating propagation delay by using NTRU verification

process

Introduction

As previously mentioned, propagation delay is the main concept that is responsible
for issues like inconsistency, double spending, and majority attacks. Our focus here
in this chapter is to reduce the propagation delay by focusing on reducing
verification time. And that will be by using NTRUSign instead of ECDSA.

Proposed method

As mentioned in Chapter 5, the NTRUSign is more effective and powerful than
ECDSA. The proposed method depends on using NTRUSign to verify transactions
rather than using ECDSA. In this case, the verification time will be faster and
thereby accelerate propagation time between the nodes.

The model

The code was built by java code which simulates a network that contains several
nodes connected with each other. Figures 23-26 shows the structure of the
network. The red nodes represent that the nodes received the message but not
verify it yet.

Figure 22 The structure of the proposed method

44

Figure 23 The structure of the proposed method

Figure 24 The structure of the proposed method

45

Figure 25 The structure of the proposed method

In Figures 23-26, one of the nodes will create a message and sign it at first with
ECDSA and propagate it to all the nodes in the network and each node will verify
the message. The time will be taken from the start of the verification process until
the end of verification. After that, the same node will create another message and
sign it with NTRUSign. Then it will be propagated to all the nodes in the network
and each node will verify it. The times for NTRUSign also will be taken from the
start of the verification process until the end of the verification.

46

Implementation

In the simulator, we compared both the digital signature with a different number

of nodes and a different number of linked nodes. The code was implemented in

java by using Tbuktu NTRUSign [21] code and secp256k1 from BouncyCastle java

library. The implementation was based on windows10 64bit and processor intel

core i7 with RAM 12GB. The table below shows the different scenarios of testing.

Table 8 The five scenarios of the proposed method

First scenario

Number of linked nodes Total number of nodes in the network

5 100 1000 10,000 100,000

Second scenario

Number of linked nodes Total number of nodes in the network

10 100 1000 10,000 100,000

third scenario

Number of linked nodes Total number of nodes in the network

100 1000 10000 100,000 1000,000

Fourth scenario

Number of linked nodes Total number of nodes in the network

1000 10000 100,000 1000,000

Fifth scenario

Number of linked nodes Total number of nodes in the network

10,000 100,000 1000,000

The results

Each phase was implemented separately, the results for each scenario was put in
separate tables. Furthermore, the test was implemented 10 times for each number
of nodes. Then the average time was taken for the verification process in
milliseconds. The five phases in Table 8 have been ordered based on the number
of linked nodes which in the first phase will be 5 linked nodes, second 10 linked
nodes, third 100 linked nodes, fourth 1000 nodes, and lastly 10000 linked nodes.

47

First Scenario
Table 9 First scenario, 5 Linked Nodes

 Number of nodes

5 linked nodes 100 1000 10,000 100,000

 Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA

Minimum(ms) 23 44 231 370 2368 3606 23773 33663

Maximum(ms) 128 144 575 777 2731 5033 24851 37493

Total avg(ms) 53 69 280 520 2447 3787 24070 35008

Figure 26 NTRU and ECDSA comparison time with 5 linked nodes, 100 and 1000 Total nodes

0 100 200 300 400 500 600 700 800 900

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

0
1

0
0

0

Time (Ms)

N
u

m
b

er
 O

f
N

o
d

es

5 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

48

Figure 27 NTRU and ECDSA comparison time with 5 linked nodes, 100 and 1000 Total nodes

Second Scenario
Table 10 Second scenario, 10 Linked Nodes

 Number of nodes

10 linked
nodes

100 1000 10,000 100,000

 Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA

Minimum(ms) 14 27 204 309 2435 3001 22727 33608

Maximum(ms) 116 98 511 599 2790 4175 23061 35644

Total avg(ms) 54 65 243 403 2496 3157 22859 34726

Figure 28 NTRU and ECDSA comparison time with 10 linked nodes, 100 and 1000 Total nodes

0 5000 10000 15000 20000 25000 30000 35000 40000

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

,0
0

0
1

0
0

,0
0

0

Time (Ms)

N
u

m
b

er
 O

f
N

o
d

es
5 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

0 100 200 300 400 500 600 700

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

0
1

0
0

0

Time (Ms)

N
u

m
b

er
 o

f
N

o
d

es

10 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

49

Figure 29 NTRU and ECDSA comparison time with 10 linked nodes, 10,000 and 100,000 Total nodes

Third Scenario
Table 11 Third scenario, 100 Linked Nodes

 Number of nodes

100 linked
nodes

1000 10,000 100,000 1,000,000

 Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA Ntrusign ECDSA

Minimum(ms) 204 313 2388 2906 22218 32203 214391 324415

Maximum(ms) 537 615 2878 4091 23003 35411 217211 563841

Total avg(ms) 247 413 2466 3089 22504 33556 215451 362226

Figure 30 NTRU and ECDSA comparison time with 100 linked nodes, 1000 and 10,000 Total nodes

0 5000 10000 15000 20000 25000 30000 35000 40000

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

,0
0

0
1

0
0

,0
0

0

Time (Ms)

N
u

m
b

er
 o

f
N

o
d

es
10 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

0
0

1
0

,0
0

0

Time(Ms)

N
u

m
b

er
 O

f
N

o
d

es

100 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

50

Figure 31 NTRU and ECDSA comparison time with 100 linked nodes, 100,000 and 1000,000 Total nodes

Fourth Scenario
Table 12 Fourth scenario, 1000 Linked Nodes

 Number of nodes

1000
linked
nodes

10,000 100,000 1,000,000

 Ntrusign(ms) Ecdsa(ms) Ntrusign(ms) Ecdsa(ms) Ntrusign(ms) Ecdsa(ms)

Minimum 2268 3418 22994 36058 205251 300811

Maximum 2651 4718 23848 35266 208158 312789

Total avg 2366 3593 23233 35132 206597 303716

0 100000 200000 300000 400000 500000 600000

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

0
,0

0
0

1
,0

0
0

,0
0

0

Time(Ms)

N
u

m
b

er
 O

f
N

o
d

es
100 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ntrusign(ms)

Ecdsa(ms)

1
0

,0
0

0

Time(Ms)

N
u

m
b

er
 O

f
N

o
d

es

1000 linked nodes

Total avg Maximum Minimum

51

Figure 32 NTRU and ECDSA comparison time with 1000 linked nodes, 10,000 Total nodes

Figure 33 NTRU and ECDSA comparison time with 1000 linked nodes, 100,000 and 1000,000 Total nodes

Fifth Scenario
Table 13 Fifth scenario, 10000 Linked Nodes

 Number of nodes

10,000 linked nodes 100,000 1,000,000

 Ntrusign ECDSA Ntrusign ECDSA

Minimum(ms) 21869 31343 207249 304581

Maximum(ms) 22341 32436 209944 320736

Total avg(ms) 22055 31683 208219 311257

0 50000 100000 150000 200000 250000 300000 350000

Ntrusign(ms)

Ecdsa(ms)

Ntrusign(ms)

Ecdsa(ms)

1
0

0
,0

0
0

1
,0

0
0

,0
0

0

Time(Ms)

N
u

m
b

er
 O

f
N

o
d

es

1000 linked nodes

Total avg Maximum Minimum

52

Figure 34 NTRU and ECDSA comparison time with 10,000 linked nodes, 100,000 and 1000,000 Total nodes

Based on the five scenarios, it can be observed that NTRUSign outperformed
ECDSA by 32.06% on average after taking the percentage of all the processes.

0 50000 100000 150000 200000 250000 300000 350000

Ntrusign

ECDSA

Ntrusign

ECDSA

1
0

0
,0

0
0

1
,0

0
0

,0
0

0
10000 linked nodes

Total avg(ms) Maximum(ms) Minimum(ms)

53

Conclusion and future work

In this thesis, as mentioned in chapter 3, the propagation delay in Blockchain
networks can lead to several vital security issues like double spending attacks,
majority attacks, or forking. The proposed method is presented to change the
recent ECDSA digital signature to a NTRUSign digital signature with the goal of
speeding up the verification time and thereby minimizing propagation delay. By
doing this, most of those attacks can be avoided. The result of substituting ECDSA
with NTRUSign was satisfying because it shows an enhancement in the speed of the
verification process.

In future work, the protection of blockchain network from quantum computer
attacks will be focused on and increasing level of security in NTRU.

54

References
1. “A Cypherpunk’s Manifesto.” [Online]. Available:

https://www.activism.net/cypherpunk/manifesto.html.

2. “(weidai).” [Online]. Available: http://www.weidai.com/bmoney.txt. [Accessed: 07-Mar-2020].

3. “What Is Bit Gold? The Brainchild of Blockchain Pioneer Nick Szabo - CoinCentral.” [Online].

Available: https://coincentral.com/what-is-bit-gold-the-brainchild-of-blockchain-pioneer-nick-

szabo/.

4. Nakamoto, Satoshi, and A. Bitcoin. "A peer-to-peer electronic cash system." Bitcoin.–URL:

https://bitcoin. org/bitcoin. pdf (2008).

5. BLOCKCHAIN DECENTRALIZED TRUST. (Book)

6. “What is Ethereum? | Ethereum.org.” [Online]. Available: https://ethereum.org/what-is-

ethereum/. [Accessed: 07-Mar-2020].

7. Bitcoin PROGRAMMING THE OPEN BLOCKCHAIN.” (Book)

8. Li, Xiaoqi, et al. "A survey on the security of blockchain systems." Future Generation Computer

Systems (2017).

9. Moustapha, B. A. "The effect of propagation delay on the dynamic evolution of the Bitcoin

blockchain." Digital Communications and Networks (2019).

10. Decker, Christian, and Roger Wattenhofer. "Information propagation in the bitcoin network." IEEE

P2P 2013 Proceedings. IEEE, 2013.

11. “What is the math behind elliptic curve cryptography?” [Online]. Available:

https://hackernoon.com/what-is-the-math-behind-elliptic-curve-cryptography-f61b25253da3.

12. Hankerson, Darrel, Alfred J. Menezes, and Scott Vanstone. Guide to elliptic curve cryptography.

Springer Science & Business Media, 2006.

13. “Elliptic Curve Cryptography: a gentle introduction - Andrea Corbellini.” [Online]. Available:

https://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-introduction/..

14. Hoffstein, Jeffrey, Jill Pipher, and Joseph H. Silverman. "NTRU: A ring-based public key

cryptosystem." International Algorithmic Number Theory Symposium. Springer, Berlin,

Heidelberg, 1998.

15. Nitaj, Abderrahmane. "The Mathematics of the NTRU Public Key Cryptosystem." (2015).

16. Miri, Jamel, Bechir Nsiri, and Ridha Bouallegue. "Certificateless Scheme Based NTRU

Cryptosystem for Ad-Hoc UWB-IR Network." International Journal of Wireless & Mobile Networks

(IJWMN) Vol 9 (2017).

17. Nguyen, Hien Ba. An Overview On The Ntru Cryptographic System. Diss. Sciences, 2014.

18. Li, Daofeng, et al. "A New Self-Certified Signature Scheme Based on NTRUS ing for Smart

Mobile Communications." Wireless Personal Communications 96.3 (2017): 4263-4278.

19. Hoffstein, Jeffrey, et al. "NTRUSIGN: Digital signatures using the NTRU lattice." Cryptographers’

Track at the RSA Conference. Springer, Berlin, Heidelberg, 2003.

20. Gaithuru, Juliet N., and Majid Bakhtiari. "Insight into the operation of NTRU and a comparative

study of NTRU, RSA and ECC public key cryptosystems." 2014 8th. Malaysian Software

Engineering Conference (MySEC). IEEE, 2014.

55

21. Seo, William Yunsoo. "Comparing RSA ECC and post quantum cryptography." J. Math. Anal.

Appl. 10 (2018): 19-33.

22. “NTRU - Browse /NTRU 1.2 at SourceForge.net.” [Online]. Available:

https://sourceforge.net/projects/ntru/files/NTRU%201.2/. [Accessed: 25-Apr-2020].

23. Bi, Wei, Huawei Yang, and Maolin Zheng. "An accelerated method for message propagation in

blockchain networks." arXiv preprint arXiv:1809.00455 (2018).

24. Sudhan, Amool, and Manisha J. Nene. "Peer Selection Techniques for Enhanced Transaction

Propagation in Bitcoin Peer-to-Peer Network." 2018 Second International Conference on

Intelligent Computing and Control Systems (ICICCS). IEEE, 2018.

25. Bamert, Tobias, et al. "Have a snack, pay with Bitcoins." IEEE P2P 2013 Proceedings. IEEE,

2013.

26. Marçal, João, Luís Rodrigues, and Miguel Matos. "Adaptive information dissemination in the

Bitcoin network." Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.

2019.

27. Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is

vulnerable." International conference on financial cryptography and data security. Springer,

Berlin, Heidelberg, 2014.

28. Vallois, Valentin, and Fouad Amine Guenane. "Bitcoin transaction: From the creation to

validation, a protocol overview." 2017 1st Cyber Security in Networking Conference (CSNet).

IEEE, 2017.

29. Li, Xiaoqi, et al. "A survey on the security of blockchain systems." Future Generation Computer

Systems (2017)..

30. Yli-Huumo, Jesse, et al. "Where is current research on blockchain technology?—a systematic

review." PloS one 11.10 (2016): e0163477.

31. Zheng, Zibin, et al. "Blockchain challenges and opportunities: A survey." International Journal of

Web and Grid Services 14.4 (2018): 352-375.

32. “This tutorial describes how the NTRU Public Key Cryptosystem (PKCS) works,” 2014.

33. D. Drescher, Blockchain basics: A non-technical introduction in 25 steps. Apress Media LLC, 2017.

34. Sompolinsky, Yonatan, and Aviv Zohar. "Accelerating Bitcoin's Transaction Processing. Fast

Money Grows on Trees, Not Chains." IACR Cryptology ePrint Archive 2013.881 (2013).

35. Karame, Ghassan O., Elli Androulaki, and Srdjan Capkun. "Double-spending fast payments in

bitcoin." Proceedings of the 2012 ACM conference on Computer and communications security.

2012.

36. Kan, Jia, et al. "Boost Blockchain Broadcast Propagation with Tree Routing." International

Conference on Smart Blockchain. Springer, Cham, 2018.

