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Abstract

Coding theory is the study of methods for efficient and accurate transfer of information
from one place to another. In [14], T. Hurley proved that the group ring RG of a group
G of order n over a ring R is isomorphic to a certain ring of n × n matrices over R. This
representation enabled them to describe the unit and zero-divisors of the group ring in terms
of properties of these matrices, and where appropriate in terms of the determinate of the
matrices. Now, the coding matrices were determined for several classes of finite groups such
as cyclic [14], direct product [6], elementary-abelian [14], dihedral groups D2n [14] and the
general linear groups GL(2,F) [7]. In this study, we generalize Hurley’s theorem in [14] to
semi-direct product groups and hence, determine the coding matrices of these groups.
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Notations

q q = pn, n ≥ 1, n is a positive integer.
Fp The field with p elements, p is prime number.
Fq The field with q elements.
Fnq The n-dimensional vector space over Fq.
C The symbol of a code.(n, k, d)-code The parameters of a code.

wt(c) The weight of a codeword.
d(u, v) The distance between two codewords.
d(C) The minimum distance of the code C.
C⊥ The dual of the code C.
G Finite group of order n.
RG The group ring with the group G over the ring R.
M(G) The matrix of a group G.

M(RG,a) The RG-matrix corresponds to a group ring element.
M(RG) The ring of an RG-matrices.

Mn(R) and Rn×n The ring of (n × n) of matrices over R.
S The set of a basis for the submodule.∣S∣ The order of the set S.

G K S The set of elements of G which is not in S.
x A vector in Rn corresponds to x ∈ RG.
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Introduction

Claude Shannon [23] initiated the theory of Error-Correcting codes in connection with
problems in information theory and coding theory regarding the search of a reliable and
efficient transfer of digital information. Linear codes gained more attention from the work
of W. Hamming in 1950 [8]. An (n, k, d) code over a field F with q elements should have a
(reasonably) large size in order to encode a large number of source messages and on the other
hand should have a relatively large weight (minimum distance) d for detecting and correcting
large number of errors that may occur while transmission [21]. There are several types of
known codes such as HAMING CODES, HADAMARD CODES, REED-MULLER CODES,
REED SOLOMON CODES, BCH CODES and THE GOLAY CODES ,... etc. [19]. It turns
out that, for error-correcting properties, the most important types of codes are cyclic codes.

The first connection between codes and group rings of finite groups appeared in the
work of F. G. MacWilliams (1969) [17] in which cyclic codes were identified with ideals in
the group algebras of cyclic groups, consequently; two sided ideals in FG are named codes.
Since then the algebraic structure of the group ring has been deeply involved in the study
and constructions of codes. In particular properties of (central) primitive idempotents in the
group algebra of finite groups over finite fields are heavily used in codes construction
[2] , [5].

In (2006) T. Hurley [14] (starting with a coding matrix of the finite group G based
on an appropriate listing of its elements) proved that the group ring RG of a finite group
of order n over a ring R is isomorphic to certain well-defined ring of matrices and hence
gave a construction of codes from certain elements of the group ring such as units and zero
divisors [11] (his construction was applied to obtain binary codes from the group algebra
F2D2k). This allows matrix algebras to be used to produce codes by providing generating
and check matrices for codes. The coding matrices are known for several classes of groups
such as cyclic, elementary-abelian and dihedral groups D2k. In 2018, M. Hamed determined
the coding matrices for the general linear group GL(2, q) using its BN-pair structure [6]
, [7]. It turns out also that the coding matrix of the direct product group is the tensor
(Kronecker) product of the coding matrices of the individual groups in the product deducing
the corresponding known result for finite abelian groups.

The aim of this dissertation is to determine the coding matrix of the semi direct product
group G = Cn ×φC2 ; φ ∶ C2 → Aut(Cn) of two cyclic groups in order to generalize the known
result for the dihedral group D2n [14], which is known to be a semi direct product of the two
cyclic groups Cn,C2.
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Chapter 1

Codes; the concept and the main
problem

In this chapter, we define the linear code and the basic concept of codes, then we describe
codes by generating matrices and parity-check matrices. Finally, we explain the main prob-
lem of coding theory. All facts and results in this chapter can be found in [21], [20], [9]
and [10].

1.1 Linear Codes

Let Fq be the finite field of q elements, then Fnq will be an n-dimensional vector space over
Fq. A code C is defined to be a subset of Fnq and its elements called a codeword. If q = ∣C ∣ = 1
the code is called a trivial, If q = 2 a binary code and for q = 3 a ternary code, etc.

Definition 1.1.1. A code C is called linear if it is a subspace of Fnq .

If C has dimension k, then we say that C is an (n,k)-code and n the length of the code
C. The weight of any non zero codeword, denoted by wt(c), is equal to the number of its
non zero components, i.e.

wt(c) = ∣{ci ≠ 0 ∶ c = (c1, c2, . . . , cn) ∈ C, i = 1,2,⋯, n}∣
The minimum weight of the code is the minimum non zero weight of its codewords.
The minimum distance, or simply distance, of a code C, denoted by d(c), is defined to be
the minimum Hamming distance between two distinct codewords of C. That is,

d(c) =minci,cj∈C d(ci, cj)
The Hamming distance is a metric function, since it satisfies the three conditions:

1. d(u, v) = 0 if and only if u = v
1



2. d(u, v) = d(v, u)
3. d(u, v) ≤ d(u,w) + d(w,v)

For all u, v and w ∈ Fnq .
And if C has minimum distance d, we say that C is an (n,k,d)-code.The numbers n, k
and d are called the parameters of the linear code.

Note that

1. An (n, k)-code contains qk codewords, that is a linear code of dimension k contains
precisely 2k codewords ( Theorem 2.3.13 [10] ).

2. Clear by linear code definition, all linear codes contain the zero codewords, denoted by
0 = 000.....0.

3. And clear by linear code definition, a binary code is linear if and only if the sum of
any two codewords is a codeword.

Example 1.1.2. ( page 4 [9], page 29 [10] )
C1 = (00,01,10,11) is a linear (2,2)-code of F2

2
, C2 = (000,011,101,110) is a linear (3,2)-

code of F3

2
and C3 = (00000,01101,10110,11011) is a linear (5,2)-code of F5

2
.

But C4 = (000,001,101) is not a linear (3,2)-code, since 001 and 101 are in C4 but 001+101 =
100 is not in C4.
We have the minimum weight of C1 is 1 because

wt(00) = 0,wt(01) = 1,wt(10) = 1,wt(11) = 2
so the minimum distance of C1 is 1.

The following theorem relates the notion of the weight of a code with the minimum
distance.

Lemma 1.1.3. ( [21], Lemma 4.3.4 and [9], Lemma 5.1 )
If u, v ∈ F n

q , then d(u, v) = wt(u − v).
Theorem 1.1.4. ( [21], Theorem 4.3.5 and [9], Theorem 5.2 )
Let C be a linear code and let wt(C) be the minimum weights of the non zero codewords of
C, then

d(C) = wt(C).
Proof: There exist codewords u, v in C with u ≠ v, such that d(u, v) = d(C), then by

lemma above, d(C) = d(u, v) = wt(u − v) ⪰ wt(C).
Conversely, for some u ∈ C, wt(C) = wt(u) = wt(u − 0) = d(u,0) ⪰ d(C), since 0 belongs to
the linear code C, hence d(C) = wt(C).

2



1.2 Description of Codes

We can describe the linear code by a generator matrix. Since a linear code is a vector space.
and there is another important way of describing it, by a parity-check matrix.

1.2.1 The Generator Matrix of Linear Code

Definition 1.2.1. ( [21] )
Let C be an (n, k)-code and let G be a (k × n)-matrix whose rows are the basis for C, then
G is called a generator matrix for C.

A generator matrix of the form G = (Ik,A), where Ik is the identity matrix of size k × k,
and A is a k×(n−k) matrix, is said to be in standard form. Every linear code has a generator
matrix in standard form.
If G is a generator matrix for an (n, k)-linear code C and if i is a word of length k written
as a row vector, then c = iG is a word in C, since C is a linear combination of the rows of
G, which form a basis for C.

Example 1.2.2. G =
⎛⎜⎜⎜⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎟⎠
is a generator matrix for the binary linear

(7,4)-code in standard form and this code is called Hamming code. Such that

I4 =
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
,A =

⎛⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
1 1 1

⎞⎟⎟⎟⎠
This code consists of 24 codewords Z4

2
G, one of these codewords is the following

c = (1 1 1 0)
⎛⎜⎜⎜⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎟⎠
= (1 1 1 0 1 0 0)

A linear code might have more than one generator matrix, because it is vector space,
which is might have more than one basis.

Example 1.2.3. we have binary linear (5,2,3)-code

C3 =
⎛⎜⎜⎜⎝

0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

⎞⎟⎟⎟⎠
3



the possible generator matrix for C3 is G1 = (0 1 1 0 1
1 0 1 1 0

) or G2 = (0 1 1 0 1
1 1 0 1 1

)
or G3 = (1 0 1 1 0

1 1 0 1 1
) .

The following theorem and procedures give us convertible the matrix G to be in standard
form.

Theorem 1.2.4. ( [9], Theorem 5.5 )
Let G be a generator matrix of an (n, k)-code. Then by performing operations of the following
types:

(R1) Permutation of the rows.

(R2) Multiplication of a row by a non-zero scalar.

(R3) Addition of a scalar multiple of one row to another.

(C1) Permutation of the columns.

(C2) Multiplication of any column by a non-zero scalar.

G can be transformed to the standard form

(Ik,A),
where Ik is the (k × k) identity matrix, and A is a (k × (n − k)) matrix.

We denote by gij the (i, j)th entry of G and by r1, r2, ..., rk and c1, c2, ..., cn the rows and
columns respectively of this matrix. Suppose then G has already been transformed to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ⋯ 0 g1j ⋯ g1n
0 1 ⋯ 0 g2j ⋯ g2n⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 ⋯ 1 gi−1j ⋯ gi−1n
0 0 ⋯ 0 gij ⋯ gin⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 gkj ⋯ gkn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
step 1 If gij ≠ 0, go to step 2. If gij = 0, and if for some i > j, gij ≠ 0, then interchange rj and

ri. If gij = 0 and gij = 0 for all i > j, then choose h ; gih ≠ 0 and interchange ci and ch.

step 2 we now have gij ≠ 0. Multiply ri by g−1ij .

step 3 we now have gij = 1. For each of i = 1,2, ....., k , with i ≠ j, replace ri by ri − gijrj.

4



The column cj now has the desired form.
After this procedure has been applied for j = 1,2, ....., k , the generator matrix will have
standard form.
Consequently, the standard form of a generator matrix for C3 in the (example 1.2.3 ) is:

G1 = (0 1 1 0 1
1 0 1 1 0

)Ð→interchange (1 0 1 1 0
0 1 1 0 1

)
G2 = (0 1 1 0 1

1 1 0 1 1
)Ð→interchange (1 1 0 1 1

0 1 1 0 1
)Ð→r1→r1−r2 (1 0 1 1 0

0 1 1 0 1
)

G3 = (1 0 1 1 0
1 1 0 1 1

)Ð→r2→r2−r1 (1 0 1 1 0
0 1 1 0 1

).

1.2.2 The Parity-Check Matrix

Definition 1.2.5. Let u = (u1u2....un) and v = (v1v2....vn) be two vectors in Fnq , then the
inner product u.v is defined by:

u.v = u1v1 + u2v2 + .... + unvn.
If u.v = 0, then u and v are called orthogonal.

Now, we define the dual code as following.

Definition 1.2.6. Let C be an (n, k)-linear code, then the dual code C⊥ is defined by:

C⊥ = {u ∈ Fnq ∣u.v = 0 for all v ∈ C}
Theorem 1.2.7. ( [21], 5.1.3 )

1. If G is a generator matrix of C, then

C⊥ = {u ∈ Fnq ∣uGT = 0}
Where GT is the transpose of the matrix G,

2. The dual C⊥ of a linear (n, k)-code is a linear (n,n − k)-code ,

3. For any linear code C, we have C⊥⊥ = C.
Definition 1.2.8. ( [9] )
A parity-check matrix H for an (n, k)-code C is a generator matrix of C⊥.

Thus H is an ((n−k)×n)-matrix satisfying GHT = 0, where HT denotes the transpose of
H and 0 is an all zero matrix, it follows from theorem (1.2.7, (3)) that if H is a parity-check
matrix of C, then C = {x ∈ Fnq ∣xHT = 0}.
A parity-check matrix of the form H = (B∣In−k), where In−k is the identity matrix of size
n − k, is said to be in standard form.

The following theorem gives an easy way of constructing a generator matrix for a linear
code with given parity-check matrix (or vice versa).

5



Theorem 1.2.9. ( [9], 7.6 )
Let G = (Ik∣A) be the standard form generator matrix of an (n, k)-code C, then a parity-check
matrix for C is H = (−AT ∣In−k).
Example 1.2.10. The parity-check matrix H for the binary (Hamming) code defined in
example ( 1.2.2 ) is the following:

H = ⎛⎜⎝
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

⎞⎟⎠
Such that

GHT =
⎛⎜⎜⎜⎝

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎟⎠
.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎠
= 0

For example, if we take c = (0100011) ∈ C, then

cHT = (0100011)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (0 0 0) = 0.

We have some examples for binary codes given by generating matrix as follows:

6



Code Generating matrix
Hamming code

G =
⎛⎜⎜⎜⎝

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

⎞⎟⎟⎟⎠
for a (7,4,3)-Hamming code.

Golay code G =[I12,A], where I12 is (12 × 12)-identity matrix and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1
1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1 1 1
1 0 1 0 1 1 0 1 1 1 0
1 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for a (23,12,7)-Golay code.

Reed-Muller code

G =
⎛⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0

⎞⎟⎟⎟⎠
for a (8,4,4)-RM code, which is (1,3)-RM code such that n = 2m , k = ∑ri=0 (mi ) and d = 2m−r.

7



Hadamard code

G = ⎛⎜⎝
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎟⎠
for a (8,3,4)-Hadamard code.

BCH code

G =
⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 1 0 1 1 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
for a (15,5,7)-BCH code.

8



1.3 The Main Problem of Coding Theory

A good (n, k, d)-code should have a relatively large size, i.e. a small n, large k and large d.
So that it can be used to encode a large number of source messages and a large minimum
distance in order to correct a large number of errors. The bad things, is that these two
volumes are conflicting. Thus, the main problem is to determine what is the maximum size
of a linear code C over Fnq of length n and with a relatively large minimum distance.
We denoted by Aq(n, d) the largest value of k such that there exist a q-ary (n, k, d)-code.
Definition 1.3.1. A code C is called a q-ary code, if q = 2 or q = 3, the code is described as
a binary code or a ternary code respectively.

The problem is easily solved for d = 1 and d = n, for all q :

Theorem 1.3.2. ( [9], Theorem 2.1 )
For any n ≥ 1 ,

(i) Aq(n,1) = qn

(ii) Aq(n,n) = q

Proof. (i) For the minimum distance of a code to be at least 1, we require that the
codewords are distinct. And so the largest q-ary (n, k, d)-code is the whole of (Fq)n,
with k = qn.

(ii) Suppose C is a q-ary (n, k, d)-code, then any two distinct codewords of C differ in all
n position. Thus the symbols appearing in any fixed position. e.g. the first, in the k
codewords must be distinct, giving k ⪯ q. Thus Aq(n,n) ⪯ q. On the other hand, the
q-ary repetition code of length n (see example 1.3.7 and definition 1.3.8 bellow) is an(n, q, n)-code and so Aq(n,n) = q.

Theorem 1.3.3. ( [21], Theorem 4.5.2 )
For any n ≥ 1 ,

Aq(n, d) ≤ q Aq(n − 1, d)
Theorem 1.3.4. ( [21], Theorem 4.5.3 )
For binary codes,

A2(n,2t + 1) = A2(n + 1,2t + 2)
Put another way, if d is even, then A2(n, d) = A2(n − 1, d − 1).

Thus for binary codes, it is enough to determine A2(n, d) for all odd values of d (or for
all even values).

9



The following table of small values of A2(n, d) is taken from ( Hill , 1986 ) [9], which in
turn comes from ( Sloane , 1982 ) :

n d = 3 d = 5 d = 7
5 4 2 -
6 8 2 -
7 16 2 2
8 20 4 2
9 40 6 2
10 72-79 12 2
11 144-158 24 4
12 256 32 4
13 512 64 8
14 1024 128 16
15 2048 256 32
16 2560-3276 256-340 36-37

Here, we present some bounds for sizes of a linear code C.

Sphere Packing or (Hamming) Bound

Let C be an (n, k, d)-linear code, then
qk =∣ C ∣⪯ qn

∑ti=0 (ni)(q − 1)i
Where spheres of radius t = d − 1

2
, such that ∑ti=0 (ni)(q − 1)i is the number of vectors of

length n and have distance at most t from a certain codeword.
For given values of q, n and d, the sphere-packing bound provides an upper bound on the(n, k, d)-code.
Example 1.3.5. Suppose that n = 5 and d = 3, then t = 3 − 1

2
= 1, by using the Hamming

bound we get:

∣ C ∣⪯ 25

(2 − 1)[(5
0
) + (5

1
)] =

32

6
= 5,33

But, since C is binary, ∣ C ∣ should be a power of 2, thus k ⪯ 2 and hence ∣ C ∣⪯ 4.
Definition 1.3.6. A code C which achieves the sphere-packing bound (Hamming bound) is
called a perfect code.

Example 1.3.7. � The whole space Fnq = C which is (n,n,1)-linear code.

10



� The repetition code of odd length n which is (n,1, n) = Cn
Cn = {00...0,11...1}.

All of these examples are often called the trivial perfect codes.

Definition 1.3.8. The repetition code is one of the most basic error-correcting codes, the
idea of this code is to just repeat the message several times.

Singleton Bound

Let C be an (n, k, d)-code, then we have n − k ⪰ d − 1.
An (n, k, d)-code having the largest possible minimum weight d = n − k + 1 is called a maxi-
mum distance separable code or an MDS code.
This code the next upper bound for the code C and is often not very good since the singleton
bound in ( example 1.3.5 ) gives k ⪯ 3 while Hamming bound gives k ⪯ 2.

The Gilbert-Varshamov Bound

Let C be an (n, k, d)-code, then we have the lower bound as in the following theorem:

Theorem 1.3.9. ( [21], Theorem 4.5.4 )

qk =∣ C ∣⪰ qn

∑d−1i=0 (ni)(q − 1)i .
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Chapter 2

Group Rings as a Ring of Matrices

In this chapter, we revise the notion of the group ring RG of a finite group G over a ring R in
order to introduce a theorem due to T. Hurley which proves an embedding of the group ring
into a ring of matrices. This embedding is used to characterize the elements of the group
ring in terms of the properties of matrices and construct certain types of linear codes.

2.1 The Group Ring

Let G be a group and R be a ring with identity, the group ring RG is defined by:

RG = {∑
g∈G

αgg∣αg ∈ R}
Consider a = ∑g∈G αgg and b =∑g∈G βgg , then addition is defined term-by-term;

a + b = ∑
g∈G

(αg + βg)g,
While multiplication is a convolution-like operation,

ab = ∑
g,h∈G

(αgβh)gh.
If R is a field in the group ring RG, then RG is called a group algebra.
The following definitions can be found in [11], [4], [18] and [16].

Definition 2.1.1. � Let R be a ring, a non zero element u = ∑g∈Gαgg ∈ RG is called a
zero-divisor if and only if there exists a non zero v ∈ RG such that uv = 0 or vu = 0.

� Let R be a ring with identity IR ≠ 0, an element u ∈ RG is called a unit if and only if
there exists an element v ∈ RG, such that uv = 1 = vu. The group of units of RG is
denoted by U(RG).

Definition 2.1.2. � The transpose of an element u = ∑g∈Gαgg ∈ RG is uT = ∑g∈Gαgg−1
or equivalently uT =∑g∈Gαg−1g.
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� The support of a given element u =∑g∈Gαgg ∈ RG is the set

Supp(u) = {g ∈ G∣αg ≠ 0}.
� The element u ∈ RG is symmetric if and only if uT = u.

2.2 Coding Matrices for Finite Groups

Let G be a finite group of order n, and {g1, g2, ....., gn} be a fixed listing of the element of
G. Consider the matrix of G relative to its listing and denote it by M(G), which has the
following form:

M(G) =
⎛⎜⎜⎜⎝

g−1
1
g1 g−1

1
g2 . . . g−1

1
gn

g−1
2
g1 g−1

2
g2 . . . g−1

2
gn⋮ ⋮ ⋮ ⋮

g−1n g1 g−1n g2 . . . g−1n gn

⎞⎟⎟⎟⎠
n×n

Then for each u =∑ni=1 αgigi ∈ RG, define the matrix M(RG,u) ∈Mn(R) as follows:

M(RG,u) =
⎛⎜⎜⎜⎜⎝

αg−1
1
g1

αg−1
1
g2

. . . αg−1
1
gn

αg−1
2
g1 αg−1

2
g2 . . . αg−1

2
gn⋮ ⋮ ⋮ ⋮

αg−1n g1 αg−1n g2 . . . αg−1n gn

⎞⎟⎟⎟⎟⎠
n×n

It is quite clear that the shape as well as the coefficients of the coding matrix M(RG,u)
depends on the listing of the group elements of the group G.

2.3 Hurley’s Theorem

In [14], T. Hurley proved that the group ring RG of a group G of order n over a ring R is
isomorphic to a certain ring of (n × n) matrices over R.

Theorem 2.3.1. ( [14], Theorem 1 )
Let G be a group of order n with the given listing of the elements, then there is a bijective
ring homomorphism is given by

σ ∶ α Ð→M(RG,α)
between RG and the ring of (n × n) G-matrices over R.

Proof. Let {g1, g2, . . . , gn} be the listing of the elements of G and Let M(RG) be the ring of(n × n) G-matrices over R, relative to this listing of G. Suppose that a = ∑ni=1αgigi in RG
and define mapping:

σ ∶ RG Ð→M(RG)
13



such that,

σ(a) = M(RG,a) =
⎛⎜⎜⎜⎜⎝

αg−1
1
g1

αg−1
1
g2

.... αg−1
1
gn

αg−1
2
g1 αg−1

2
g2 .... αg−1

2
gn⋮ ⋮ ⋮ ⋮

αg−1n g1 αg−1n g2 .... αg−1n gn

⎞⎟⎟⎟⎟⎠
this mapping is obviously surjective, injective and additive. It is thus sufficient to show

that σ is multiplicative.
For that, let a = ∑ni=1αgigi and b =∑ni=1 βgigi be two elements in RG, such that:

σ(b) = M(RG, b) =
⎛⎜⎜⎜⎜⎝

βg−1
1
g1 βg−1

1
g2 .... βg−1

1
gn

βg−1
2
g1

βg−1
2
g2

.... βg−1
2
gn⋮ ⋮ ⋮ ⋮

βg−1n g1 βg−1n g2 .... βg−1n gn

⎞⎟⎟⎟⎟⎠
We want to prove that σ(a ∗ b) = σ(a) ∗ σ(b), where,

a ∗ b = ( n∑
i=1

αgigi)(
n∑
i=1

βgigi) =
n∑
i=1

( n∑
r,s=1

αgrβgs)gi
where, gr.gs = gi ⇐⇒ gs = g−1r gi
Therefore,

a ∗ b = n∑
i=1

( n∑
r=1

αgrβg−1r gi) gi =
n∑
i=1

γgigi , where γgi =
n∑
r=1

αgrβg−1r gi.

Which means that the coefficients of gi in the multiplication is that (αg1 , αg2 , . . . , αgn) times
the i − th columns of σ(b).Then,

σ(a) ∗ σ(b) =
⎛⎜⎜⎜⎜⎝

αg−1
1
g1 αg−1

1
g2 .... αg−1

1
gn

αg−1
2
g1 αg−1

2
g2 .... αg−1

2
gn⋮ ⋮ ⋮ ⋮

αg−1n g1 αg−1n g2 .... αg−1n gn

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

βg−1
1
g1 βg−1

1
g2 .... βg−1

1
gn

βg−1
2
g1 βg−1

2
g2 .... βg−1

2
gn⋮ ⋮ ⋮ ⋮

βg−1n g1 βg−1n g2 .... βg−1n gn

⎞⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎝

∑nr=1αg−1
1
grβg−1r g1 ∑nr=1αg−1

1
grβg−1r g2 .... ∑nr=1αg−1

1
grβg−1r gn∑nr=1αg−1

2
grβg−1r g1 ∑nr=1αg−1

2
grβg−1r g2 .... ∑nr=1αg−1

2
grβg−1r gn⋮ ⋮ ⋮ ⋮

∑nr=1αg−1n grβg−1r g1 ∑nr=1αg−1n grβg−1r g2 .... ∑nr=1αg−1n grβg−1r gn

⎞⎟⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎝

γg−1
1
g1 γg−1

1
g2 .... γg−1

1
gn

γg−1
2
g1

γg−1
2
g2

.... γg−2
2
gn⋮ ⋮ ⋮ ⋮

γg−1n g1 γg−1n g2 ... γg−1n gn

⎞⎟⎟⎟⎟⎠
= σ(a ∗ b).

Thus σ(a ∗ b) = σ(a) ∗ σ(b), and hence σ is a ring isomorphism as required.
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This isomorphism means that the group ring and the ring of matrices are interchangeable.
Thus we can exploit results from group rings and ring of matrices as needed.

From now on σ denotes the mapping σ as in Theorem ( 2.3.1 ).
The map θ ∶ RG→ Rn, θ(∑ni=1 αgigi) = (α1, α2, ..., αn) is a ring isomorphism from RG to Rn.
Thus every element in RG can be considered as n-tuple in Rn.
In a finite group algebra, every element must be a unit or zero-divisor, and there is a method
to determine which.

Corollary 2.3.2. ( [14], Theorem 2 and Corollary 3 )
Let R be an integral domain, i.e. a nonzero commutative ring, has identity IR and has no
zero-divisor, then:

� a ∈ RG is a unit if and only if σ(a) is a unit in M(RG).
� a ∈ RG is a zero-divisor if and only if σ(a) is a zero-divisor in M(RG).

Theorem 2.3.3. ( [14], Theorem 3 and [12], Theorem 5.2 )
Let R be a field, a non zero element a ∈ RG is a zero-divisor if and only if det(σ(a)) = 0,
and otherwise is a unit.

Proof. The proof of this theorem is a direct result of (Theorem 2.3.1) and (Corollary 2.3.2 ,
(1)).

The following useful result of this isomorphism.

Corollary 2.3.4. Let RG be a group ring, and a ∈ RG. If the inverse σ(a) of M(RG) exist,
then this inverse is an M(RG).
Proof. Consider σ(a) is invertible in Rn×n, then there exist an (n×n)-matrix U in Rn×n such
that σ(a).U = In×n. From (corollary 2.3.2) we get a is an invertible in RG, suppose that b
its inverse such that a ∗ b = 1RG. Hence, the isomorphism between the group ring and the
ring of matrices implies that σ(a) ∗ σ(b) = In×n, where σ(b) is an RG-matrix corresponding
to b. But, σ(a).U = In×n. Hence, σ(b) = U , and thus U is an RG-matrix.

Notation: For every element u ∈ RG, let the capital letter U denote its corresponding
RG-matrix σ(u).

2.4 Some Types of Coding Matrices

Cyclic Group

Let G = {1, g, g2, ...., gn−1} be a cyclic group of order n such that gn = 1. Then the RG-
matrix U relative to this listing corresponds to a circulant matrix; if u =∑ni=1αigi ∈ RG then
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M(RG,u) has the following form:

U = σ(u) =
⎛⎜⎜⎜⎝

αo α1 α2 . . . αn−1
αn−1 αo α1 . . . αn−2⋮ ⋮ ⋮ ⋮ ⋮
α1 α2 α3 . . . αo

⎞⎟⎟⎟⎠
where αi is the coefficient of gi in u.
Circulant matrices are special type of Toeplitz matrices.

Definition 2.4.1. A Toplitz matrix is a matrix in which each descending diagonal from left
to right is constant.

For instance, the following matrix is a Toeplitz matrix:

⎛⎜⎜⎜⎜⎜⎜⎝

a b c d e

f a b c d

g f a b c

h g f a b

i h g f a

⎞⎟⎟⎟⎟⎟⎟⎠
.

A Toeplitz matrix is not necessarily square.

Dihedral Group

Let G = D2n be the dihedral group of order 2n, such that D2n =< a, b ∶ a2 = bn = 1, a ∗ b =
b−1 ∗ a >. There are a number of listings of the elements of D2n but the following listing is
the most convenient

D2n = {1, b, b2, . . . , bn−1, a, ab, ab2, . . . , abn−1}
Then the matrix of D2n relative to this listing as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 b b2 . . . bn−1 a ab ab2 . . . abn−1

bn−1 1 b . . . bn−2 ab ab2 ab3 . . . a⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
b b2 b3 . . . 1 abn−1 a ab . . . abn−2

a ab ab2 . . . abn−1 1 b b2 . . . bn−1

ab ab2 ab3 . . . a bn−1 1 b . . . bn−2⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
abn−1 a ab . . . abn−2 b b2 b3 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Thus the ring of matrices of the following form is isomorphic to the group ring of D2n :
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αo α1 α2 . . . αn−1 βo β1 β2 . . . βn−1
αn−1 αo α1 . . . αn−2 β1 β2 β3 . . . β0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
α1 α2 α3 . . . α0 βn−1 β0 β1 . . . βn−2
βo β1 β2 . . . βn−1 αo α1 α2 . . . αn−1
β1 β2 β3 . . . β0 αn−1 αo α1 . . . αn−2⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
βn−1 β0 β1 . . . βn−2 α1 α2 α3 . . . α0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that these matrices have the form ( A B

B A
), where A is a circulant matrix and B

is a Hankel matrix of a special form ( or reverse circulant matrix ). In Chapter 3 we shall
prove a generalization of this fact for a semi-direct product group.

Definition 2.4.2. A Hankel matrix is a matrix which is constant on any diagonal from
upper right to lower left.

Finitely Generated Abelian Groups

In [4], from the fundamental theorem of finitely generated abelian group, a finite abelian
group is isomorphic to the direct product of finite number of cyclic groups. Hence, in this
case the group ring RG is isomorphic to the certain block-circulant matrices. Suppose that
G ≅ Cd1 ×Cd2 × . . . ×Cdr , where d1 , d2 , . . . , dr are positive integers. Let S be a sequence
S = (d1 , d2 , . . . , dr). Define a S-block circulant matrix over R as follows:
If S = (d1), then an S-block circulant matrix is a (d1 × d1)-circulant matrix. Now, suppose
r > 1 and S = (d1 , d2 , . . . , dr), then an S-block circulant matrix over R is a (dr × dr)-
circulant matrix, say U , where each entries in U is a (d1, d2, . . . , dr−1)-block circulant matrices.

Example 2.4.3. Let G = C2 ×C4 and R any ring. Then the group ring RG is isomorphic
to the ring of matrices over R of the form:

⎛⎜⎜⎜⎝

A1 A2 A3 A4

A4 A1 A2 A3

A3 A4 A1 A2

A2 A3 A4 A1

⎞⎟⎟⎟⎠
4×4

,

where A1,A2,A3 and A4, are (2×2)-circulant matrices. If we re-list the elements of G using
C2 ×C4 = C4 ×C2, then RG will be isomorphic to the ring of matrices of the form:

(B1 B2

B2 B1

)
2×2

,

where B1 and B2 are (4 × 4)-circulant matrices.

In this type of matrices over the commutative ring R are commute and normal.

Definition 2.4.4. A matrix M is said to be normal if and only if M∗M = MM∗, where
M∗ is the conjugate transpose of M .
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The Direct Product of Finite Group

In this case, M. Hammed [6] proved that the coding matrix of the direct product group is
the tensor ( Kronecker ) product of the coding matrices for the single groups appeared in
the direct product. It follows that the coding matrix of the finite abelian group is the tensor
product of circulant matrices.

Theorem 2.4.5. Let G and H be two finite groups then,

M(G ×H) = M(G) ⊗M(H).
Proof. Suppose that ∣G∣ = n, ∣H ∣ =m and let G = {g1 , g2 , . . . , gn}, H = {h1 , h2 , . . . , hm }
be the listing of the groups G and H respectively. Then we may take the following listing
for the elements of the direct product as:
G ×H = {(g1, h1) , (g1, h2) , . . . , (g1, hm) , (g2, h1) , (g2, h2) , . . . , (g2, hm) , . . . , . . . ,(gn, h1) , (gn, h2) , . . . , (gn, hm) }. Hence we have,

M(G×H) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g−1
1
g1, h

−1

1
h1) (g−11 g1, h−11 h2) . . . (g−1

1
g1, h

−1

1
hm) . . . . . . (g−1

1
gn, h

−1

1
hm)(g−1

1
g1, h

−1

2
h1) (g−11 g1, h−12 h2) . . . (g−1

1
g1, h

−1

2
hm) . . . . . . (g−1

1
gn, h

−1

2
hm)⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮(g−1

1
g1, h−1m h1) (g−11 g1, h−1m h2) . . . (g−1

1
g1, h−1m hm) . . . . . . (g−1

1
gn, h−1m hm)⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮(g−1n g1, h−1m h1) (g−1n g1, h−1m h2) . . . (g−1n g1, h−1m hm) . . . . . . (g−1n gn, h−1m hm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
nm×nm

On the other hand, we have:

M(G) =
⎛⎜⎜⎜⎝

g−1
1
g1 g−1

1
g2 . . . . . . g−1

1
gn

g−1
2
g1 g−1

2
g2 . . . . . . g−1

2
gn⋮ ⋮ ⋮ ⋮ ⋮

g−1n g1 g−1n g2 . . . . . . g−1n gn

⎞⎟⎟⎟⎠
n×n

,

and

M(H) =
⎛⎜⎜⎜⎝

h−1
1
h1 h−1

1
h2 . . . . . . h−1

1
hm

h−1
2
h1 h−1

2
h2 . . . . . . h−1

2
hm⋮ ⋮ ⋮ ⋮ ⋮

h−1m h1 h−1m h2 . . . . . . h−1m hm

⎞⎟⎟⎟⎠
m×m

.

Then the Kronecker product of M(G) and M(H) will be:

M(G) ⊗M(H) =
⎛⎜⎜⎜⎝

g−1
1
g1.M(H) g−1

1
g2.M(H) . . . . . . g−1

1
gn.M(H)

g−1
2
g1.M(H) g−1

2
g2.M(H) . . . . . . g−1

2
gn.M(H)⋮ ⋮ ⋮ ⋮ ⋮

g−1n g1.M(H) g−1n g2.M(H) . . . . . . g−1n gn.M(H)

⎞⎟⎟⎟⎠
nm×nm
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(g−1
1
g1, h

−1

1
h1) (g−11 g1, h−11 h2) . . . (g−1

1
g1, h

−1

1
hm) . . . . . . (g−1

1
gn, h

−1

1
hm)(g−1

1
g1, h

−1

2
h1) (g−11 g1, h−12 h2) . . . (g−1

1
g1, h

−1

2
hm) . . . . . . (g−1

1
gn, h

−1

2
hm)⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮(g−1

1
g1, h−1m h1) (g−11 g1, h−1m h2) . . . (g−1

1
g1, h−1m hm) . . . . . . (g−1

1
gn, h−1m hm)⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮(g−1n g1, h−1m h1) (g−1n g1, h−1m h2) . . . (g−1n g1, h−1m hm) . . . . . . (g−1n gn, h−1m hm)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
nm×nm

Which is equal to M(G ×H), and hence we get:

M(G ×H) = M(G) ⊗M(H)

As a consequence we have:

Corollary 2.4.6. M(Cn×Cm) = M(Cn) ⊗M(Cm), where Cn and Cm are the cyclic groups
of order n and m, respectively.

Corollary 2.4.7. The Kronecker product of two circulant matrices is block circulant.

Elementary Abelian Group

The matrix M(G) of a group G is symmetric if and only if G has exponent 2 which happens
if and only if G is elementary abelian of exponent 2. Then G ≅ Zn

2
which has order 2n and

rank n. To see the isomorphism in ( Theorem 2.3.1) we need a listing of the elements of the
elementary abelian 2-group G of rank n.
Suppose that G is generated by {g1, g2, . . . , gn} , then list the elements of G as:
1 , g1 , g2 , g1 ∗ g2 , g3 , g1 ∗ g3 , g2 ∗ g3 , g1 ∗ g2 ∗ g3 , g4 , . . . , . . . , . . . , g1 ∗ g2 ∗ . . . ∗
gn−1 , gn , . . . , . . . , . . . , g1 ∗ g2 ∗ . . . ∗ gn.
Then the group ring RG with this listing is isomorphic to Walsh-Toeplitz (2n ×2n)-matrices
over R.

Definition 2.4.8. Walsh-Toeplitz matrices of size (2n×2n) are defined to be matrices of the
form:

(A B

B A
)

where A and B are (2n−1 × 2n−1) Walsh-Toeplitz matrices. The diagonal of this matrices is
the initial element.
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So for example an (8 × 8) Walsh-Toeplitz matrix is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αo α1 α2 α3 βo β1 β2 β3
α1 αo α3 α2 β1 βo β3 β2
α2 α3 αo α1 β2 β3 βo β1
α3 α2 α1 αo β3 β2 β1 βo
βo β1 β2 β3 αo α1 α2 α3

β1 βo β3 β2 α1 αo α3 α2

β2 β3 βo β1 α2 α3 αo α1

β3 β2 β1 βo α3 α2 α1 αo

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In general, when G is elementary abelian p-group we will get an isomorphism between

RG and a ring of (pn × pn)-matrices over R. Thus define an elementary (pn × pn)-matrix as
follows:

Definition 2.4.9. An elementary (p × p)-matrix is a (p × p)-circulant matrix, and an ele-
mentary (pn × pn)-matrix, for n ≥ 2, is defined to be of the form:

(A B

B A
)

where A ,B are elementary (pn−1 × pn−1)-matrices.

General Linear Group GL(2, q)
And in this case, M. Hammed and A. Khammash determined the ring of matrices for the
general linear group GL(2, q) using its BN -pair structure with respect to the element listing
for GL(2, q) (see [7] , Theorem 7.2 ), which has the form of block circulant matrix.

2.5 Codes from Group Rings

In this section, we describe the structure of codes from unit and zero-divisor in group ring
RG and illustrate that with examples. Here all facts and results were done by P. Hurley and
T. Hurley in [14], [11], [17], [12] and [13] .

Definition 2.5.1. Let RG be the group ring of the group G over the ring R, where the listing
of the elements of G is given by {g1, g2, . . . , gn}. Suppose W is a submodule of RG, x ∈ W
and u ∈ RG is given. Then the group ring encoding is a mapping f ∶ W Ð→ RG such that
f(x) = xu or f(x) = ux. In the first case, f is a right group ring encoding and in the letter
case is a left group ring encoding.

Thus, a code C derived from a group ring encoding is the image of a group ring encoding,
for a given u ∈ RG, either C = {ux ∶ x ∈W} or C = {xu ∶ x ∈W}.
In the group ring the multiplication is not necessary be commute, and this allows the con-
struction of non-commutative.
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Definition 2.5.2. If xu = ux for all x, then the code C = {xu ∶ x ∈ W} is said to be
commutative, and otherwise non-commutative codes.

When u is a zero-divisor, it generates a zero-divisor code and when it is a unit, it generates
a unit-derived code.
when RG is finite and has an identity, only zero-divisors and units are contained in RG, this
is also true where R is a field by (Theorem 2.3.3 ).

2.5.1 Unit-Derived Codes

Let G be a group of order n with the given listing G = {g1, g2, . . . , gn}, and let u be a unit in
RG. Suppose that W a submodule of RG generated (as an R-module) by r group elements
S = {gk1, gk2 , . . . , gkr} such that r ≺ n and {k1, k2, . . . , kr} is a subset of {1,2, . . . , n}.

The unit-derived code is C = {ux ∶ x ∈ W} or C = {xu ∶ x ∈ W}. Thus the code is
constructed from a unit u, a submodule W and, when RG is not commutative, the chosen
of left or right encoding. In follows we assume that the encoding is on the right (x → xu),
and in the left case (x → ux) is similar and has the same procedure.
Now c ∈ C is a codeword if and only if cu−1 ∈ W i.e. c ∈ C if and only if the coefficients of
G ∖ S in cu−1 are zero.
A unit-derived code can also be considered a mapping from Rr to Rn. First, map a vector
x = (α1, α2, . . . , αr) ∈ Rr by λw(x) =∑ri=1αigki to an element x ∈W . Then a codeword xu ∈ C
is obtained which may be written xu =∑ni=1 βigi. This gives an encoding x ↦ (β1, β2, . . . , βn)
which is a map from Rr to Rn.
There is another equivalent code, which called the matrix-generated code D. This is a code
from Rr to Rn and has an (r × n) generated matrix A, which is a constructed by using
the RG-matrix U , and a check matrix constructed by using the RG-matrix V . Hence, the
matrix-generated code is given by D = {xA ∶ x ∈ Rr}. Therefore, C and D are equivalent and
they exhibit the same properties.

Generator and Check Matrices

Since u is a unit in RG, then there exist u−1 ∈ RG such that uu−1 = 1. Suppose that U,U−1

respectively are the corresponding (n × n) RG-matrices. Consider W to be the submodule
generated by S = {g1, g2, . . . , gr} with r ≺ n. (i.e. In this case we choose S to be the first
r elements of the given listing by G). Later we will describe the general case. An element
x ∈ W is thus of the form x = ∑ri=1 αigi. To construct the generator and check matrices for
the code C, we will follow the following procedure:

Divide the RG-matrix U as U = (A
B
) into block matrices where A is an (r × n)-matrix and

B is an ((n − r)×n)-matrix. Similarly, Let U−1 = (C D) where C is an (n × r)-matrix and
D is an (n × (n − r))-matrix.
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Since UU−1 = In , then AD = 0, where A is the generator matrix for the matrix generated
code. The following theorem shows that DT is a check matrix.

Theorem 2.5.3. ( [11], Theorem 5.1 )
Let y ∈ Rn and D = {xA ∶ x ∈ Rr}, then y ∈ D if and only if yD = 0.
Proof. Let y ∈ D, then there exist x ∈ Rr such that y = xA. since AD = 0, then clearly
yD = 0.
Conversely, let yD = 0,
y = yIn = y.UU−1 = y (C D)(A

B
) = (yC yD)(A

B
) = (yC 0)(A

B
) = yCA.

Now y is a vector in Rn and C is an (n × r)-matrix, then yC ∈ Rr and y = yUU−1 = xA for
some x ∈ Rr as required.

So, DT is a check matrix for the matrix-generated code D. Therefore, y is a codeword in
the matrix-generated code if and only ifDTyT = 0 if and only if yD = 0. The generator matrix
A and the check matrix DT produced from the RG-matrices U,U−1 and the submodule W
have full allowable rank r and n − r respectively. The RG-matrices of a units group ring
elements are non-singular matrices, and this property allows the construction of codes from
units. Hence, any non-singular matrix could produce a code by the above arguments.
When W is generated by a general basis S = {gk1, gk2 , . . . , gkr}, the generator and check
matrices are obtained by extracting and adding to certain rows and columns from U and
U−1. A generator matrix results from the (r × n)-matrix from the rows k1, k2, . . . , kr of
U . Additionally, consider D the ((n − r) × n)-matrix obtained by deleting the columns
k1, k2, . . . , kr columns of V . Then DT is a check matrix.

Dual and orthogonal codes

As previously, the dual of a code from a group ring encoding is given by C� = {y ∈ RG ∶ <
xu, y > = 0, ∀x ∈W}, and the concept of the transpose (definition 2.1.2), we will show that
the dual of a unit-derived code can be generated from (u−1)T as the following theorem.

Theorem 2.5.4. ( [11], Theorem 5.2 )
Let W be a submodule with basis of group elements S ⊂ G and W � be the submodule of
RG with basis G ∖ S. Let u ∈ RG be a unit such that uu−1 = 1. Then the dual code of
C = {xu ∶ x ∈W} is C� = {x(u−1)T ∶ x ∈W �}.
Proof. Let z ≠ 0 be an element in RG. We want to show that ≺ xu, z ≻= 0,∀x ∈W i.e. z ∈ C�
if and only if zuT ∈W �. Note that ≺ xu, y(u−1)T ≻=≺ x, y ≻. Thus, if zuT ∈W �, then for all
x ∈W , ≺ xu, z ≻=≺ x, zuT ≻= 0
Conversely, by contra-position, if zuT ∈W and choose an element g ∈ S which has a non-zero
coefficient γ in zuT . Then ≺ gu, z ≻=≺ g, zuT ≻= γ ≠ 0.

Unit-derived code is said to be a self-dual code if C and C⊥ are equivalent, or equivalently,
that resultant matrix-generated code D and D⊥ are equal.
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Definition 2.5.5. ( [11], 5.3)
An unit u ∈ RG is orthogonal if and only if its inverse is uT ( i.e. uuT = 1 ).

It is easy to see that the RG-matrix from an orthogonal unit u is an orthogonal matrix.

Example 2.5.6. Let R = Z2 = {0,1} be the finite field of two elements and G = S3 =≺ a, b ∣
a3 = b2 = 1, ba = a2b ≻= {1, a, a2, b, ab, a2b} be the symmetric group of order 6. Then the coding
matrices of S3 is:

× 1 a a2 a2b ab b

1 1 a a2 a2b ab b

a2 a2 1 a ab b a2b

a a a2 1 b a2b ab

a2b a2b ab b 1 a a2

ab ab b a2b a2 1 a

b b a2b ab a a2 1

Thus,

M(S3) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a a2 a2b ab b

a2 1 a ab b a2b

a a2 1 b a2b ab

a2b ab b 1 a a2

ab b a2b a2 1 a

b a2b ab a a2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6

And the group ring RG = Z2S3 = ∑g∈S3
αgg ∣ αg ∈ Z2 = {c0+c1a+c2a2+c3a2b+c4ab+c5b ; ci ∈

Z2},Such that (Z2S3,+, .) is F-algebra.
From T. Hurley’s theorem (2.3.1) : Z2S3 ↪M∣S3∣×∣S3∣ (Z2).
So, if u ∈ Z2S3 ; u = c0 + c1a + c2a2 + c3a2b + c4ab + c5b , then :

M(Z2S3, u) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 c4 c5
c2 c0 c1 c4 c5 c3
c1 c2 c0 c5 c3 c4
c3 c4 c5 c0 c1 c2
c4 c5 c3 c2 c0 c1
c5 c3 c4 c1 c2 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6

For the unit element u = 1+a+a2+ab+a2b ∈ U(Z2S3) there exists u−1 = 1+a+a2+ab+a2b
such that uu−1 = 1. Then we have M(Z2S3, u) as follows :

M(Z2S3, u) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6
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Also , from Hurley’s theorems : If R has an identity 1R , then u ∈ RG is a unit if and
only if σ(u) is a unit in Rn×n. Hence we have the invertible matrix as follows :

U = (A
B
) and V = (C D) such that UV = 16 in R6×6 .

Taking any r rows of U as a generator matrix define an (n, r) − code. Then we have

A = ⎛⎜⎝
1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1

⎞⎟⎠
3×6

,

B = ⎛⎜⎝
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

⎞⎟⎠
3×6

,

C =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
1 1 1
1 1 1
1 1 0
1 0 1
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×3

And

D =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 0 1
0 1 1
1 1 1
1 1 1
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×3

Such that

AC = BD = ⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠
3×3

And

AD = BC = ⎛⎜⎝
0 0 0
0 0 0
0 0 0

⎞⎟⎠
3×3

Then, UV = (A
B
) . (C D) = (AC AD

BC BD
) = ( I3 O3

O3 I3
) = I6×6 .

The linear code C of dimension k = 3, generated by the matrix

A = ⎛⎜⎝
1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 1 1

⎞⎟⎠
3×6

,
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is the unit derived code C = {ux ∣ x ∈W}, where S = {a} ⊂ G and W =≺ a ≻= {1, a, a2}. The
dual code C� is the linear code generated by the matrix

DT = ⎛⎜⎝
1 1 0 1 1 1
1 0 1 1 1 1
0 1 1 1 1 1

⎞⎟⎠
3×6

,

with dimension n − k = 3. The dual code can be considered as the submodule C� = {(u−1)Ty ∣
y ∈W ⊥}, where W ⊥ =≺ G − S ≻= {a2b, ab, b}.
So, C = {ux ∣ x ∈ W} = {1 + a + a2 + a2b + ab,1 + a + a2 + b + a2b,1 + a2 + a + ab + b},
θ(C) = {111110,111101,111011}, and C� = {(u−1)Ty ∣ y ∈ W ⊥} = {1 + a2b + ab + b + a,1 +
ab + b + a2b + a2, b + a2b + ab + b + a}, θ(C⊥) = {110111,101111,011111} .
Clearly, the matrix A is the generator matrix for an (6,3)−code, and DT is the parity-check
matrix for this code, since it is a generator matrix of C� as defined in (definition 1.2.8 ).

Definition 2.5.7. ( [16] )
A linear code with a complementary dual (or an LCD code) is defined to be a linear code C
whose dual code C� satisfies C ∩C� = {0}.

From the last example ( 2.5.6 ) :

θ(C) ∩ θ(C�) = {000000}
So, this is satisfy C ∩C� = 0, i.e. C is LCD code.

2.5.2 Zero-Divisors Codes

Let G be a group of order n with listing {g1, g2, . . . , gn}. Then the resultant code will be of
length n and its dimension depending on the choice of the submodule W .
Suppose that a zero-divisor is u ∈ RG, such that uv = 0 for some non-zero element v ∈ RG.
And W is a submodule of RG with basis of group elements S ⊆ G.
The zero-divisor code is C = {ux ∶ x ∈ W} = uW or C = {xu ∶ x ∈ W} = Wu. This code
constructed from a zero-divisor u, a submodule W , and when RG is non-commutative, the
chosen of right or left encoding. We will describe the right-encoding case, where the left one
is similar.
Consider u is a generator element of the code C =Wu relative to the submodule W . Also, C
may have another generator element and in fact may also be defined in terms of a different
submodule.
The particular traditional case in which the code is a left ideal, when C = Wu = RGu,
which means that rank(u) = rank(U) has the same rank or dimension as (Wu), when u is
a zero-divisor then rank(U) = r < n, and there is v ≠ 0 and thus y ∈ C satisfies yv = 0.
Definition 2.5.8. ( [12], Definition 5.8 )
An element v ∈ RG is said to be a (left) check element for a zero-divisor code C when y ∈ C
if and only if vy = 0. Then we can write C = {y ∈ RG ∶ vy = 0}.
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The code C may have more than one check element. Consider there is a set of check
elements v1, v2, . . . , vr, then y ∈ C if and only if yvi = 0 for 1 ≤ i ≤ t.
We note that in addition to using a zero-divisor as a generator, codes can also be constructed
by using a zero-divisor instead directly as a check element, regardless of whether the code
has one generator element or more.

Definition 2.5.9. ( [12], Definition 5.9 )
Suppose T is a submodule of RG. Define Tv = {x ∈ T ∣ xv = 0} and say Tv is the check
zero-divisor code relative to T .

Note that Tv is a submodule of RG and in the case where T = RG we have that the code
Tv is actually a left ideal.

Module

For the particular choice of module, now we restrict to the case when R is a field. Although
some of results hold over integral domains also for rings in general.

Definition 2.5.10. ( [11], Definition 5.10 )
Let T be a set of group ring elements T ⊂ RG, then T is linearly independent if ∑x∈T αxx =
0, for ax ∈ R, only when αx = 0,∀x ∈ T . Otherwise, T is linearly dependent.

We define rank(T ) to be the maximum number of linearly independent elements of T .
Thus rank(T ) = ∣T ∣ if and only if T is linearly independent.
A zero-divisors code C =Wu, where W is the submodule of RG generated by S ⊆ G, and all
element of C of the form ∑g∈S αggu. Thus the dimension of C is rank(Su).
If we require R to be a field, and Su is linearly dependent, then there exists S′u of Su
which is linearly independent and generates the same module as Su. So let W ′ to be the
submodule of W generated by S′, then the code C =Wu =W ′u, S′u is linearly independent.
Note that when we require Su is linearly independent this is equivalent to say thatW has no
zero-divisor of u. The maximum dimension a code for a given zero-divisor u is r = rank(Gu).
Example 2.5.11. Let R = Z2 = {0,1} be the finite field of two elements, and G = C3 =≺ g ∣
g3 = 1 ≻= {1, g, g2} be a cyclic group of order 3. Such that the coding matrices of C3 is:

M(C3) = ⎛⎜⎝
1 g g2

g2 1 g

g g2 1

⎞⎟⎠
3×3

And the group ring RG = Z2C3 = ∑g∈C3
αgg ∣ αg ∈ Z2 = {0,1, g, g2,1+g,1+g2, g+g2,1+g+g2}.

From T. Hurley’s theorem (2.3.1) : Z2C3 ↪M∣C3∣×∣C3∣ (Z2).
Suppose that u, v ∈ Z2C3 ; u = 1 + g and v = 1 + g + g2 such that u.v = (1 + g)(1 + g + g2) =
1+ g + g2 + g + g2 + 1 = 0, this mean that u is zero-divisor in Z2C3, then we have M(Z2C3, u)
as follows:

U =M(Z2C3, u) = ⎛⎜⎝
1 1 0
0 1 1
1 0 1

⎞⎟⎠
3×3
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And,

V =M(Z2C3, v) = ⎛⎜⎝
1 1 1
1 1 1
1 1 1

⎞⎟⎠
3×3

Let W be the submodule of Z2C3 generated by S = {1, g} i.e. W =≺ S ≻= {0,1, g,1 + g}.
Then (Su) = {1, g}(1 + g) = {1 + g, g + g2} and so rank(Su) = 2. Then a zero-divisor code
is C = {ux ∣ x ∈ W} = {0,1 + g, g + g2,1 + g2}. Thus θ(C) = {000,110,011,101} is a (3,2,2)
binary cyclic linear code.
The generator matrix of this code is

G = (1 1 0
0 1 1

)
2×3

and the parity-check matrix is

HT = ⎛⎜⎝
1 1
1 1
1 1

⎞⎟⎠
3×2

,

such that G.HT = 0 as follows:

(1 1 0
0 1 1

) .⎛⎜⎝
1 1
1 1
1 1

⎞⎟⎠ = (
0 0
0 0
) .
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Chapter 3

Coding Matrices for the Semi-Direct
Product Groups

In this chapter, we explain the definition of the semi-direct product group. And generalize
some known results for semi-direct product groups of cyclic groups.

3.1 The Semi-Direct Product Groups

In group theory, a semi-direct-product is a generalization of the direct product which ex-
presses a group as a product of subgroups. Such that G is a direct product of two groups if
contains normal subgroups N1,N2 ; N1 ∩N2 = {e} and G = N1N2. While G is a semi-direct
product of two groups if it contains subgroups H and K ; H ⊲ G , H ∩K = {e} and that
G =HK ( i.e. every element ofHK can be written uniquely as a product hk ,∀ h ∈ H , k ∈K
- by proposition 8 in [4] ).
Since H is a normal in G, the group K acts on H by conjugation: k.h = khk−1 for h ∈
H , k ∈K.

Definition 3.1.1. ( [22], Definition 9.1)
Let H and K be groups and K acts on H if to each h ∈ H and k ∈ K there corresponds a
unique element hk = hk ∈ H such that ∀ h1, h2 ∈ H and k1, k2 ∈ K , (hk1)k2 = hk1k2, h1 = h
and (h1h2)k = hk1hk2.

This definition means that there is a homomorphism φ ; φ ∶ K Ð→ Aut(H), defined by
φ ∶ K z→ φk and we call φ the automorphism representation of K corresponding to the
action (or simply, call φ the action).

Theorem 3.1.2. ( [4], Theorem 10 in ch 5)
Let H and K be groups and let φ be a homomorphism , φ ∶K Ð→ Aut(H) and let denote the
action of K on H determined by φ. Suppose that G is the set of ordered pairs (h, k) with
h ∈H and k ∈K and define the following multiplication on G:

(h1, k1)(h2, k2) = (h1φk1h2 , k1k2).
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such that:

1 � This multiplication makes G into a group of order ∣G∣ = ∣H ∣ ∣K ∣.
2 � The sets {(h,1) ∣ h ∈ H} and {(1, k) ∣ k ∈ K} are subgroups of G and the maps

hz→ (h,1) , k z→ (1, k) are
H ∶ hz→ (h,1) ≅ {(h,1) ∣ h ∈H} ≤ G,
K ∶ k z→ (1, k) ≅ {(1, k) ∣ k ∈K} ≤ G

for all h ∈ H and k ∈K.
by (2 �), then we have:

3 � H ⊴ G
4 � H ⋂K = 1
5 � for all h ∈ H and k ∈ k , khk−1 = kh = φk(h) where φk ∶ h z→ h.

The proof of this theorem is clearly in [4] .
So the group described in above theorem is called the semi-direct product as following:

Definition 3.1.3. ( [22] and [4] )
Let H and K be groups and let φ be a homomorphism,

φ ∶K Ð→ Aut(H)
Then the semi-direct product of H and K with respect the action φ is the group G containing
of ordered pairs (h, k) with h ∈ H and k ∈K defined by:

(h1, k1)(h2, k2) = (h1φk1h2 , k1k2)
Where φk(h) = kh = khk−1, ∀ h ∈H , k ∈K.

Denote of semi-direct product by H ⋊φK (or simply, write H ⋊K).

Example 3.1.4. Let G = S3, let N be the normal subgroup of order 3 generated by a 3-cycle,
and let H be a subgroup of order 2 generated by a 2-cycle. Then G = N ⋊H. This example
generalizes a long two different lines:

1 � Let G = Sn , N = An and H a subgroup of order 2 generated by a 2-cycle. Then
G = N ⋊H.

2 � Let G = D2n , the dihedral group of order 2n. Then let N = Cn and H = C2. Then
D2n ≅ Cn ⋊C2.

In the next section, we shall generalize ( theorem 8 of [14] ) to semi-direct product group
of cyclic groups in the light of ( example 3.1.4, (2) ) above.
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3.2 Coding Matrices of Semi-Direct Product Groups

According to ( [14] ,Theorem 8 ), the coding matrices of the dihedral group D2n ≅ Cn ⋊C2 is

known to be of the form (A B

B A
) (where A is a circulant matrix and B is an (n×n) Hankel-

type-matrix). This can to be generalized to the semi-direct product groups G = Cn ⋊C2.

A circulant matrix is special type of Toeplitz matrix, which is one that is constant a long
any diagonal running from upper left to lower right as defined in ( definition 2.4.1 ).

While a (general) Hankel matrix is one which is constant on any diagonal from upper
right to lower left as defined in( definition 2.4.2 ).

Consider G = Cn ⋊ Cm; Cn ◁G of two groups Cn =< x >= {x ∣ xn = 1} and Cm =< y >={y ∣ ym = 1}. We may list the elements of the semi-direct product Cn ⋊ Cm as follows:
xiyj ; 0 ⩽ i ⩽ n − 1, 0 ⩽ j ⩽m − 1 :

1, x, x2, . . . , xn−1 , y, xy, x2y, . . . , xn−1y , y2, xy2, x2y2, . . . , xn−1y2 , . . . . . . . . . ,

ym−1, xym−1, x2ym−1, . . . , xn−1ym−1 .

( m blocks each with n elements).
This product defined by the action of Cm on Cn (or group homomorphism) given by φ ∶
Cm Ð→ Aut(Cn) ; Cn ⋊ Cm = {xiyj ∶ xi ∈ Cn , yj ∈ Cm ∣ xiyj.xsyt = xiφyjxs.yjyt}. The
inverse of the element xiyj in Cn ⋊Cm is φ(m−j)xn−i.ym−j.

In fact, the automorphism group Aut(Cn) is one to one correspondence with the set{xr ∣ hcf(n, r) = 1} of generators of Cn, so ∣Aut(Cn)∣ = ϕ(n) , where ϕ is the Euler function.

Definition 3.2.1. The Euler ϕ-function is defined as: for n ∈ Z+, let ϕ(n) be the number
of positive integers a ⩽ n with (a,n) = 1.

Here, the non-identity element of C2 acts on Cn by inverting elements; this is an auto-
morphisms since Cn is an abelian, and the presentation for this group is:

< xy∣xn = ym = 1, yxy−1 = x−1 >
More generally, a semi-direct product of any two cyclic groups Cn with generator x and
Cm with generator y is given by one extra relation, yxy−1 = xk, with (k,n) = 1, where
Aut(Cn) ∶ x Ð→ xk for some k; that is, the presentation:

< xy∣xn = ym = 1, yxy−1 = xk >
If yr is a generator of Cm and (r,m) = 1, hence we have the presentation:

< xy∣xn = ym = 1, yrxyr−1 = xkr > .
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Now, taking the trivial homomorphism φ ∶ Cm Ð→ Aut(Cn); Cm ↦ ICn
gives the direct

product G = Cn ⋊Cm = Cn ×Cm.
Now, consider G = Cn ⋊ Cm, we need to know when there is a non-trivial homomorphism
φ ∶ Cm Ð→ Aut(Cn) but since Aut(Cn) ≅ Cϕ(n) and since Hom(Cm,Cϕ(n)) ≅ Chcf(m,ϕ(n) ) we
have the following:

Lemma 3.2.2. There is a non-trivial homomorphism φ ∶ Cm Ð→ Aut(Cn) iff
hcf(m,ϕ(n)) ≠ 1.
Proof. We have Hom(Cm,Cϕ(n)) ≅ Chcf(m,ϕ(n) ).
If hcf( m,ϕ(n) ) = 1 then Hom(Cm,Cϕ(n)) ≅ C1 the trivial subgroup and so the only
element φ ∈ Hom(Cm,Cϕ(n)) is the trivial one given by φ(y) = ICn

. Conversely, suppose
that hcf(m,ϕ(n)) ≠ 1, to define φ ∈ Hom(Cm,Cϕ(n)) by φ(y) ∶ x z→ xt (where 1 ≤ t <
ϕ(n) with hcf(t,ϕ(n)) ≠ 1 in order for xt to be a generator for Cϕ(n)), we must have
order(φ(y)) ∣ m (as ym = 1) and order(φ(y)) ∣ ϕ(n) (as φ(y) ∈ Cϕ(n)). But this is possible
since hcf(m,ϕ(n)) ≠ 1.

So for example there will be no non-trivial semi-direct product Cn⋊Cm (i.e. different from
the direct product Cn×Cm) if hcf(m,ϕ(n)) = 1, for instance C4⋊C3 the only homomorphism
φ ∶ C3 Ð→ Aut(C4) is the one, which takes y ∈ Cm =< y > to the identity IC4

∈ Aut(C4) =<
θ3 >= {IC4

, θ3}; θ3 ∶ xz→ x3 = x−1, therefore the only semi-direct product C4⋊C3 is the direct
product C4 ×C3. We consider another following example:

Example 3.2.3. Consider the semi-direct product G = C7 ⋊C3, where φ ∶ C3 Ð→ Aut(C7) ≅
C6. In fact Aut(C7) = {θi∣i = 1,2,3,4,5,6} =< θ3 >=< θ5 >≅ C6 ; i.e. order(θ3) = order(θ5) =
6, while order(θ2) = order(θ4) = 3 and order(θ6) = 2. Therefore we may take φi ∶ C3 Ð→

Aut(C7) to be the group homomorphism (or the action of C3 on C7) defined as (φi(y) =
θi; i = 1,2,4), since order(y) = 3 ∣ order(θi); i = 1,2,4.
Clearly φ1(y) = θ1 = IC7

will induce the direct product C7 × C3. (In fact it is easy to prove
from the relations that C7 ⋊φ4 C3 ≅ C7 ⋊φ2 C3). So we take φ2(y) = θ2 ∶ xz→ x2 and consider
the semi-direct product group G = C7 ⋊φ2 C3 =< xy∣x7 = y3 = 1, yxy−1 = x2 >, generally
G = C7 ⋊φi C3 =< xy∣x7 = y3 = 1, yxy−1 = xi; i = 1,2,4 >.

In the following examples, we will clarify the coding matrices of Cn ⋊C2 .
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Example 3.2.4. The semi-direct product of two cyclic groups C3 ⋊ C2 ; C3 =≺ x ∣ x3 =
1 ≻= {1, x, x2} and C2 =≺ y ∣ y2 = 1 ≻= {1, y}. The listing of elements of C3 ⋊ C2 are :
1, x, x2, y, xy, x2y. And we have non-trivial homomorphism since (2, ϕ(3) ) = (2,2) = 2 ≠ 1,
the action of C2 on C3 given by φ ∶ C2 → Aut(C3), such that Aut(C3) is φ ∶ C3 Ð→ C3 ;∣ Aut(C3) ∣= ϕ(3) = 2, hence we have Aut(C3) = {φ1 ∶ x Ð→ x , φ2 ∶ x Ð→ x2}.

At φ1 give us the semi-direct product as a direct product, but at φ2 give us the semi-direct
product with the presentation < xy∣x3 = y2 = 1, yxy−1 = x−1 > ; C3 ⋊C2 = { xy ∶ x ∈ C3 , y ∈
C2 ∶ x1y1.x2y2 = x1φy1(x2).y1y2 } and the inverse of the element yx is (φy−1(x−1).y−1) as
following:

at φ1

× 1 x x2 y xy x2y

1 1 x x2 y xy x2y

x2 x2 1 x x2y y xy

x x x2 1 xy x2y y

y y xy x2y 1 x x2

x2y x2y y xy x2 1 x

xy xy x2y y x x2 1

and at φ2

⋊ 1 x x2 x2y xy y

1 1 x x2 x2y xy y

x2 x2 1 x xy y x2y

x x x2 1 y x2y xy

x2y x2y xy y 1 x x2

xy xy y x2y x2 1 x

y y x2y xy x x2 1

Note that the coding matrices of the semi-direct product group C3 ⋊C2 is known to be
of the form

(A B

B A
)
6×6

Where A is an (3 × 3) circulant matrix and B is an (3 × 3) Hankel-type-matrix.

Example 3.2.5. If we take another example C4 ⋊C2 ; C4 =≺ x ∣ x4 = 1 ≻= {1, x, x2, x3} and
C2 =≺ y ∣ y2 = 1 ≻= {1, y}. The listing of elements of C4 ⋊C2 are : 1, x, x2, x3, y, xy, x2y, x3y.
And we have non-trivial homomorphism since (2, ϕ(4) ) = (2,2) = 2 ≠ 1, so the action of C2

on C4 given by φ ∶ C2 → Aut(C4), such that Aut(C4) is φ ∶ C4 Ð→ C4 ; ∣ Aut(C4) ∣= ϕ(4) = 2,
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hence we have Aut(C4) = {φ1 ∶ x Ð→ x , φ3 ∶ x Ð→ x3}
At φ1 give us the semi-direct product as a direct product, but at φ3 give us the semi-direct

product with the presentation < xy∣x4 = y2 = 1, yxy−1 = x−1 > ; C4 ⋊C2 = { xy ∶ x ∈ C4 , y ∈
C2 ∶ x1y1.x2y2 = x1φy1(x2).y1y2 } and the inverse of the element yx is (φy−1(x−1).y−1) as
following:

at φ1

× 1 x x2 x3 y xy x2y x3y

1 1 x x2 x3 y xy x2y x3y

x3 x3 1 x x2 x3y y xy x2y

x2 x2 x3 1 x x2y x3y y xy

x x x2 x3 1 xy x2y x3y y

y y xy x2y x3y 1 x x2 x3

x3y x3y y xy x2y x3 1 x x2

x2y x2y x3y y xy x2 x3 1 x

xy xy x2y x3y y x x2 x3 1

and at φ3

⋊ 1 x x2 x3 x3y x2y xy y

1 1 x x2 x3 x3y x2y xy y

x3 x3 1 x x2 x2y xy y x3y

x2 x2 x3 1 x xy y x3y x2y

x x x2 x3 1 y x3y x2y xy

x3y x3y x2y xy y 1 x x2 x3

x2y x2y xy y x3y x3 1 x x2

xy xy y x3y x2y x2 x3 1 x

y y x3y x2y xy x x2 x3 1

Note that the coding matrices of the semi-direct product group C4 ⋊ C2 is known to be
of the form

(A B

B A
)
8×8

Where A is an (4 × 4) circulant matrix and B is an (4 × 4) Hankel-type-matrix.

Example 3.2.6. Also, if we take an example C7⋊C2 ; C7 =≺ x ∣ x7 = 1 ≻= {1, x, x2, x3, x4, x5, x6}
and C2 =≺ y ∣ y2 = 1 ≻= {1, y}. The listing of elements of C7⋊C2 are : 1, x, x2, x3, x4, x5, x6, y, xy,
x2y, x3y, x4y, x5y, x6y. And we have the non-trivial homomorphism since (2, ϕ(7)) = (2,6) =
2 ≠ 1, so the action of C2 on C7 given by φ ∶ C2 → Aut(C7) ≅ C6, such that Aut(C7) is
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{θi ∣ i = 1,2,3,4,5,6}, here this action defines as φi(y) = θi ∣ i = 1,6, since order(y) = 2 ∣
order(θi); i = 1,6.

At φ1 give us the semi-direct product as a direct product, but at φ6 ∶ x z→ x6 give us
the semi-direct product with the presentation < xy∣x7 = y2 = 1, yxy−1 = x−1 > ; C7 ⋊ C2 ={ xy ∶ x ∈ C7 , y ∈ C2 ∶ x1y1.x2y2 = x1φy1(x2).y1y2 } and the inverse of the element yx is(φy−1(x−1).y−1) as following:

at φ6

⋊ 1 x x2 x3 x4 x5 x6 x6y x5y x4y x3y x2y xy y

1 1 x x2 x3 x4 x5 x6 x6y x5y x4y x3y x2y xy y

x6 x6 1 x x2 x3 x4 x5 x5y x4y x3y x2y xy y x6y

x5 x5 x6 1 x x2 x3 x4 x4y x3y x2y xy y x6y x5y

x4 x4 x5 x6 1 x x2 x3 x3y x2y xy y x6y x5y x4y

x3 x3 x4 x5 x6 1 x x2 x2y xy y x6y x5y x4y x3y

x2 x2 x3 x4 x5 x6 1 x xy y x6y x5y x4y x3y x2y

x x x2 x3 x4 x5 x6 1 y x6y x5y x4y x3y x2y xy

x6y x6y x5y x4y x3y x2y xy y 1 x x2 x3 x4 x5 x6

x5y x5y x4y x3y x2y xy y x6y x6 1 x x2 x3 x4 x5

x4y x4y x3y x2y xy y x6y x5y x5 x6 1 x x2 x3 x4

x3y x3y x2y xy y x6y x5y x4y x4 x5 x6 1 x x2 x3

x2y x2y xy y x6y x5y x4y x3y x3 x4 x5 x6 1 x x2

xy xy y x6y x5y x4y x3y x2y x2 x3 x4 x5 x6 1 x

y y x6y x5y x4y x3y x2y xy x x2 x3 x4 x5 x6 1

Note that the coding matrices of this product group is known to be of the form

(A B

B A
)
14×14

Where A is an (7 × 7) circulant matrix and B is an (7 × 7) Hankel-type-matrix.

In general, the following example describes the coding matrix for the dihedral group as
semi-direct product group.

Example 3.2.7. Cn ⋊ C2 ≅ D2n such that Cn =≺ x ∣ xn = 1 ≻= {1, x, x2, . . . , xn−1}, C2 =≺
y ∣ y2 = 1 ≻= {1, y}, the listing of elements of Cn⋊C2 are : 1, x, x2, ..., xn−1, y, xy, x2y, ..., xn−1y.
And there is a non-trivial homomorphism since (2, ϕ(n) ) ≠ 1, so the action of C2 on Cn
given by φ ∶ C2 Ð→ Aut(Cn) ; Aut(Cn) ∶ φ ∶ Cn Ð→ Cn,∣ Aut(Cn) ∣= ϕ(n), hence we have Aut(Cn) = {φ1 ∶ xÐ→ x , φn−1 ∶ x Ð→ xn−1}.
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Cn ⋊ C2 = { xy ∶ x ∈ Cn , y ∈ C2 ∶ x1y1.x2y2 = x1φy1(x2).y1y2 }, and the inverse of the
element yx is (φy−1(x−1).y−1).
At φ1 give us the semi-direct product as a direct product, but at φn−1 give us the semi-direct
product groups as following:

at φ1

× 1 x x2 .. xn−1 y xy x2y .. xn−1y

1 1 x x2 .. xn−1 y xy x2y .. xn−1y

xn−1 xn−1 1 x .. xn−2 xn−1x y xy .. xn−2y

xn−2 xn−2 xn−1 1 .. xn−3 xn−2y xn−1y y .. xn−3y

: : : : : : : : : : :
x x x2 x3 .. 1 xy x2y x3y .. y

y y xy x2y .. xn−1y 1 x x2 .. xn−1

xn−1y xn−1y y xy .. xn−2y xn−1 1 x .. xn−2

xn−2y xn−2y xn−1y y .. xn−3y xn−2 xn−1 1 .. xn−3

: : : : : : : : : : :
xy xy x2y x3y .. y x x2 x3 .. 1

and at φn−1

⋊ 1 x x2 .. xn−1 xn−1y .. x2y xy y

1 1 x x2 .. xn−1 xn−1y .. x2y xy y

xn−1 xn−1 1 x .. xn−2 xn−2y .. xy y xn−1y

xn−2 xn−2 xn−1 1 .. xn−3 xn−3y .. y xn−1y xn−2y

: : : : : : : : : : :
x x x2 x3 .. 1 y .. x3y x2y xy

xn−1y xn−1y xn−2y xn−3y .. y 1 .. xn−3 xn−2 xn−1

: : : : : : : : : : :
x2 x2 xy y .. x3y x3 .. 1 x x2

xy xy y xn−1y .. x2y x2 .. xn−1 1 x

y y xn−1y x2y .. xy x .. xn−2 xn−1 1

Note that the coding matrices of the semi-direct product group Cn ⋊C2 is known to be
of the form

(A B

B A
)

Where A is an (n × n) circulant matrix and B is an (n × n) Hankel-type-matrix.

Summarizing, we have the following theorem which describes the coding matrices for the
semi-direct product of Cn ⋊C2.
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Theorem 3.2.8. Let G = Cn ⋊ C2 be a semi direct product of two cyclic groups, such that
Cn ◁G , Cn =≺ x ≻ and Cm =≺ y ≻ depends of the action on the normal subgroup ( or the
automorphism ). Then we may choose a listing for the group G according to which its coding
matrix will have the form

(A B

B A
)

Where A is an (n × n) circulant matrix and B is an (n × n) Hankel-type-matrix.

All automorphisms will give rise to the same form, and note that there is a transfer map
from one matrix to another matrix coming from two automorphisms as following:

Theorem 3.2.9. If G = Cn ⋊φ C2 and G = Cn ⋊ψ C2 ; φ,ψ ∈ Aut(Cn) , φ is trivial automor-
phism and ψ is any automorphism. Then there is a transfer map from the coding matrices
of Cn ⋊φ C2 to the coding matrices of Cn ⋊ψ C2, Tφ→ψ ∶M(Cn ⋊φ C2)→M(Cn ⋊ψ C2) defined
by Tφ→ψ(xiyj) = ψ(xi).yj such that xiyj ∈ Cn ⋊φ C2 and yj is the non-identity element of C2,
1 ⪯ i ⪯ n and 1 ⪯ j ⪯m. These automorphisms φ,ψ will give rise to the same form of coding
matrices in terms of the number of blocks, but the type of shown blocks depends on these
automorphisms.

Proof. Suppose that G = Cn ⋊ C2 defined as ( theorem 3.2.8 ) above. Then, by ( theorem
3.2.8 ) the coding matrix of Cn ⋊φ C2 = Cn ×C2 , since φ is trivial automorphism in Cn has
the form :

M(Cn ⋊φ C2) =M(Cn ×C2) = (A A‵

A‵ A
)
(2n×2n)

and, the coding matrix of Cn ⋊ψ C2 , ψ ∈ Aut(Cn) has the form :

M(Cn ⋊ψ C2) = (A B

B A
)
(nm×nm)

Where A,A′ are (n×n) circulant matrices and B is an (n×n) Hankel matrix of a special
form, i.e. it has the same number (n × n) of blocks each with (2 × 2) of elements.
Consider M(Cn ⋊φC2) with respect the action φ ∶ x Ð→ x and M(Cn ⋊ψC2) with respect the
action ψ ∶ x Ð→ x−1 = xn−1.
Comparing the opposite elements in both matrices, we have an element xiyj ∈ Cn ⋊φ C2; yj

is the non-identity element of C2, and an element xn−iyj ∈ Cn ⋊ψ C2.
Then, there is a transfer map between the elements of these matrices which is defined as

following:
Tφ→ψ(xiyj) = xn−iyj = ψ(xi).yj

where 1 ⪯ i ⪯ n and 1 ⪯ j ⪯m.
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3.3 Semi-Direct Product Groups Zero-Divisor Codes

In ( [12], section 5.4.1, p.188 ), P. Hurley and T. Hurley showed how to construct zero-divisor
elements, and hence codes in dihedral group from zero-divisors in its cyclic subgroup. In this
section we provide a generalization of this construction for the semi-direct product groups.

Consider R(Cn ⋊ C2), the group ring of the semi-direct product of the cyclic group of
order n with the cyclic group of order 2 over the ring R. Let u ∈ Cn be a zero-divisor such
that uv = 0 and let C2 be generated by y and let Cn be generated by x. From it a zero-divisor
of the form u+uya ∈ Cn ⋊C2 can be constructed for any a ∈ Cn with (u+ uya)(v + vTyb) = 0
for any b ∈ Cn. For simplicity, consider the case a = b = 1 as the following theorem.

Theorem 3.3.1. Let u be a zero-divisor in Z2Cn, then there is a zero-divisor in Z2(Cn⋊C2)
has the form u + uy.
Proof. Consider the group ring Z2(Cn ⋊ C2) has ∣ Z2 ∣∣Cn⋊C2∣= 22n elements of the form

∑g∈Cn⋊C2
αgg ; αg ∈ Z2.

Let u =∑g∈Cn
ugg ; ug ∈ Z2 be a zero-divisor in Z2Cn such that uv = 0 where v =∑h∈Cn

vhh ; vh ∈
Z2 , v ∈ Z2Cn. From it there is an element of the form u + uy ∈ Z2(Cn ⋊C2) such that

(u + uy)(v + vTy) = uv + uvTy + uvy + uvT = uvTy + uvT
Since uv = 0 , Z2Cn ⊆ Z2(Cn ⋊C2).
So, uvTy + uvT = (y + 1)uvT = (y + 1)∑g∈Cn

ugg ∑h∈Cn
vhh−1 = (y + 1)∑g∈Cn

∑h∈Cn
ugvhgh−1 ;

ugvh ∈ Z2, hence ∑g∈Cn∑h∈Cn
ugvh = 2k ; k ∈ Z.

Therefore, uvTy + uvT must be equal to (even number) mod 2.
Since we have three cases of multiplication (uvT ) and two cases of addition uvTy + uvT as
following:

u vT uvT uvT + uvT
even even even even+even=even
even odd even even+even=even
odd odd odd odd+odd=even

Thus, uvTy + uvT = (even number) mod 2 = 0. So, (u + uy)(v + vTy) = 0 ; (u + uy) ≠
0 and (v + vTy) ≠ 0. Then u + uy is a zero-divisor in Z2(Cn ⋊C2).
Example 3.3.2. Consider Z2(C3 ⋊ C2), the group ring of the semi-direct product of the
cyclic group of order 2 with cyclic group of order 3 over the field of two elements. Let
C2 =< y >= {1, y} be generated by y and let C3 =< x >= {1, x, x2} be generated by x. The
listing of elements of C3 ⋊C2 are: 1, x, x2, y, xy, x2y and has the coding matrices of the form

(A B

B A
)
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(As already mentioned in an example 3.2.4 ).
The group ring Z2(C3 ⋊C2) has ∣R∣∣G∣ = 26 = 64 elements of the form ∑g∈C3⋊C2

αgg ∣ αg ∈ Z2.
Consider u ∈ Z2C3 ; u is zero-divisor such that

u.v = (1 + x2) (1 + x + x2) = 1 + x + x2 + x2 + 1 + x = 0.

At the non-trivial homomorphism φ2 ∶ x z→ x2 in (example 3.2.4 ), we have (u+uy)(v +
vTy) as

(1 + x2 + (1 + x2)y) (1 + x + x2 + (1 + x2 + x)y) = (1 + x2 + y + x2y)(1 + x + x2 + y + x2y + xy) =
1 + x + x2 + y + x2y + xy + x2 + 1 + x + x2y + xy + y + y + x2y + xy + 1 + x + x2 + x2y + xy + y + x2 + 1 + x = 0
So, u + uy = 1 + x2 + y + x2y is zero-divisor in Z2(C3 ⋊C2). Then we have

U =M(Z2(C3 ⋊C2), u) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1
1 1 0 0 1 1
0 1 1 1 1 0
1 0 1 1 0 1
0 1 1 1 1 0
1 1 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6

And,

V =M(Z2(C3 ⋊C2), v) =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
6×6

Let W be the submodule of Z2(C3 ⋊ C2) generated by S = {1, x} i.e. W =≺ 1, x ≻={0,1, x,1 +x}. Then a zero-divisor code is C = {ux ∣ x ∈W} = {0,1+x2 + y +x2y, x+ 1+xy +
y, x + x2 + x2y + xy}. Thus θ(C) = {000000,101101,110011,011110} is a (6,3) binary linear
code.
The generator matrix of this code is

G = ⎛⎜⎝
1 0 1 1 0 1
1 1 0 0 1 1
0 1 1 1 1 0

⎞⎟⎠
3×6

.

Example 3.3.3. Similarly, at the group ring Z2(C7 ⋊C2), suppose that C7 =< x >={1, x, x2, ..., x6}, C2 =< y >= {1, y}. And C7 ⋊C2 has the coding matrices of the form

(A B

B A
)
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(As already mentioned in an example 3.2.6 ).
Consider u = 1 + x + x3 ∈ Z2C7 is a zero-divisor such that

u.v = (1 + x + x3) (1 + x + x2 + x4) = 1 + x + x2 + x4 + x + x2 + x3 + x5 + x3 + x4 + x5 + 1 = 0.

So, at φ6 ∶ x z→ x6 in this semi-direct product group we have (u + uy)(v + vTy) = (1 + x +
x3 + (1 + x + x3)y) (1 + x + x2 + x4 + (1 + x6 + x5 + x3)y) = (1 + x + x3 + y + xy + x3y) (1 +
x + x2 + x4 + y + x6y + x5y + x3y) = 1 + x + x2 + x4 + y + x6y + x5y + x3y + x + x2 + x3 + x5 +
xy + y + x6y + x4y + x3 + x4 + x6 + 1 + x3y + x2y + xy + x6y + y + x6y + x5y + x3y + 1 + x + x2 +
x4 + xy + y + x6y + x4y + x + x2 + x3 + x5 + x3y + x2y + xy + x6y + x3 + x4 + x5 + 1 = 0. Hence,
u + uy = 1 + x + x3 + y + xy + x3y is a zero-divisor in Z2(C7 ⋊C2).
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