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Several methods have been proposed to accelerate generic- 

point elliptic curve parallel scalar multiplication, including pre- com-
putation-based methods and postcomputation-based methods. The 
methods proposed in the literature use key partitioning and process 
the key partitions via parallel processors. However, the best number 
of key partitions that would yield the best performance has yet  to  
be investigated.  Accordingly, this thesis conducts a trade-off analysis 
of all methods with different key sizes, numbers of processors and 
numbers of requests for generic- point elliptic curve parallel scalar 
multiplication.  Furthermore,  it proposes a new method and tests 
against the others. This new method demonstrates the best execu-
tion time in most cases. 
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 ملخص الرسالة
 
 
 فارس فوزان العتيبي:الاسم الكامل 
 

 مفاضلة تحليلية للنقطة العامة في الضرب القياسي للمنحنى الإهليجي :عنوان الرسالة
 

 امن المعلوماتالتخصص:
 

 ه ـ4014 شعبان:تاريخ الدرجة العلمية
 

ا  ا    مممممممممممممممممم   ممممممممممممممممم  ا  ممممممممممممممممم        ا    مممممممممممممممممم   تمممممممممممممممممن الاممممممممممممممممم  
مممممممممممممممممى ا   ممممممممممممممممم          مممممممممممممممممم  ا    ممممممممممممممممم      تسرممممممممممممممممممسممممل ا ة 

ا  ممممممممممممممممممم     ا     ممممممممممممممممممم   ا حممممممممممممممممممم      ا     ممممممممممممممممممم   ا    ممممممممممممممممممم    ا ممممممممممممممممممم  ى تتضممممممممممممممممممم      ا  ممممممممممممممممممم    الإه ممممممممممممممممممم      هممممممممممممممممممم   

  ا  
عممممممممممممممممت ت حمممممممممممممممم ن   تمممممممممممممممم   ا ت مممممممممممممممم      مممممممممممممممم ا   ا ت   مممممممممممممممم    مممممممممممممممم     مممممممممممممممم      مممممممممممممممم   ا حمممممممممممممممم     ت ت مممممممممممممممم  ا      مممممممممممممممم    

  ر   تممممممممممممم ا    
ص
 عممممممممممممم  ا مممممممممممممد  مممممممممممممن وفممممممممممممم  ا  ا ضممممممممممممم  عممممممممممممم    ممممممممممممم  ا  ممممممممممممم ا  ا ممممممممممممم       وممممممممممممم  ا  ا ا  ا ضممممممممممممم      ممممممممممممم 

ص
غ ممممممممممممم 

  هممممممممممممممم ا ا   ممممممممممممممم  ا   وممممممممممممممم  ت   ممممممممممممممم  د  
  فممممممممممممممم   حممممممممممممممم  ا  ممممممممممممممم      مممممممممممممممل ا  ممممممممممممممم     ممممممممممممممم ت     ت  ممممممممممممممم   عممممممممممممممم     ممممممممممممممم   

ا  ا ممممممممممممم  ى    ممممممممممممم   تمممممممممممممن ا ت ممممممممممممم ر   مممممممممممممل       ممممممممممممم     ت  ممممممممممممم   عممممممممممممم    ممممممممممممم  ا    ممممممممممممم   ع    عمممممممممممممت ا مممممممممممممد تن الاممممممممممممم  

  اغ مممممممممممممممم    مممممممممممممممم       مممممممممممممممم  ا ا  مممممممممممممممم  ى ا    مممممممممممممممم  ا  مممممممممممممممم     ا  مممممممممممممممم    
أ  مممممممممممممممم  وتمممممممممممممممم    ا ضمممممممممممممممم   لامممممممممممممممم       مممممممممممممممم    

  ا     
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Chapter 1 Introduction 

1.1 Motivation 

 
Neal Koblitz and Victor Miller independently proposed elliptic curve cryptog-
raphy (ECC) in 1985 [1, 2]. ECC is considered a serious alternative to many public 
key encryption algorithms. With key sizes of 128 to 256 bits, ECC offers security 
equal to that of RSA [3], which has key sizes of 1000 to 2000 bits [4, 5]. No signif-
icant weaknesses have yet been identified in the ECC algorithm, as it depends on 
the discrete logarithm problem over points on an elliptic curve [6]. The difficulty 
of the problem allows ECC key sizes to be reduced considerably [3]. This ad-
vantage of ECC has recently gained remarkable recognition and has been incor-
porated in many standards, such as IEEE, ANSI, NIST, SEC and WTLS. 

 

Scalar multiplication is the basic operation of ECC. The scalar multiplica-
tion of a group of points on an elliptic curve is comparable to the exponentiation 
of a multiplicative group of integers modulo a fixed integer 
m. The scalar multiplication operation is denoted as kP, where k is an integer and 
P is a point on the elliptic curve. The kP operation represents the addition of k 
copies of point P. Scalar multiplication is then conducted according to a series of 
point doubling and point addition operations of the point P, which depend on the 
bit sequence representing the scalar multiplier 
k. Several scalar multiplication methods have been proposed [6]. 

Identifying efficient scalar multiplication methods for high-performance 
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end servers is crucial. Sequential scalar multiplication methods are too slow to 
meet the demands of the increasing number of customers for such servers. Scalar 
multiplication methods that can be parallelised are often used for high-speed 
implementations [7–12]. 

 
 

1.2 The contributions of this thesis 

We analysed all possible scenarios which may accelerate the scalar multipli-
cation. 

We proposed a new method that shows the best result when compared 
with the others. 

• We implemented the previous methods and the new using C++. 

We have analysed and discussed the results of the execution time for 
each method by comparing it with the others. 

 
 

1.3 Thesis Organisation 
 

Chapter 2 briefly addresses finite-field arithmetic and elliptic curves in general. 
Chapter 3 illustrates the work related to this thesis. Chapter 4 explains the meth-
odology of this thesis and the proposed method. Chapter 5 presents and discusses 
the results of all methods tested in different cases. Finally, Chapter 6 concludes 
the thesis and discusses future work. 

• 

• 

• 
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Chapter 2 
 

Background 

 
2.1 Finite-Field Arithmetic 

 
A finite field contains only a finite number of elements in abstract algebra and is 
essential for many things, including cryptography[13–15]. The field represents a 
set of elements F with two operations: addition ” + ” and multiplication ”*”. Fi-
nite fields can also be called Galois fields, in honor of Evariste Galois. Galois fields 
are denoted by GF (q). A Galois field of order q = pm exists in any prime p and 
positive integer m. 

 
 

2.2 Elliptic Curve Arithmetic 
 

The elliptic curve E appears over the finite field GF (p) and is defined by the fac-
tors 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝) with p > 3. It consists of a set of points P = (x, y), where 𝑥, 𝑦 ∈
𝐺𝐹 (𝑝), and satisfies the equation of the elliptic curve (Equation 2.1) along with 
an additive of the group point O, known as the infinity point[1]. 

 
 

y2 = x3 + ax + b (2.1) 

where a, b ∈ GF (p) and 4a2 + 27b2 ƒ= 0 mod p. 
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Hasse’s theorem [14] defines the number of points n on an elliptic 
curve over a finite field GF (q). A group operation is a set of discrete points on an 
elliptic curve that form an abelian group. The elliptic curve has two group oper-
ations: point addition (ADD) and point doubling (DBL). Elliptic curve point addi-
tion is defined as stated in the ‘chord-tangent process’. It is explained below. 

 

Let P and Q be two separate points on E defined over GF (p) and 𝑄 ≠
 −𝑃 . Q  should not be the additive inverse of P .  The additive inverse of point 
𝑃 =  (𝑥, 𝑦) ∈ 𝐸, over GF (p), is point −𝑃 =  (𝑥, −𝑦), which is the  inverse of 
point P on the y-axis with respect to the x-axis on E. The sum of the two points P 
and Q is point R, which is presented as follows: R = P + Q, where R is the additive 
inverse of S. S is the third point on E interrupted by the straight line through 
points P and Q. The point addition (ADD) is shown in 2.1. 

 

 

Figure 2.1: Point addition 
 
 

Point doubling (DBL) involves adding P  and Q  when P  = Q and 
𝑃 ≠ −𝑃  and is represented as R  = 2P , where R  is the additive inverse of 

S. S is a point on E interrupted by the straight line tangent to the curve of point 
P and is illustrated in 2.2. 
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Figure 2.2: Point doubling 

2.3 Scalar Multiplication 
 

Scalar multiplication is the essential operation of ECC. The scalar multiplication 
of a group of points on an elliptic curve is similar to the exponentiation of a multi-
plicative set of integers modulo a fixed integer m. The scalar multiplication oper-
ation is denoted as kP , where k is an integer and P is a point on the elliptic curve. 
The kP operation represents the addition of k copies of point P . kP can be com-
puted using the binary method, which is thus called the double-and-add method, 
depending on the binary expression of the multiplier k. Using the binary method, 
computing kP is described below. 

 

Let k = (k(m−1), ..., k0) represent the binary of k, where k(m−1)  is the 
most significant bit of k. The multiplier k can be written as follows: 

 

k = 
0≤i<m 

ki2i = km−12m−1 + ... + k12 + k0 (2.2) 

k can be rewritten using the Horner expansion, as follows: 

k = (...((km−12 + km−2)2 + ... + k1)2 + k0) (2.3) 

Accordingly, kP can be expressed as follows: 

kP = 2(...2(2km−1P + km−2P ) + ... + k1P ) + k0P (2.4) 
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← 

 

The average time complexity of the binary method is expressed as follows: 

 

Time complexity  = ((𝑚)𝑃𝐷𝐵𝐿 + (
𝑚

2
) 𝑃𝐴𝐷𝐷) (2.5) 

The binary method algorithm 1 is shown below. 
 

Algorithm 1 Binary Method 
Input: P, k 

1: Q ← P 

2: for i ← (m − 2) Down To 0 do 
3: Q ← 2Q 

4: if ki = 1 then 
5: Q Q + P 

6: end if 
7: Output Q 

8: end for 
 

 
 

The binary scalar multiplication algorithm is the most straight- forward 
scalar multiplication algorithm. It examines the bits of the scalar multiplier k. If 
the checked bit ki = 0, it only executes point doubling. How- ever, if the checked 
bit ki = 1, it executes both point doubling and addition. The binary method needs 
m point doublings and an average of m/2 point additions. 

 
 

2.4 Summary 
 

Finite-field and elliptic curve arithmetic are reviewed here. The main focus of this 
chapter is scalar multiplication, which is an essential operation of ECC. The scalar 
multiplication of a group of points on an elliptic curve is similar to the exponen-
tiation of a multiplicative set of integers modulo a fixed integer m. The scalar 
multiplication operation is known as kP , where k is an integer and P is a point 
on the elliptic curve. Furthermore, the kP operation represents the addition of k 
copies of point P . 
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Chapter 3 
 

Review of literature 

 
Many papers [7–12] have proposed methods to speed up generic-point elliptic 
curve parallel scalar multiplication. The major problem researchers face is con-
verting the sequential steps in parallel. Early precomputation methods[7] can ac-
celerate scalar multiplication by converting some steps in parallel, significantly 
improving scalar multiplication. Such methods do improve performance, but se-
quential steps are required before complete the process parallel. However, post-
computation methods [8–10] remove the sequential steps by moving them to 
the end of the computation. More recent methods are explained in detail below. 

 
 

3.1 Generic-Point Parallel Scalar Multiplication 
Method 

 
A method that replaces the sequential steps in precomputations to make them 
parallelisable has been proposed [8]. Postcomputations split the multi- plier k 
into u partitions, which can be processed into u processors in parallel using the 
binary method.  Then, the postcomputations are distributed on  𝑢 − 1 proces-
sors to be performed in parallel. Finally, the key partitions and the postcomputa-
tions are assimilated to obtain kP. Algorithm 2 is performed efficiently to compute 
kP in parallel without precomputations. 
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← 
− 

← 

← ← 

← − 

 
 

Algorithm 2 Generic-Point Parallel Scalar Multiplication 
1: Input: P, k  

2: By filling k with zeros if necessary, write k = 
(k(u−1))||k(u−2))||...||k(0))),  where k(i)) is a partition of length 
m(i) bits. 

3:  Initialisation: Q P, R O 
4: Parallel Scalar Multiplication:  
5:  for i 0 To u-1 do in parallel  
6: Q  Binary method (k(i), Pi)  
7: if i > 0 then 
8: for   c = 0 to ((   0≤j<i mj) 1) do 
9: Q 2Q 

10: end for 
11: end if 
12: R R + Q 

13: end for 

14: Output R 

 
 
 
 
 
 
 

In Algorithm 2, the multiplier k splits into u partitions as different sizes 
to solve the equations. The algorithm 2 provides a balanced number of point op-
erations for different partitions. The partitioning occurs in Step 2. Parallel scalar 
multiplications start at Step 4. Different processors are used to process each par-
tition independently. Step 7 is used to check whether it is partitioned k(0), as it 
does not require any postcomputations and the other partitions do require post-
computations. Finally, each partition assembles its resulting point at the accumu-
lation point R (Step 12), which requires 𝑢 − 1 extra point additions. 

 

The limitation of this paper [8] is focused on a single request and the 
problem statement is looked for multiple requests. Thus, this paper is not suita-
ble to analyse with the other methods. Moreover, except for the first part, each 
part of the request will make an additional add operation for the last point with 
the other point from the other processor and this additional operation will make 
some of part of request will hold to getting the result from the other. 
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− 

← 

← 

← 

← ← 

← − 

 

3.2 Efficient and Scalable Postcomputation-Based 
Generic-Point Parallel Scalar Multiplication 
Method 

 
An efficient mapping technique that uses a set of requests (two requests) to per-
form together has been proposed [10]. The mapping technique splits each re-
quest into u processors and each part of the request is the same size. Thus, the 
execution time of each part differs due to the extra operation that may be in-
creased due to the number of parts. The technique uses clever mapping to per-
form the fastest part from the first request in combination with the slowest part 
from the second request. This method proposes the following algorithm 3, which 
can be performed efficiently for the parallel computation of kP . 

 

Algorithm 3 Generic-Point Parallel Scalar Multiplication 

 
                             

(k(u−1))||k(u−2))||...||k(0))), where k(i) is a partition of length 𝑣 = [
𝑚

𝑢
]   

bits. 
3:  Initialisation: Q P, R 0 
4: Key Partitions Associated with Cryptoprocessors: 
5:   for i = 0 to u 1 do 
6: (k(i), Cryptoprocessor(j)) 
7: end for 
8: Parallel Scalar Multiplication:  
  9:  for i 0 To u -  1 do in parallel  
10: Q  Binary method (k(i), Pi) 

11: if i > 0 then 
12: for c = 0 to iv do 
13: Q 2Q 

14: end for 
15: end if 
16: R R + Q 

17: end for 

18: Output R 

 
 

In Algorithm 3, the multiplier k splits into u partitions of equal size to 
solve the equations. For a particular k and P , each key partition is 

1: Input: P, k  

2: By filling k with zeros if necessary, write k = 
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mapped to a certain cryptoprocessor in Step 4. Parallel scalar multiplications 
start at Step 8. It uses different processors to process each partition inde-
pendently. Step 11 is used to check whether it is partition k(0) because it does not 
require any postcomputations and the other do partitions require postcomputa-
tions. Finally, each partition assembles its resulting point at the accumulation 
point R (Step 18), which requires u − 1 extra point additions. 

 
Figure 3.1 explains how the proposed method works with the number 

of requests r = 2 and processors u = 4. The main operation of all of the requests 
is less than the extra operation. The idea of the method [10] is to try to remove 
the overhead of two requests by mapping the most partition work from the sec-
ond request with the least partition work from the first partition, as shown in the 
Figure 3.1. By considering the mapping, the two requests should end at the same 
time. 

 

 

Figure 3.1: Example of the [10] method, where r = 2 and u = 4 
 

 
This proposed method is mapping a set of two requests and could be 

compared with the other method. Besides, each part of the request will make an 
additional add operation for the last point with the other point from the other 
processor except for the first. Further, this operation will make some part of re-
quest in-hold to getting the result from the other and the whole set of two re-
quests will run two new add operations at most. Thus, the number of extra oper-
ations is equal to the number of requests. 
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3.3 Highly Efficient Generic-Point Parallel Scalar Multipli-
cation Using Concurrent Precomputations 

 
The main point here [11] is to implement u sequential precomputations of u ge-
neric points using u processors concurrently by mapping each generic point to 
an individual processor.  The precomputed points are then used  to perform the 
parallel scalar multiplication of each point of the u generic points. Each multiplier 
k of the u multipliers is partitioned into a number of equally sized partitions (v) 
that can be processed in parallel by u processors. The points that result from pro-
cessing these key partitions are assimilated at the end to produce kP . The num-
ber of available processors limits the number of partitions of each k.  For a par-
ticular P  and k, each partition  is associated with a precomputed point to main-
tain its significance. For u partitions, (𝑢 − 1) precomputed points are required 
for each k. Precomputed points can be computed simply by a sequence of dou-
bling operations of the base point P . 

 

Algorithm 4 shows the pseudocode of the proposed method in [11]. 
For a specific P and k, each partition k(i) is associated with a particular pre-
computed point Pi to maintain the significance of each partition (Step 20). For 
a particular P and k, parallel scalar multiplications start at Step 
26. Each partition can be independently processed in an individual processor. The 
points from each execution of the binary scalar multiplication method 
[5] are accumulated in point R (Step 30), which requires (𝑢 − 1) the addition of 
extra points. 

 

Figure 3.2 shows an example of the proposed method [14] with pro-
cessors u =  4 and number of requests r  =  4.  The extra operations  are in the 
beginning, as shown in Figure 3.2. It is thus referred to as a precomputation 
method. The main operation of each request ends at the same time. The goal of 
this thesis is to make a computation for a set of requests r that are equal to the 
number of the processors u, which perform together. Each request can then be 
divided equally to the number of the processors u and perform together until it 
ends. 

 

When the elliptic curve point is fixed the starting by the precomputa-
tion for each request will be a waste of time and resources because each proces-
sor will perform the same result. Besides, each processor, except the 
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Algorithm 4 Concurrent Precomputation Method 
1: Input: P [0], P [1], ..., P [u − 1], k[0], k[1], ..., k[u − 1] 
2: By filling the ks with (uv − m) zeros if required, write each 

k = (k(u−1))||k(u−2))||...||k(0))), where each k(i) is a partition of length 

 (𝒗 =  [𝐦/𝐮])  bits           

3: Initialisation: 
4:   for i = 0 to u 1 do 
5: Q[i] P [i] 
6: R[i] 0 
7: end for 
8: Implementation of Concurrent Precomputations of u Points for Each P: 
9: for i = 0 to u − 1 do (in parallel) 

10: P0[i] Q[i] 
11: end for 
12:   for w = 0 to u 1 do (in parallel) 
13: for i = 0 to u 1 do 
14: for j = 0 to u 1 do 
15: Q[w] 2Q[w] 
16: end for 
17: Pi[w] Q[w] 
18: end for 
19: end for 
20: Key Partitions Associated with Precomputed Points: 
21:   for i = 0 to u 1 do 
22: for j = 0 to u 1 do 
23: (k[i](j), Pj[i]) 
24: end for 
25: end for 
26: Scalar Multiplication: 
27:   for i = 0 to u 1 do 
28: for j = 0 to u 1 do (in parallel) 
29: Q[i] The Binary Method (k[i](j), Pj[i]) 
30: R[i] R[i] + Q[i] 
31: end for 
32: Output R[i] 

33: end for 
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Figure 3.2: Example of the [11] method, where r = 2 and u = 4 

 
first one, will make an additional add operation for the last point with the other 
point from the neighbor processor to accumulate the final result. Further, this op-
eration will make some processor u hold to receive the result from the other and 
the complete time of an extra operation of each request will similar to 𝑢 − 1 
additional operations. Hence, the method will perform a great time when the 
number of processors u are small. 

 
 

3.4 High-Performance Generic-Point Parallel Scalar 
Multiplication 

 
The main idea [12] here is to use u parallel processors to perform u/2 scalar mul-
tiplications. In the proposed method, two parallel processors are used to perform 
one scalar multiplication kP using the least-to-most version of the binary method 
(Algorithm 5) with a buffer between the two processors (as shown in Figure 3.3). 
The first processor only performs DBL operations, producing a point to the buffer 
only if the inspected bit of the multiplier k is 1. In contrast, the second processor 
performs an ADD operation between the resulting point of the previous addition 
and a point from the buffer until the buffer is empty, which means that kP is 
computed. It is assumed 
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here that average point operations are equal to (m) DBL +(m/2) ADD. It is also 
assumed that point ADD requires twice the required time for point DBL. Accord-
ingly, the buffer between the two processors is almost empty, indicating that 
both processors are fully used. 

 

Figure 3.3: Example of the [12] method, where r = 2 and u = 4 
 

An example of the proposed architecture is shown in Figure 3.3, with 
u = 4 processors and r = 4 number of requests. Each scalar multiplier requires 
two processors and a buffer residing between these two processors. Each pro-
cessor requires a field arithmetic unit and either a point DBL unit (𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑖) 
or a point ADD unit (Processori+1). The buffer size depends on m, and |𝑙𝑜𝑔2(𝑚)| 
is used for the buffer size. The pseudocode of the proposed method is shown in 
Algorithm 5. 

 

The resulting points that meet the condition on Step 11 add on to the 
buffer according to Step 12. Then, while the buffer is not empty, the add operation 
should work by adding the point from the buffer to the last point. The final results 
are obtained at Step 21. 

 

The disadvantage of this paper [12] when the processor that responsi-
ble for add operation get the last element from the buffer the double processor 
will be in-hold for a time equivalent to an additional add operation. Besides, each 
request require two processors and buffer at least to performs 
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Algorithm 5 Proposed Method 

1: Input: P [0], ..., 𝑃[ 𝑢/2 −  1], k[0], ..., k
 
[ 𝑢/2 −  1] 

3:   for i = 0 to 𝑢/2 − 1 do 
4: R[i] P [i] 
5: Q[i] 0 
6: end for 
7: Scalar Multiplication: 
8: for i = 0 To 𝑢/2 −  1 do in parallel 
9: for j = 0 To m − 1 do 

10: R[i] ← DBL(R[i]) 
11: if k[i]j = 1 then 
12: bufferi R[i] 
13: end if 
14: end for 
15: while bufferi is not empty do 
16: if bufferi is not empty then 
17: Q[i] ADD(Point bufferi, Q[i]) 
18: end if 
19: end while 
20: end for 

21: Output R[i] 

2: Initialisation: 
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the whole request. The time of an additional operation is not considered  as cost 
when the number of requests is small. Thus, the cost will not be enormous if the 
more requests are performed concurrently due to available processors because 
the needed of two processors for each request. Figure 3.3 shows an example of 
four requests performs to four processors with a great time and two extra oper-
ations at most, but when the method performs the same amount of requests on 
two processors the extra operation will be four. Thus the method will show a 
great time when the number of processors is large. 

 
 

3.5 Summary 
 

In this chapter, related work is discussed. In [8], the sequential step that should 
be first in the parallelisable postcomputations is replaced. Postcomputations 
split the key into partitions and can then process the partitions into u processors 
in parallel. An efficient mapping technique that uses a set of requests (two re-
quests) to perform together has been proposed [10]. The mapping technique 
splits each request into u processors. Each part of the request is the same size. 
Thus, the execution time of each part differs due to the extra operation and may 
increase due to the number of parts. The technique uses clever mapping to per-
form the fastest part from the first request in combination with the slowest part 
from the second request. 

 

Sequential precomputation of a number of generic points can be im-
plemented using the same number of processors concurrently by mapping each 
generic point to an individual processor [11]. The precomputed points can then 
be used to accomplish the parallel scalar multiplication of each point of the generic 
points. Each multiplier can be partitioned into a number of equally sized parti-
tions that can be processed in parallel by a number of processors. In one study, 
u parallel processors are used to perform u/2 scalar multiplications [12]. The pro-
posed method uses two parallel processors to perform one scalar multiplication 
kP using the least-to-most version of the binary method with a buffer between 
the two processors. The first processor only performs DBL operations. The buffer 
expects a point if the inspected bit of the multiplier k is 1 in the first processor. 
The second processor performs an ADD operation between the resulting point 
of the previous addition and a point from the buffer until the buffer is empty. 
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Chapter 4 
 

Methodology 

 
Various methods have been examined to determine the best formulation to ac-
celerate scalar multiplication. In so doing, the number of processors, re- quests 
and partitions of the key have been measured to obtain the best method. The 
next two sections of this chapter show these measurements and the method used 
to analyse and compare the formulations to other methods. 

 

 

4.1 Analysis 
 

The main goal of this thesis is to analyse schemes to accelerate scalar multi- pli-
cation. The number of requests r is used as a significant factor to analyse the 
methods. The number of processors u and partitions of the key size v are meas-
ured with a different number of requests r. Each possible case is analysed and 
measured by the average time performance. During the analysis, a new method 
is discovered. The average time performance is the time required for the point 
doubling (DBL) and addition (ADD) operations in all cases. The required computa-
tion time for point addition (DBL) is twice that required for point doubling (ADD). 

 

The new method demonstrates the best average time compared with 
the others and uses only two of the factors as essential parts. These factors are 
the number of requests and processors. The new method is com- pared with the 
previous methods to determine which demonstrates the best time performance. 
By working concurrently, each request must finish the 
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rule sequentially in one processor in the new method. Furthermore, the multiple 
processors allow the new method to simultaneously finish a number of requests 
r equal to the number of processors u. The time complexity of the new method 
can be measured as follows: 

 

   𝑇𝑖𝑚𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =  ⌈𝑟/𝑢⌉  ((𝑚) 𝑃_𝐷𝐵𝐿 + (𝑚/2) 𝑃_𝐴𝐷𝐷 )

 
The newly proposed method suggests that the number of requests r 

should be considered as a critical factor. It uses u parallel processors to per- form 
u scalar multiplications, which means that each request is distributed to a unique 
processor to work sequentially. A number of requests equal to the number of 
available processors finish at the same time, and all processors become available 
to handle the next set of requests. Thus, each set of requests, which can each be 
called a stage, works sequentially in different processors and ends together. 

 

Figure 4.1 shows an example of the proposed method when processors 
u = 4 and number of requests r = 4. Each processor will hold only one request till 
finish sequentially and concurrently with the other requests. The whole requests 
are ended at the same time and without need to submit any data to another pro-
cessor. The pseudocode of the proposed method is shown in Algorithm 6. 

 

Figure 4.1: Example of the proposed method, where r = 4 and u = 4 
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Algorithm 6 Proposed Method 
1:  Input: P [0], P [1], ..., P [u 1], k[0], k[1], ..., k[u 1]. 
2: Initialisation: 
3:   for i = 0 to u 1 do 
4: Q[i] P [i] 
5: R[i] 0 
6: end for 
7: Scalar Multiplication: 
8: for i = 0 to u − 1 do (in parallel) 
9: for j = 0 to m − 1 do 

10: if k[i]j = 1 then 
11: R[i] R[i] + Q[i] 
12: end if 
13: Q[i] DBL(Q[i)] 
14: end for 
15: Output R[i] 

16: end for 
 

 
 

 

Algorithm 6 takes u requests, translating to u points and u keys. Each 
request i has a base point P [i] and key k[i]. The algorithm is initialised in Step 2. 
The requests are distributed to work in parallel in Step 8. Each re- quest is worked 
separately. Finally, the results of each request i are obtained in Step 15. 

 
 
 

 

4.2 Implementation 

 
The main goal of this thesis is to conduct a trade-off analysis of the previous meth-
ods of accelerating the scalar multiplication of generic-point parallel elliptic 
curves. To achieve this, most of these methods are implemented using C++. They 
are then tested with a sequential method to validate the results. The technique of 
the methods depends on how they separate the requests on multiple processors. 
Moreover, the new method discovered during the analysis process helps speed 
up scalar multiplication. 
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Key Size 
 

160-bit 

 
Curve ID 

 
brainpoolP160r1 

 

P 
 

E95E4A5F737059DC60DFC7AD95B3D8139515620F 

 

A 
 

340E7BE2A280EB74E2BE61BADA745D97E8F7C300 

 

B 
 

1E589A8595423412134FAA2DBDEC95C8D8675E58 

 

xP0 
 

BED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3 

 

yP0 
 

1667CB477A1A8EC338F94741669C976316DA6321 

 

q 
 

E95E4A5F737059DC60DF5991D45029409E60FC09 

 

Table 4.1: Curve details of the 160-bit key size 
 

4.3 Summary 
 

A new method is proposed based on a trade-off analysis of the previous meth-
ods. To ensure that the results of each method are implemented using C++, both 
the new and previous methods are validated, and their results are tested with the 
approved sequential method. The methods are tested with different curves and 
key sizes. Tables 4.1, 4.2, 4.3 and 4.4 show the curves 
[16] and their data, which are used with the methods. In the next chapter, the 
results of each method in different cases (in terms of processors u and number 
of requests r) are presented and discussed. 
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Key Size 
 

192-bit 

 
Curve ID 

 
brainpoolP192r1 

 

P 
 

C302F41D932A36CDA7A3463093D18DB78FCE476D E1A86297 

 

A 
 

6A91174076B1E0E19C39C031FE8685C1CAE040E5 C69A28EF 

 

B 
 

469A28EF7C28CCA3DC721D044F4496BCCA7EF414 

6FBF25C9 

 

xP0 
 

C0A0647EAAB6A48753B033C56CB0F0900A2F5C48 53375FD6 

 

yP0 
 

14B690866ABD5BB88B5F4828C1490002E6773FA2 FA299B8F 

 

q 
 

C302F41D932A36CDA7A3462F9E9E916B5BE8F102 9AC4ACC1 

 

Table 4.2: Curve details of the 192-bit key size 



CHAPTER 4. METHODOLOGY 

22 

 

 

 
 
 
 
 
 

 

Key Size 
 

256-bit 

 
Curve ID 

 
brainpoolP256r1 

 

P 
 

A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D 
52620282013481D1F6E5377 

 

A 
 

7D5A0975FC2C3057EEF67530417AFFE7FB8055C12 

6DC5C6CE94A4B44F330B5D9 

 

B 
 

26DC5C6CE94A4B44F330B5D9BBD77CBF958416295 
CF7E1CE6BCCDC18FF8C07B6 

 

xP0 
 

8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1 
E3BD23C23A4453BD9ACE3262 

 

yP0 
 

547EF835C3DAC4FD97F8461A14611DC9C2774513 

2DED8E545C1D54C72F046997 

 

q 
 

A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B 
561A6F7901E0E82974856A7 

 

Table 4.3: Curve details of the 256-bit key size 
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Key Size 
 

512-bit 

 
Curve ID 

 
brainpoolP512r1 

 

P 
 

AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B 
3C9D20ED6639CCA703308717D4D9B009BC66842AECDA 
12AE6A380E62881FF2F2D82C68528AA6056583A48F3 

 

A 
 

7830A3318B603B89E2327145AC234CC594CBDD8D3DF9 
1610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1 
C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA 

 

B 
 

3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2 
EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94 
CADC083E67984050B75EBAE5DD2809BD638016F723 

 

xP0 
 

81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D 
916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D168 

7B93B97D5F7C6D5047406A5E688B352209BCB9F822 

 

yP0 
 

7DDE385D566332ECC0EABFA9CF7822FDF209F70024A 
57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4B 
D88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892 

 

q 
 

AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3 
B3C9D20ED6639CCA70330870553E5C414CA9261941866 
1197FAC10471DB1D381085DDADDB58796829CA90069 

 

Table 4.4: Curve details of the 512-bit key size 
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Chapter 5 
 

Results 

 
In the previous chapter, the calculation of the time performance of each method 
is explained. In this chapter, the performance analysis of all different cases that 
may help accelerate scalar multiplication is shown. Furthermore, the perfor-
mance of the new method is compared with that of the other methods [10–12] 
and is discussed in the first section. In the second section, the suggested method 
and the other methods [10–12], implemented using  C++, 
are analysed on Lenovo Y50-70 with an Intel ® Core TM an i7-4720HQ CPU @ 
2.60GHz processor, 16-GB RAM and a 64-bit operating system. 

The resulting execution times of scalar multiplication for each method are 
compared using the sequential binary method. The results depend on the differ-
ent key sizes (i.e., 160, 190, 256 and 512) and number of processors (i.e., 2, 4 and 
8), which are used to determine the best execution time. Each key size is ana-
lysed according to various request situations (i.e., 4, 8, 16, 23 and 64). The results 
are recorded for all analysed situations. Every situation is discussed in the follow-
ing subsections, with results tables and charts included for reference. 

 

 

5.1 Performance Analysis 
 

The new method is observed during the analysis of the possible methods. The 
analysis and all related results are discussed in the first section. The comparisons 
of the new and previous methods [10–12] are shown in the second section. 
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u v = 1 v = 2 v = 4 v = 8 

1 2,560 3,200 4,480 7,040 
2 1,280 1,600 2,240 3,520 
4 640 800 1,120 1,760 
8 320 400 560 880 

 

Table 5.1: Comparison of the scenarios in which key size = 160-bit and requests r 
= 8 

 
 

u v = 1 v = 2 v = 4 v = 8 

1 5,120 6,400 8,960 14,080 
2 2,560 3,200 4,480 7,040 
4 1,280 1,600 2,240 3,520 
8 640 800 1,120 1,760 

 

Table 5.2: Comparison of the scenarios in which key size = 160-bit and requests 
r = 16 

 
 

5.1.1 Finding the best method 

 
Tables 5.1, 5.2 and 5.3 show the different scenarios in which the time performance 
of each method is tested, where every table has a unique number of requests r 
and a 160-bit key size. The number of processors u, requests r and partitions of 
key size v are the significant factors. Table 5.1 shows the results of different cases 
when the number of requests r = 8. In this case, the best scenario is when pro-
cessors u = 8 and partitions of key size v = 1. Tables 
5.2 and 5.3 show the same results. Finally, the analyses of the result led to the 
separation of the key size may made an overhead on the system. In the case of 
parallel processors, scalar multiplication should separate the many requests r 
into equal-size processors u, where u = r and works  sequentially. 
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u v = 1 v = 2 v = 4 v = 8 

1 10,240 12,800 17,920 28,160 
2 5,120 6,400 8,960 14,080 
4 2,560 3,200 4,480 7,040 
8 1,280 1,600 2,240 3,520 

 

Table 5.3: Comparison of the scenarios in which key size = 160-bit and requests 
r = 32 

 

M 
r = 8 r = 16 r = 32 

[10] [11] [12] New [10] [11] [12] New [10] [11] [12] New 

128 760 480 256 256 1,520 960 512 512 3,040 1,920 1,024 1,024 
160 920 572 320 320 1,840 1,144 640 640 3,680 2,288 1,280 1,280 
200 1,120 687 400 400 2,240 1,374 800 800 4,480 2,748 1,600 1,600 
256 1,400 848 512 512 2,800 1,696 1,024 1,024 5,600 3,392 2,048 2,048 

Table 5.4: Total DBLs of the new method and the previous methods [10–12], with 
key size m = 160, 200, 256 and 512 and u = 8 

 

5.1.2 New method 
 

According to [9], the eight processors can achieve the best performance when us-
ing the postcomputation method of [10]. Therefore, the methods in [10– 12] are 
compared with the new method when the processors u = 8 and for several key 
sizes m. The required computation time for point addition is twice that required for 
point doubling. The comparison results of the methods are shown in Table 5.4 as 
Total DBLs for requests 𝑟 ≥ 8 and up to 32. Finally, the results of the new method 
are the same as those in [12] with a different algorithm and no need for a buffer. 

 
 

5.2 Discussion of the Results 
 

The 160-bit key size is tested with different numbers of processors. First, the 
methods are tested for processors u = 2. The results of execution time are shown 
in Table 5.5. Excellent results compared with the rest of the methods are provided 
by [11] when processors u = 2. The new method demonstrates better results 
when requests r < 16. In this case, the [12] and sequential 
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r Sequential [10] [11] [12] New 

4 0.125 0.073 0.064 0.093 0.069 
8 0.244 0.127 0.099 0.196 0.081 

16 0.495 0.262 0.186 0.303 0.233 
32 0.983 0.536 0.369 0.833 0.497 
64 1.972 1.321 0.731 1.56 1.02 

 

Table 5.5: Comparison of the methods in which key size = 160-bit and processors 
u = 2 

 
 

2 

 
1.5 

 
1 

 
0.5 

 
0 

 

4 8 16 32 64 

Requests 
 

Figure 5.1: Comparison of the methods in which key size = 160-bit and processors 
u = 2 

 

methods demonstrate the worst results. Results that are quite similar to the nor-
mal case of scalar multiplication are provided by [12] when processors u = 2. This 
makes it a poor choice for small values of u. Figure 5.1 shows the results in Table 
5.5 in diagram form. 

 

Table 5.6 shows the results of the 160-bit key size when processors u = 
4. The new method demonstrates the best execution time. Further- more, when 
the requests r increase, the difference in the execution time is remarkable. This 
difference is shown in Figure 5.2. [11] and [12] are quite similar, as shown in 
Figure 5.2. The rest consume considerable time. [11] yields good results with the 
processors u = 4 and u = 2. 
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r Sequential [10] [11] [12] New 

4 0.129 0.089 0.063 0.068 0.05 
8 0.254 0.18 0.12 0.12 0.063 

16 0.498 0.337 0.247 0.27 0.164 
32 0.999 0.653 0.472 0.499 0.396 
64 1.99 1.317 0.918 0.984 0.76 

 

Table 5.6: Comparison of the methods in which key size = 160-bit and proces-
sors u = 4 
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Figure 5.2: Comparison of the methods in which key size = 160-bit and proces-
sors u = 4 
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r Sequential [10] [11] [12] New 

4 0.129 0.131 0.064 0.046 0.053 
8 0.25 0.226 0.107 0.097 0.076 

16 0.493 0.432 0.213 0.183 0.141 
32 1.009 0.911 0.402 0.354 0.284 
64 1.978 2.005 0.906 0.671 0.55 

 

Table 5.7: Comparison of the methods in which key size = 160-bit and processors 
u = 8 
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1.5 
 

1 
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Figure 5.3: Comparison of the methods in which key size = 160-bit and processors 
u = 8 

 
 

The results of the 160-bit key size when processors u = 8 are shown in 
Table 5.7. The new method demonstrates the best execution time when the re-
quests r > 4. The [11], [12] and new methods are so comparable when r < 64. 
The rest consume considerable time and are too similar, as shown in Figure 5.3. 
[11] consumes the same amount of time when processors u = 8, u = 4 u = 2, but 
it is not the best choice when u = 8. The new method demonstrates the best 
execution time and [10] demonstrates the worst when u > 2. Figures 5.1, 5.2 and 
5.3 show that the [12] method improves when the processors u increase. 
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r Sequential [10] [11] [12] New 

4 0.186 0.141 0.12 0.158 0.094 
8 0.363 0.257 0.211 0.284 0.134 

16 0.736 0.511 0.408 0.626 0.311 
32 1.457 1.02 0.817 1.19 0.7 
64 2.922 2.053 1.646 2.366 1.531 

 

Table 5.8: Comparison of the methods in which key size = 192-bit and proces-
sors u = 2 
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Figure 5.4: Comparison of the methods in which key size = 192-bit and proces-
sors u = 2 

 
Here, the results of the methods with the 192-bit key size are shown. 

Each number of processors is tested with the mentioned key size. The results for 
execution time are shown in Table 5.8. The new method demonstrates great re-
sults when the processors u = 2, particularly in comparison with the rest of the 
methods. [11] shows excellent results for the 160-bit key size when the proces-
sors u = 2. However, with the 192-bit key size, it yields the second-best results. 
The [12] and sequential methods are the worst methods in this case. [12] yields 
results quite similar to the general case of scalar multiplication when the proces-
sors u = 2, making it an inappropriate choice for small values of u. Figure 5.4 
shows the results in Table 5.8 in diagram form. 
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r Sequential [10] [11] [12] New 

4 0.182 0.147 0.102 0.09 0.069 
8 0.362 0.243 0.189 0.166 0.091 

16 0.734 0.509 0.377 0.401 0.247 
32 1.45 0.964 0.713 0.721 0.527 
64 2.915 1.953 1.375 1.54 1.14 

 

Table 5.9: Comparison of the methods in which key size = 192-bit and processors 
u = 4 
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Figure 5.5: Comparison of the methods in which key size = 192-bit and processors 
u = 4 

 
 

The results of the 192-bit key size when the number of processors u = 
4 are shown in Table 5.9. The new method demonstrates the best execution time 
compared with the other methods. The difference in the execution time is nota-
ble when the requests r increase. [11] and [12] are quite similar when r < 64, as 
shown in Figure 5.5. Furthermore, [12] consumes considerable time. [11] yields 
good results when the processors u = 4 and u = 2 regardless of whether the key 
size is 192-bit or 160-bit. The remaining methods yield the worst results for this 
case and the previous cases, as shown in Figure 5.5. 
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r Sequential [10] [11] [12] New 

4 0.204 0.172 0.096 0.091 0.092 
8 0.367 0.315 0.158 0.12 0.092 

16 0.725 0.619 0.304 0.321 0.192 
32 1.451 1.277 0.568 0.602 0.38 
64 2.903 2.546 1.148 1.144 0.747 

 

Table 5.10: Comparison of the methods in which key size = 192-bit and proces-
sors u = 8 
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Figure 5.6: Comparison of the methods in which key size = 192-bit and proces-
sors u = 8 

 

Table 5.10 shows the results of all of the methods tested with pro- ces-
sors u = 8. According to Table 5.10, the [11, 12] and new methods are somewhat 
similar when the number of requests r = 4. The new method offers the best exe-
cution time when the requests r > 4. [11] and [12] are very similar. The rest con-
sume considerable time and are too similar, as shown in Figure 5.6. The new 
method demonstrates the best execution time, and the [10] method demon-
strates the worst when u > 2. Tables 5.8, 5.9 and 5.10 show that the [12] method 
is enhanced when the processors u increase. 

 

Here, the results of each method using a 256-bit key size are presented. 
Every situation for the key is discussed in consideration of the number 
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r Sequential [10] [11] [12] New 

4 0.345 0.246 0.19 0.25 0.176 
8 0.687 0.447 0.339 0.496 0.263 

16 1.372 0.913 0.654 1.035 0.658 
32 2.75 1.849 1.305 2.185 1.273 
64 5.48 3.599 2.557 4.147 3.086 

 

Table 5.11: Comparison of the methods in which key size = 256-bit and proces-
sors u = 2 
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Figure 5.7: Comparison of the methods in which key size = 256-bit and processors 
u = 2 

 

of processors. The results are shown in tables and charts. The execution time of 
each method is shown in Table 5.11. The new method and [11] are too similar 
when the number of requests r < 64. However, when r = 64, [11] is the best. The 
[12] and sequential methods are the worst choices in this case. Generally, the 
new method is the best according to Table 5.11. 

 

Table 5.12 shows the results of the 256-bit key size when processors u = 
4. The new method provides the best execution time relative to the other meth-
ods. Furthermore, when the requests r increase, the difference in the execution 
time is significant, as shown in Figure 5.8. [11] yields good results when the num-
ber of requests r > 8, according to Table 5.12, in comparison 
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r Sequential [10] [11] [12] New 

4 0.341 0.222 0.193 0.168 0.12 
8 0.676 0.47 0.368 0.291 0.161 

16 1.357 0.859 0.644 0.687 0.467 
32 2.712 1.703 1.271 1.355 0.966 
64 5.415 3.385 2.557 2.685 1.974 

 

Table 5.12: Comparison of the methods in which key size = 256-bit and proces-
sors u = 4 
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Figure 5.8: Comparison of the methods in which key size = 256-bit and proces-
sors u = 4 

 
with [12], which yields respectable results when 𝑟 ≤ 8. Generally, the new 
method yields the best results when the processors u = 4 and u = 2. 

 

Based on Table 5.13, the new method demonstrates the best execution 
time when processors u = 8.  [11] and [12] are so comparable when  r < 64. The 
remaining methods consume considerable time and are too similar, as shown in 
Figure 5.9. The execution time of [11] improves when the processors u = 8. Con-
trarily, when u = 2 and u = 4, the results are similar. The new method shows the 
best execution time in all cases. Furthermore, the [12] method improves when 
the processors u increase, according to Tables 5.11, 5.12 and 5.13. 

 

[10] 
[11] 
[12] 

New 

#E
xe

cu
ti

o
n

 T
im

e 



CHAPTER 5. RESULTS 

35 

 

 

 
 
 
 
 

r Sequential [10] [11] [12] New 

4 0.346 0.288 0.163 0.152 0.117 
8 0.688 0.584 0.273 0.235 0.153 

16 1.375 1.086 0.508 0.491 0.306 
32 2.753 2.198 1.02 0.981 0.655 
64 5.498 4.304 2.12 1.898 1.277 

 

Table 5.13: Comparison of the methods in which key size = 256-bit and proces-
sors u = 8 
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Figure 5.9: Comparison of the methods in which key size = 256-bit and processors 
u = 8 
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r Sequential [10] [11] [12] New 

4 1.591 1.109 0.969 1.245 0.846 
8 3.187 2.267 1.673 2.354 1.008 

16 6.371 4.331 3.235 5.067 3.032 
32 12.794 8.688 6.309 9.903 6.064 
64 25.481 17.332 12.401 19.603 12.378 

 

Table 5.14: Comparison of the methods in which key size = 512-bit and proces-
sors u = 2 
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Figure 5.10: Comparison of the methods in which key size = 512-bit and proces-
sors u = 2 

 
 

Here, the 512-bit key size is discussed. Each number of processors is 
tested with the declared key size. The 512-bit key size is tested on processors u = 
2. Table 5.14 shows the results of the execution time. The new method demon-
strates the best results according to Table 5.14, whereas the [11] yields good re-
sults for the 512-bit key size when the processors u = 2. Moreover, the 
[12] and sequential methods demonstrate the worst results in this case. [12] 
yields extremely poor results when the processors u = 2, which makes it an un-
wise choice when the values of u are small. [10] consistently demonstrates good 
results when the processors u = 2 for different key sizes, as shown in Figures 5.1, 
5.4, 5.7 and 5.10. 
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r Sequential [10] [11] [12] New 

4 1.608 1.053 0.709 0.774 0.522 
8 3.218 1.888 1.456 1.303 0.742 
16 6.431 3.619 2.797 3.044 2.026 
32 12.857 7.159 5.437 6.26 4.455 
64 25.724 15.573 10.624 12.329 7.761 

 

Table 5.15: Comparison of the methods in which key size = 512-bit and proces-
sors u = 4 
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Figure 5.11: Comparison of the methods in which key size = 512-bit and proces-
sors u = 4 

 

The results for the 512-bit key size when number of processors u = 4 are 
shown in Table 5.15. The new method demonstrates the best execution time in 
comparison with the other methods. [11] and [12] are quite similar when r < 16, 
as shown in Figure 5.11. Furthermore, [11] consumes less time than [12]. [11] 
yields good results when the processors u = 4 and u = 2 for different key sizes. 
The remaining methods yield the worst results for this case, as shown in Figure 
5.11. 

 

According to Table 5.16, which presents the results when the proces-
sors u = 8, the [12] and new methods are similar when the number of requests r 
= 4.  The new method offers the best execution time when the 
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r Sequential [10] [11] [12] New 

4 1.577 1.311 0.699 0.557 0.599 
8 3.162 2.552 1.094 1.005 0.734 
16 6.311 4.984 2.255 2.226 1.498 
32 12.622 9.938 4.316 4.767 2.902 
64 25.229 19.875 8.645 8.864 5.81 

 

Table 5.16: Comparison of the methods in which key size = 512-bit and proces-
sors u = 8 
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Figure 5.12: Comparison of the methods in which key size = 512-bit and proces-
sors u = 8 

 
 
 

 
requests r > 4. [11] and [12] are very similar. The rest consume consider- ably 
more time than the others, as shown in Figure 5.12. The new method demon-
strates the best execution time in every case, and [10] demonstrates the worst 
when u > 2. The [11] and [12] methods are enhanced when the processors u 
increase. 
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5.3 Summary 
 

Various scenarios are analysed to determine the best formulations to ac- celerate 
scalar multiplication. The time performance is calculated for each scenario. In 
the first section of this chapter, the results of finding the best method are shown, 
and this method is compared with the previous methods [10–12]. A new method 
with a good execution time is discovered that demon- strates the same results as 
the method of [12] with a different algorithm, which does not require a buffer. 
In the second section, the implementation 
of all methods is analysed on a Lenovo Y50-70 with an Intel®   CoreTM, an 
i7-4720HQ CPU @ 2.60GHz processor, a 16-GB RAM and a 64-bit operating system. 

 

The results of each method, tested in one environment, are recorded in 
Tables 5.5 to 5.16. Furthermore, the tests are conducted in various situ- ations 
(when processors u = 2, 4 and 8) and for various key sizes (160-bit, 192-bit, 256-
bit and 512-bit). The results show how each method performs in different cases. 
Generally, the new method demonstrates the best execution time overall and 
[11] demonstrates the second-best execution time. [12] is the worst method 
when processors u < 8. Furthermore, [10] yields similar results with different 
processors u. However, when the number of requests r increases, the efficiency 
of the new method is remarkable. Figures 5.1 to 5.12 represent the results in dia-
gram form for clarity. The next and last chapter of this thesis concludes by ad-
dressing its accomplishments and discussing future work. 
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Chapter 6 
 

Conclusion 

 
Precomputation-based methods and postcomputation-based methods have 
been proposed to accelerate generic-point scalar multiplication, but they have yet 
to be tested on regular devices. In this thesis, a new method is proposed during 
the trade-off analysis of the previous methods. Furthermore, the previous meth-
ods and the new method are implemented using C++. Each method is tested in 
one environment and in various cases. The results of each case are recorded in ta-
bles and charts. Overall, the new method demonstrates the best execution time. 
[11] is the second-best method based on the results. Furthermore, [12] is the 
worst method when the number of processors u is small. 

 

Future work that analyses other new methods or methods that are not 
addressed in this thesis may be interesting. Furthermore, such work may imple-
ment the method proposed in this thesis on FPGA. It may also be worthwhile to 
conduct the same analysis on FPGA using different key sizes, numbers of proces-
sors and numbers of requests. 
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