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ABSTRACT  

 

This thesis proposes the design of an area-efficient compact 

optimal normal basis field arithmetic unit (FAU) utilizing the 

common parts between the Massy-Omura multiplier and the Itoh -

Tsugii inverter. The field arithmetic operations include addition, 

multiplication, and inversion. Addition can be easily implemented 

as an XOR of the corresponding vectors. Multiplication typically 

requires more computational time than addition, and it has more 

circuit complexity. Multiplicative inversion can be conducted by 

repeatedly applying the multiplication squaring algorithm. The 

design showed decreased hardware complexity and a decrease in 

the number of inputs compared to the standard approach, which 

makes the design very attractive when implementing elliptic 

curve cryptosystems in resource-constrained devices such as, 

smart cards, radio-frequency identification (RFID), and wireless 

sensor networks. The design was initially run on 173-bit input; it 

was then adjusted to run on 233, 350, and 515-bit inputs. The 

proposed design was coded using VHDL on Xilinx’s ISE design 

suit 14.5 and simulated on an Artix7 XC7A200T field-

programmable gate array (FPGA).  
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 ملخص الرسالة

 

   حساب  وحدة  وبناء  تصميم عنوان الرسالة:                     الاسم كاملا: حسام إبراهيم رشاد الدوبي 

الأسس   عادية  مدمجة                                                                          

 201 9- 1441تاريخ الدرجة العلمية:                    التخصص: علوم وهندسة الحاسب الآلي 

 

 

 باستخدام عادية الأسسأولية  مدمجة حسابية قاعدة تصميم الأطروحة هذه تقترح

-)ماسي اومورا( وخوارزمية المعكوس )ايتو مضاعف بين المشتركة الأجزاء

 ، الضرب ، الجمع التي سينفذها التصميم كل من: يةالحساب  عملياتال وتشمل تسوجي(.

بينما  .XORبوابة منطقية باعتبارها بسهولة تنفيذها يمكن عملية الجمع. المعكوسو 

دائرته  في التعقيد من المزيد ولديه  جمعال من أكثر حسابي ا وقت ا عادة   الضرب يتطلب

 التربيعية الضربية خوارزمية تطبيق خلال من المعكوس ستخراجإ يمكن. الكهربائية

باستخدام   VHDLلغة البرمجة بواسطة المقترح التصميم إنشاء تم. متكرر بشكل

 Artix7 XC7A200Tقطعة على ومحاكاتها Xilinx 14.5 من ISE برنامج التصميم

FPGA.  .ضبطه تم ثم ، بت 173ذات  مدخلات على البداية في التصميم تشغيل تم 

ا النتائج أظهرت. بت 515 ، 350 ، 233 مدخلات على تشغيله ليتم  تعقيد في انخفاض 

 مما .القياسي تصميمبال مقارنة   المدخلات عدد جميع  في المقترح للتصميم المكونات

 وشبكات الذكية البطاقات مثل ، الموارد المحدودة للأجهزة للغاية جذاب ا التصميم جعلي 

RFID تطبيق التشفير باستخدام المنحنيات  عند ، اللاسلكية الاستشعار وأجهزة

 .الاهليجية
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Chapter 1: 

INTRODUCTION 

 

1-1. Motivation 

 

Efficient hardware implementation of elliptic curve cryptosystems (ECCs) in 

resource-constrained devices is important in many applications on small devices such as 

smart cards, radio-frequenciy identification (RFID), and wireless sensor networks. 

Computations in finite fields combined with low-hardware-complexity architectures are 

important in many areas, including coding theory, computer algebra systems, and 

public-key cryptosystems (e.g., ECCs). Although all finite fields of the same cardinality 

are isomorphic, their arithmetic efficiency depends greatly on the basis used for field 

element representation. The most commonly used are polynomial basis (PB) and normal 

basis (NB). 

Polynomial basis: PB may also refer to a basis of the extension of the form {1, 

α,……., 𝛼𝑚−1 } where α is the root of a primitive polynomial of degree m equal of 

the degree of the extension. 

Normal basis: NB GF(2𝑚)  is a basis of the form (𝛽. 𝛽2. 𝛽4. 𝛽8. ……𝛽2
(𝑚−1)

)  , 

where 𝛽 𝜖 𝐺𝐹(2𝑚). 

Arithmetic over NB finite fields GF(2𝑚) has recently been used in many significant 

applications, including error-correcting codes, cryptography, digital signal processing, 

switching theory and pseudorandom number generation. Addition, multiplication, 

exponentiation, and inversion are the most important computations in finite field 

arithmetic. Therefore, fast multiplication algorithms with low circuit complexity are 

much desired. Because such computations cannot be performed in real time on general-

purpose computers, hardware-efficient architectures for multiplication in GF(2𝑚) are 

highly desirable. 

https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Primitive_polynomial_(field_theory)
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1-2. Main Contribution 

The contributions in this thesis are as follows: 

• We propose a new compact optimal normal basis field arithmetic unit (FAU). 

• We reduce the area cost in terms of NAND gates compared to a standard FAU. 

• We reduce the area cost in terms of NAND gates compared to the research 

done in 3.1. 

• We reduce the number of slice regiters and slice lookup tables compared to a 

standard FAU. 

• We model the proposed design using VHDL and Implement it on Xilinx  

Artix7 XC7A200T  FPGA over GF(2173, 2233, 2350, 2515), 

 

 

 

 

 

1-3. Thesis Organization 

 
The remainder of this thesis is organized as follows: Chapter 2 introduces the 

required background on the field of arithmetic operations and optimal normal basis. 

Chapter 3 presents the literature review. Chapter 4 describes the design methodology of 

the FAU proposed in this thesis. Chapter 5 shows the results of implementing the design 

and comparing it to the standard FAU. Chapter 6 concludes the thesis and discusses 

future work. 

 

 

1-4. Chapter Summary  

 

In this Chapter, we mentioned the motivation for the thesis and what 

contributaions were made. Also the whole structure of the thesis was explained. In the 

next Chapter we mention some background information regarding field arithmetic and 

optimal normal basis.  
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Chapter 2:  

BACKGROUND INFORMATION 

 

2-1. Finite Field Arithmetic 

 

A finite field in abstract algebra [1], contains only a finite number of elements. 

Finite fields are important in cryptography, algebraic geometry, , number theory, coding 

theory, and Galois Theory. A set of elements G with any binary operation∎ is called a 

group , it has the following properties: 

1. Closure: ∀ 𝑎∎𝑏 ∈ 𝐺. 𝑎 ∎ 𝑏 ∈ 𝐺. 

2. Associativity: ∀ 𝑎. 𝑏. 𝑐 ∈ 𝐺. (𝑎 ∎ 𝑏) ∎ 𝑐 = 𝑎 ∎ (𝑏 ∎ 𝑐). 

3. Identity: The group contains an identity element 𝑒 ∈ 𝐺 such that 

4.  ∀ 𝑎 ∈ 𝐺 . 𝑒 ∎ 𝑎 = 𝑎 ∎ 𝑒 . 

5. Inverse: Every element 𝑎 ∈ 𝐺 has an inverse 𝑎−1 ∈ 𝐺 such that 𝑎∎𝑎−1 =

      𝑎−1∎𝑎 = 𝑒. 

Abelian groups are groups with a commutative group operation: i.e,  

𝑎∎𝑏 = 𝑏∎𝑎 ∀ 𝑎. 𝑏 ∈ 𝐺 

Cyclic groups are groups that have a generator element. An element ∈ 𝐺 , is a 

generator of the group if each element 𝑎 ∈ 𝐺 can be generated by repeated 

application of the group operation on 𝑔. Thus, ∀ 𝑎 ∈ 𝐺, 

𝑎 = 𝑔∎𝑔∎𝑔… .∎𝑔⏟          
𝑖𝑡𝑖𝑚𝑒𝑠

 

Groups with the “+” group operator are called additive groups and are specified as 



15 
 

𝑖𝑔 =  𝑔 + 𝑔 + 𝑔 +⋯+ 𝑔⏟            
𝑖𝑡𝑖𝑚𝑒𝑠

 

 

 

      Similarly, groups with the “*” group operator are called multiplicative groups and 

specified as 

𝑔𝑖 = 𝑔 ∗ 𝑔 ∗ 𝑔 ∗ 𝑔…∗ 𝑔⏟            
𝑖𝑡𝑖𝑚𝑒𝑠

 

The number of elements in a group is represented by the symbol |G| and is called the 

order of the group G. A set of elements F is called a field, it has two binary operations, 

represented here as multiplication (*) and addition (+), and have the following 

properties: 

1. With respect to the “+” operation, F is an abelian group. 

2. An abelian group is formed by the elements in the set F* under the “*” 

operation. 

All the elements in F forms the set F*, except the additive identity.  

3. The two binary operations apply the distribution law as follows: 

∀ 𝑎. 𝑏. 𝑐 ∈ 𝐹. 𝑎 ∗ (𝑏 + 𝑐) = (𝑎 ∗ 𝑏) + (𝑎 ∗ 𝑐) .  

The symbol GF(q) represents the finite fields or “Galois field”, named after 

Evariste Galois, . For any positive integer m and prime p, there always exists a Galois 

field of order 𝑞 = 𝑝𝑚. The characteristic of the finite field GF(𝑝𝑚) is the prime p. 

 

2-2. Arithmetic Logic Unit 

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that 

performs arithmetic and bit-wise operations on integer binary numbers. An ALU is a 

fundamental building block of many types of computing circuits, including the graphics 

processing units (GPUs) and the central processing unit (CPUs) of computers. A 

number of basic arithmetic and bit-wise logic functions are commonly supported by 

ALUs: Addition, Subtraction, AND,XOR, and Cyclic shifting. To the best of our 

knowledge, there are no ALUs that can perform inversion, this thesis propose a way to 

implement it. 
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2-3. GF(𝟐𝒎) Arithmetic 

         Binary fields are finite fields of order 2m , also called characteristic-two finite 

fields,[2]. They are particularly efficient for hardware implementation. The elements of 

GF(2m) have coefficients of either 0 or 1, and are called binary polynomials. The degree 

of each polynomial is less or equal to m – 1 since there are 2m polynomials in the field. 

Therefore, the elements can be represented as m-bit strings. Each bit in the bit string 

corresponds to the coefficient in the polynomial at the same position. For 

example, GF(23) contains 8 elements {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1}. The term 

x+1 is actually 0x2+1x+1, so it can be represented as a bit string 011.  Similarly, x2+x 

= 1x2+1x+0, so it can be represented as 110. Arithmetic efficiency depends greatly on 

the basis of field element representation. Elements of the field are represented in terms 

of a basis. Most implementations use either a PB or a NB. NB is more suitable for 

hardware implementations than PB because NB operations mainly comprise rotation, 

shifting and exclusive-OR operations, which can be efficiently implemented in 

hardware. 

 

2-4. Optimal Normal Basis  

 An NB GF (2𝑚)  is a basis of the form (𝛽. 𝛽2. 𝛽4. 𝛽8. ……𝛽2
(𝑚−1)

) , 

where 𝛽 𝜖 GF(2𝑚).In an NB, an element 𝐴 ∈ GF(2𝑚) can be uniquely represented in 

the form  

𝐴 = ∑ 𝑎𝑖𝛽
2𝑖

𝑚−1

𝑖=0

 

 

where 𝑎𝑖 𝜖 {0.1}. 

GF(2𝑚) operations [3] using NB are performed as follows: 
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i. Addition & Subtraction are performed by a simple bit-wise exclusive-OR 

(XOR) operation. 

In modulo 2 arithmetics, 0+0 ≡ 0 mod 2, 1+0 ≡ 1 mod 2 , and 1+1 ≡ 0 mod 2, 

which coincide with bit-XOR, i.e., 0⊕0=0, 1⊕0=1, and 1⊕1=0, respectively. 

Therefore, addition is simply bit-by-bit XOR for binary polynomials.  

Also, in modulo 2 arithmetics, -1 ≡ 1 mod 2, and so the result of the subtraction of 

elements is the same as addition, For example: 

• Addition: (x2+x+1) +(x+1) =x2+2x+2. Because 2 ≡ 0 mod 2 the final result 

is x2. It can also be computed as 111⊕011=100, where. 100 is the bit string 

representation of x2. 

• Subtraction: (x2+x+1) - (x+1) = x2 

ii. Squaring is simply a rotate left operation. Thus, if A = (𝑎𝑚−1, 𝑎𝑚−2,.... 𝑎1, 𝑎0), then 

 𝐴2 = (𝑎𝑚−2, 𝑎𝑚−3,.... 𝑎0, 𝑎𝑚−1 )  

iii. Multiplication: ∀A. B ϵ GF (2𝑚). where 

𝐴 = ∑ 𝑎𝑖𝛽
2𝑖𝑚−1

𝑖=0  and 𝐵 = ∑ 𝑏𝑖𝛽
2𝑖𝑚−1

𝑖=0   

The product C=A*B is given by 

𝐶 = 𝐴 ∗ 𝐵 = ∑ 𝑐𝑖𝛽
2𝑖

𝑚−1

𝑖=0

 

Then, multiplication is defined in terms of a multiplication table 𝜆𝑖𝑗 ∈ {0.1} 

𝐶𝑘 = ∑ ∑ 𝜆𝑖𝑗𝑎𝑖+𝑘𝑏𝑗+𝑘

𝑚−1

𝑗=0

𝑚−1

𝑖=0

 

the complexity of the multiplication process is defined by the number of non-zero 

elements in the 𝜆  matrix and accordingly the complexity of the hardware 

implementation. This value is defined as 𝐶𝑁 and it is equal to 2𝑚−1 for optimal normal 

basis (ONB) [4]. An ONB is a normal basis with the minimum number of non-zero 

elements in the 𝜆 𝑖𝑗  matrix. Such a basis typically leads to efficient hardware 
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implementations becaause operations mainly comprise rotation, shifting, and exclusive-

OR operations. 

iv. Inversion: The inverse of 𝑎 ∈ 𝐺𝐹(2𝑚), denoted as 𝑎−1, is defined as 

follows: 

𝑎𝑎−1 = 1 𝑚𝑜𝑑 2𝑚 

Most inversion algorithms used are derived from Fermat’s Little Theorem: 

𝑎−1 = 𝑎2
𝑚−2 = ( 𝑎2

𝑚−1−1)2  For all 𝑎 ≠ 0 in GF(2𝑚).  

2-5. Types of Optimal Normal Bases  

The derivation of values of the 𝜆 matrix element is dependent on the field size m. 

There are two types of ONBs ,  Type I and Type II [4]. An ONB Type I exists in a given 

field GF(2𝑚) if  

• m+1 is a prime 

• 2 is a primitive in GF(m+1) 

An ONB Type II exists in GF(2𝑚) if  

• 2m+1 is prime 

• Either 2 is a primitive in GF(2m+1) or 2m+1= 3 (mod 4) and 2 generates the 

quadratic residues in GF(2m+1)  

An ONB exists in GF(2𝑚) for 23% of all possible values of m [4]. The 𝜆(𝑘) matrix 

can be constructed by a k-fold cyclic shift to 𝜆(0) as follows: 

𝜆𝑖𝑗
(𝑘)
= 𝜆𝑖−𝑘.𝑗−𝑘

(0)
 for all 0 ≤ 𝑖. 𝑗. 𝑘 ≤ 𝑚 − 1 

The 𝜆(0) matrix is derived differently for the two types of ONBs. For the Type I 

ONB, 𝜆𝑖𝑗
(0)
= 1 iff i and j satisfy one of the following two congruencies [5]: 

• 2𝑖 + 2 ≡ 1 𝑚𝑜𝑑 (𝑚 + 1) 

• 2𝑖 + 2𝑗 ≡ 0 𝑚𝑜𝑑 (𝑚 + 1) 

For Type II ONB 𝜆𝑖𝑗
(𝑘)
= 1 if i and j satisfy one of the following four congruencies 

[5]: 
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• 2𝑖 + 2𝑗 ≡ 2𝑘 𝑚𝑜𝑑(2m+1) 

• 2𝑖 + 2𝑗 ≡ −2𝑘 𝑚𝑜𝑑 (2𝑚 + 1) 

• 2𝑖 − 2𝑗 ≡ 2𝑘 𝑚𝑜𝑑 (2𝑚 + 1) 

• 2𝑖 − 2𝑗 ≡ − 2𝑘 𝑚𝑜𝑑 (2𝑚 + 1) 

Therefor, 𝜆𝑖𝑗
(0)
= 0 if i and j satisfy one of the following four congruencies: 

2𝑖 ± 2𝑗 ≡ ± 1 𝑚𝑜𝑑 (2𝑚 + 1) 

 

2-6. Elliptic Curve Cryptography 

Elliptic Curve Cryptography [6] uses a group of points for cryptographic 

schemes with coefficient sizes of 160-256 bits, significantly reducing the computational 

effort. The inability to compute the multiplicand given the original and product points 

and the ability to compute a point multiplication determines the security of elliptic curve 

cryptography. The primary benefit promised by elliptic curve cryptography is a smaller 

key size [7], thus reducing storage and transmission requirements, which makes it 

popular for use in embedded systems and resource-constrained devices. The size of the 

elliptic curve determines the difficulty of the problem.  Operations used in ECCs: 

▪ Modular addition and subtraction 

▪ Modular multiplication  

▪ Modular inversion 

 

2-7. Chapter Summary 

This background chapter introduced some important concepts in finite field 

GF(2𝑚) arithmetic operations such as addition, multiplication, squaring and inversion. 

It also explained the concept of an ONB which has a minimum possible number of non-

zero elements in the 𝜆 𝑖𝑗  matrix that defines its type. There are two types of ONBs, Type 

I and Type II. Each type exists in a given field GF(2𝑚) if one of several conditions that 

justify 𝜆𝑖𝑗
(0)
= 1  is applied. This chapter also introduced the ECC concept and how its 

cryptography uses a group of points for cryptographic schemes with coefficient sizes of 

over 160 bits. This last point is very important as it shaped the number of bits selected 

to run the design, as described in Chapter 5. 

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
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Chapter 3: 

LITERATURE REVIEW 

In this chapter, we survey the research on the multiplication and inversion 

operations of normal bases GF(2𝑚) and highlight the Massey-Omura multiplier and the 

Itoh-Tsuji inversion algorithm, which are used in this thesis.  

 

3-1. Pipelined Multiplicative Inverse Architecture for Advanced Encryption 

System Cryptography  

Abd-El-Barr and Khattab [8] introduced architecture for performing a recursive 

pipeline algorithm to optimize the performance of  multiplicative inverse operations in 

the Galois Field GF(28) , which is used in performing S-Box byte-substitution in 

advanced encryption system (AES) cryptosystems. The S-Box performs a non-linear 

transformation on the data by replacing each individual byte with a different byte. The 

main purpose of the byte substitution is to bring confusion to the data to be encrypted. 

By determining the multiplicative inverse of a given state in finite field GF(28 ), the 

replacement bytes can be obtained. Abd-El-Barr and Khattab’s improvement was to 

efficiently utilize the resources available. Their main observation was that because some 

gates could be triggered concurrently, improved circuitry should follow a pipelined 

approach. In a pipelined architecture, it is important to emphasize the order of the 

operations, and hence pipelined stages will be explicitly shown. Figure .1 shows the 

pipeline architecture. Here, the subscript 4 indicates a data size of 4 bits because; the 

operations are implemented in the field GF(24)2. 
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 Figure 1 . Multiplicative inverse gate implementation over GF(24)2 using a pipeline. 

 

After making some calculations, the authors concluded that the total cost for the 

architecture in terms of gate cost was 48(•) and 152(x). where (•) represented AND 

gates and (x) represented XOR gates. In order to convert this area cost into pure two-

way NAND gates, an AND gate took two NAND gates and an XOR gate took four 

NAND gates. This way, the total area in NAND gate units was  48(2)+152(4) = 704. 

The authers concluded that their proposed pipeline approach decreased the time delay  

at the expense of a bit more area. 
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3-2. Low-complexity Hardware Architecture of Gaussian Normal Basis         

Multiplication over GF(𝟐𝒎) for ECCs  

Rashidi, Sayedi, and Farashahi [9] presented an efficient high-speed architecture 

of a Gaussian normal basis (GNB) multiplier over a binary finite field GF(2𝑚) The 

structure was constructed by using some regular modules for computation of 

exponentiation by powers of 2 and low-cost blocks for multiplication by normal 

elements of the binary field. For the powers of 2 exponents, the modules were 

implemented by some simple cyclic shifts in the NB  representation. 

  

 

 

               

 

Figure 2. Proposed structure of the digit-serial GNB multiplier over GF(27). with w = 4 and d = 2  
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  For the case of word = 4 and digit = 2, the word  representations of B are 

𝐵1 = 𝑏6𝛽
26 + 𝑏5𝛽

25 + 𝑏4𝛽
24 + 𝑏3𝛽

23 

𝐵2 = 𝑏2𝛽
22 + 𝑏1𝛽

21 + 𝑏0𝛽 

And the multiplication result is 𝐶 = (((𝐶1
2 + 𝐶2)

2 + 𝐶3)
2 + 𝐶4), where 𝐶1 − 𝐶4 are 

𝐶1 = ((𝐴
2−3)2

3
𝑏6 + (((𝐴

2−3)2
−3
)2
4
𝛽)2

−1
𝑏2 

𝐶2 = (((𝐴
2−3)2)2

3−
𝛽)2

3
𝑏5 + ((((𝐴

2−3)2
2
)2
−3
)2
4
𝛽)2

−1
𝑏1 

𝐶3 = (((𝐴
2−3)2

2
)2
−3
𝛽)2

3
𝑏4 + ((((𝐴

2−3)2
2
)2
−3
)2
4
𝛽)2

−1
𝑏0 

𝐶4 = (((𝐴
2−3)2

3
)2
−3
𝛽)2

3
𝑏3 + ((((𝐴

2−3)2
3
)2
−3
)2
4
𝛽)2

−1
𝑏−1 

 

The proposed digit-serial GNB method had (m− 1)(T − 1) d + dm number of 

XOR gates and dm number of AND gates. After implementing the design in 

FPGAVirtex-4 XC4VLX100 for GF (2233) the authors obtained 1458 slice registers and 

2811 lookup tables (LUTs). After comparing their work with other digit-serial 

structures, the authers concluded that the proposed work had suitable timing 

characteristics and hardware utilization results. 

 

3-3. Massey - Omura Multiplier  

In finite field arithmetic, multiplication is more complicated than squaring and 

addition operations. For efficient finite field computations, an efficient multiplier is 

highly needed. Finite field multipliers using normal bases can be classified into two 

main categories: (1) conversion-based multipliers, and (2) 𝜆.-matrix-based multipliers. 

A Massey- Omura multiplier [10] is a 𝜆.-matrix-based multiplier that computes c = a x b 

based on a matrix-vector product where the constant matrix 𝜆.  is composed of only 

GF(2) elements. The notation c[i] is the i-th bit of c (starting with least significant bits 

(LSBs)) Massey and Omura proposed an efficient NB bit-serial multiplier over GF(2𝑚) 

that required only two m-bit cyclic shift registers and combinational logic (which 

consists of a set of AND XOR logic gates). The space complexity of the Massey-Omura 
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multiplier is (2m - 1) AND gates + (2m - 2) XOR gates, depending on the number of 

non-zero elements in the 𝜆.- matrix. 

 

 

 

 

 

One advantage of the Massey-Omura multiplier is that it can be used with both 

types of optimal normal bases (Type I and Type II). Another advantage is that it is a bit-

serial multiplier, and hence the same circuitry used to generate c0 can be used to 

generate c[i] (i = 1; 2; :::;m - 1). 

 

Algorithm 1: Massey-Omura multiplication 

         Operands: a,b in GF(2𝑚) represented in NB 

         Result: c = a × b 

1.  c ← 0 

2.  for i from 0 to m − 1 do 

3.  c[0] ← a ×𝜆. × b 

4.  a ← ROL(a, 1) ; b ← ROL(b, 1) ; c ← ROL(c, 1) 

5.  return c 

Figure 3. 5-bit Massy-Omura Multiplier Circuitry  
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3-4. Itoh-Tsuji Inversion Algorithm 

 Inversion using NB consists of multiplications and cyclic shifts. The number of 

multiplications is the major parameter for efficient inversion because cyclic shifts 

require almost trivial time. Inversion algorithms can be classified into three main 

categories :(1) standard, (2) exponent grouping (3) exponent decomposing inversion 

algorithms. Beacuse the number of multiplications is the main parameter in determining 

the computation time of the inversion operation, several algorithms have attempted to 

improve the inversion speed by decomposing the exponent to reduce the required 

number of multiplications and replacing it with squaring operations, which are much 

simpler compared to multiplications. Itoh and Tsuji [11], proposed a GF(2𝑚) inversion 

algorithm derived from Fermat’s Little Theorem using normal bases. The basic idea was 

to decompose the exponent m -1 as follows: 

 𝑎−1 = 𝑎2
𝑚−2 

= (𝑎2
𝑚−1 −1)2. 

The exponent 2𝑚−1 is further decomposed as follows: 

1. If m is odd, then       

 (2𝑚−1
 
− 1) =  (2

𝑚−1

2

 

− 1) (2
𝑚−1

2

 

+ 1). 

and  

 𝑎2
𝑚−1 

= (𝑎2
𝑚−1
2

 
−1)2

𝑚−1
2 +1 

2. If m is even, then       

 (2𝑚−1
 
− 1) = 2(2𝑚−2

 
− 1) + 1 = 2 (2

𝑚−2

2

 

− 1) (2
𝑚−2

2

 

+ 1) + 1. 

and 

  𝑎2
𝑚−1 

= 2
2(2

𝑚−2
2

 

−1)(2
𝑚−2
2

 

+1)+1
 

 

 

The proposed algorithm by Itoh and Tsuji is shown below [3]. It requires three m- bit 

cyclic shift registers, one barrel shifter, two down counters and one multiplier. It 

requires 𝑙𝑜𝑔2 (𝑚 − 1) + 𝑣(𝑚 − 1) − 1  multiplications, where v(x) is the number of 1s 

in the binary representation of x. 

 

 



26 
 

Algorithm 2: Itoh-Tsujii inversion    

           Inputs: 𝑎 

                       Output: 𝑙 = 𝑎−1  

1. Set  𝑠 ← [𝑙𝑜𝑔2(𝑚 − 1)] − 1 

2. Set 𝑝 ← 𝑎 

3. For 𝑖 = 𝑠 𝑑𝑜𝑤𝑛 𝑡𝑜 0 do 

3.1  Set r ← shift  m − 1 to right by s bit(s) 

3.2  Set 𝑞 ← 𝑝 

3.3  Rotate q to left by [𝑟/2] bit (s) 

3.4  Set 𝑡 ← 𝑝 × 𝑞 

3.5  If last bit of 𝑟 = 1 

3.5.1 rotate t to left by 1 bit. 

3.5.2 𝑝 ← 𝑡 × 𝑎 

3.6 Else  

3.6.1 𝑝 ← 𝑡 

3.7 𝑠 ← 𝑠 − 1 

4. Rotate 𝑝 to left by 1 bit 

5. Set 𝑙 ← 𝑝 

6. Return 𝑙 

 

 

3-5. Fast Inversion in GF(𝟐𝒎) with NB Using Hybrid-Double Multipliers 

 Azarderakhsh, Jarvinen, and Dimitrov [12] presented techniques to exploit 

recently proposed hybrid-double multipliers for fast inversions in binary fields GF(2𝑚) 

with normal bases. A hybrid-double multiplier computes a double multiplication, the 

product of three elements in GF(2𝑚), with a latency comparable to the latency of single 

multiplication of two elements. 
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 The authers concluded that faster inversion times were achieved at the expense 

of larger area requirements. The proposed scheme is applicable primarily for high-

performance cryptographic applications where the aim is to maximize the speed of 

inversions. However for small devices with limited resources, the IT inverter is 

recommended [11].  

 

3-6. Small FPGA-based Multiplication-Inversion Unit for NB Representation in 

GF(𝟐𝒎) 

Métairie, Tisserand, and Casseau [13] proposed a small FPGA- based multiplication-

inversion unit that uses permuted normal basis (PNB) representation, Massey-Omura 

multiplication, and Itoh-Tsujii inversion algorithms. They produced the output bits of 

the multiplication serially, like the original Massy-Omura, but with two bits at each 

clock cycle. 

 

Figure 4. The proposed inverter architecture using a hybrid-double multiplier. 
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  Figure 5.  Architecture of the multiplication-inversion unit (MIU). 

Upon further studying their work and the results they provided, we found that their 

multiplication-inversion unit  leads to about 20% theoretical speed-up over previous 

works at the cost of area efficiency. 

 

 

3-7.  Chapter Summary 

In this chapter we surveyed different types multiplication and inversion 

algorithms and found that the Massey-Omura multiplier and the Itoh-Tsuji 

inverter were the best for resource-constrained devices. In the next chapter, we 

introduce and discuss our design. 
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Chapter 4: 

MYTHODOLOGY  

 

 

The main idea for this thesis came from a key observation from the Itoh-Tsuji 

inverter [11], which was that  the inverter’s three cyclic shift registers could be used for 

both the multiplier and the inverter by proper scheduling. These cyclic shift registers 

could also be used to perform concurrent squaring. Accordingly, a compact GF(2𝑚) NB 

field arithmetic unit (FAU) is presented in this section. 

 

 

4-1. The Proposed Design 

 

 The main idea of the proposed FAU is to utilize the common parts of the 

Massey-Omura multiplier [10] and the Itoh-Tsujii inverter [11]. The remaining field 

arithmetic operations are also included, where these are: 

• Addition 

• Squaring 

• Square root 

• AND 

• Multiplication 

• Inversion 

 

 

The standard approach of the design performs these operations individually, each with 

its input and output registers. The proposed design will combine these operations into a 

compact FAU to benefit from shared registers. The ultimate goal was to design an FAU 

that can perform the basic operation required of a processor that implements ECC 

systems for resource-constrained devices. 
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The proposed FAU consists of three cyclic shift registers, three multiplexers (MUXs), 

two down counters, one barrel shifter, m-AND gates for the AND operation, m-XOR 

gates for the XOR operation, an AND plane, which is the 2m - 2 AND gates for the 

Massey-Omura multiplier and an XOR tree, which is the 2m - 1 XOR gates for the 

Massey-Omura multiplier. 

 

 

 

4-2. Operations of the Proposed FAU 

 

Here we have the inputs: A, B. 

               Outputs: (A AND B)/(A XOR B)/A.B/𝐴−1/𝐴2 / 𝐵2/√𝐴√𝐵   

1. AND/XOR operation: The inner controller loads both A&B into REG1 & REG2. 

Accordingly, we get the output A AND/XOR B. 

 

Figure 6. The Proposed FAU design 

In 
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2.  Squaring/Squareroot: The inner controller loads both A&B into REG1 & 

REG2. Accordingly, with cyclic shift to left/right we get the outputs 𝐴2𝐵2/ 

√𝐴√𝐵 concurrently. 

 

3.  Multiplication: The inner controller loads both A&B into REG1 & REG2. The 

same procedure for the Massey-Omura multiplier is followed to get the output 

AB and the output is saved in REG3. 

 

4. Inversion: The Itoh-Tsujii algorithm is implemented in the proposed FAU. 

 

Algorithm 3: Itoh-Tsuji inversion in the proposed FAU 

Inputs: 𝑎 

Output: 𝑙 = 𝑎−1  

1. Set  𝑠 ← [𝑙𝑜𝑔2(𝑚 − 1)] − 1 

2. Set 𝑅𝐸𝐺1 ← 𝑎 

3. For 𝑖 = 𝑠 𝑑𝑜𝑤𝑛 𝑡𝑜 0 do 

3.1  Set r ← shift  m − 1 to right by s bit(s) 

3.2  Set 𝑅𝐸𝐺2 ← 𝑅𝐸𝐺1 

3.3  Rotate REG2 to left by [𝑟/2] bit (s) 

3.4  Set 𝑅𝐸𝐺3 ← 𝑅𝐸𝐺1 × 𝑅𝐸𝐺2 

3.5  If last bit of 𝑟 = 1 

3.5.1 Rotate REG3 to left by 1 bit. 

3.5.2 𝑅𝐸𝐺2 ← 𝑅𝐸𝐺3 

3.5.3 𝑅𝐸𝐺3 ← 𝑅𝐸𝐺2 × 𝑅𝐸𝐺1 

3.5.4 𝑅𝐸𝐺1 ← 𝑅𝐸𝐺3 

3.6 Else  

3.6.1 𝑅𝐸𝐺1 ← 𝑅𝐸𝐺3 

3.7   𝑠 ← 𝑠 − 1 

4. Rotate 𝑅𝐸𝐺1 to left by 1 bit 

5. Set 𝑙 ← 𝑅𝐸𝐺1 

6. Return 𝑙 
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The inner controller loads input 𝑎 into REG 1 and logarithm  𝑙𝑜𝑔2(𝑚 − 1) is 

calculated and stored in variable s to determine the number of iterations the algorithm 

will take to produce the inverse (i.e., the number of multiplications and squarings). In 

the first iteration, the binary representation of the number of bits m-1 is shifted to the 

right s times, converted into decimal form, and stored in variable r. The value in REG 1 

is then loaded into REG 2 and rotated to the left (square operation) r/2 times. Next, 

REG 1 and REG 2 are multiplied (Massey-Omura multiplication), and the result is 

stored in REG 3. Then, the least significant bit in the binary representation of r is then 

checked; if it is 0 the result in REG 3 is loaded into REG 1 and the next iteration begins. 

However if it is 1, the result stored in REG 3 is squared (i.e., rotated to the left by 1) and 

loaded into REG 2, REG 1 and REG 2 are multiplied, the result is stored in REG 3 and 

loaded into REG 1, and the next iteration begins. After the conclusion of all iterations, 

the final value in REG 1 is squared (i.e., rotated to the left by 1) and returned as the 

inverse l of the input 𝑎. 

 

 

 

 

4-3. Chapter Summary: 

 

In this chapter, we described the proposed design concept, which is to utilize the 

common parts of the Massey-Omura multiplier and the Itoh-Tsujii inverter. We also 

established in detail that it performs addition, squaring, square root, ANDing, 

multiplication, and inversion operations. In the next chapter, we present the results 

obtained after implementing the design in VHDL, and then we compare the results 

with those of the standard approach for multiple number of bits. 
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Chapter 5: 

IMPLEMENTATION RESULTS 

 

5-1. Evaluating the Proposed Design  

To evaluate the proposed FAU, we compared it with a standard FAU that performs 

the operations mentioned in 4.1 separately. The standard FAU consists of the following: 

 

• m AND gates for the AND operation and 2m - 1 AND gates for the Massey-

Omura multiplier. (total = m + 2m-1 = 3m-1 AND gates) 

• m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-

Omura multiplier. (total = m + 2m - 2 = 3m – 2 XOR gates) 

• 3m-bit cyclic shift registers for the Massey-Omura multiplier and 3m- bit cyclic 

shift registers for the Itoh-Tsuji inverter. (total = 3m + 3m = 6m-bit registers) 

• 2m-bit cyclic shift registers for two concurrent squaring operations.  

(total = 2m-bit registers) 

• Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs) 

 

The proposed FAU consists of the following: 

• m AND gates for the AND operation and 2m - 1 AND gates for the Massey-

Omura multiplier. . (total = m + 2m-1 = 3m-1) 

• m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-

Omura multiplier. (total = m + 2m - 2 = 3m - 2) 

• 3m-bit cyclic shift registers for both the Massey-Omura multiplier and the Itoh-

Tsuji inverter. (total = 3m-bit registers) 

• 2m-bit cyclic shift registers for two concurrent squaring operations.  

(total = 2m-bit registers) 

• Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs) 
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We convert all combination logic/gate in both designs to their NAND equivalents.  

 

  

Clogic/Gates NANDs Standard  NANDs Proposed NANDs 

AND 2 3m - 1 6m – 2 3m - 1 6m - 2 

XOR 4 3m - 2 12m – 8 3m - 2 12m – 8 

m-bit Reg 4m 8 32m 3 12m 

m 2-to-1 

MUX 

3m 2 6m 2 6m 

 Total = 56m – 10 Total = 36m - 10 

 

 Table 1 summarizes the hardware requirements of the proposed FAU and the 

standard FAU. It also shows the equivalent NAND gate cost of both designs. The first 

two columns of Table 1 show the combination logic/gates and the required number of 

NANDs to implement them, respectively. The third and fourth columns show the 

required number of these combinational logic/gates for the standard FAU and their 

equivalent NANDs, respectively. Similarly, the fifth and sixth columns show the 

required number of these combinational logic/gates for the proposed FAU and their 

equivalent NANDs, respectively. Furthermore, the fourth and the sixth columns show 

the results of multiplying the second column by the third and fifth columns, 

respectively. Finally, the last row shows the total number of NANDs for the standard 

and the proposed FAUs. 

 

 

 The results of Table 1 show that the proposed FAU saves 35% [1- (36m -10)/ 

(56m -10) *100 = 35 ] of the total number of NANDs as compared to the standard FAU. 

For resource-constrained devices such as smart cards [14], RFID [15] and wireless 

sensor networks [16], our compact FAU is a very attractive when implementing ECCs. 

In Table 2 we compare our results with those of the architecture mentioned in Section 

3.1 for m = 8.  

 

 

 

 

 

Table. 1 Area cost of proposed design in terms of NAND 
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Clogic/Gates NANDs Pipelined  NANDs Proposed NANDs 

AND 2 48 96 23 46 

XOR 4 152 608 22 88 

m-bit Reg 4m - - 3 96 

m 2-to-1 

MUX 

3m - - 2 48 

 Total = 704 Total = 278 

 

In Table 2. We compare the area cost in NAND gate units that was presented in the 

Pipelined Multiplicative Inverse Architecture in Section 3.1 with our Proposed FAU. 

The Pipelined Architecture had 48(2) + 152(4) = 704 NAND for m = 8. In our proposed 

design we gave m the value 8 and calculated the area cost 36(8) -10 = 278, or 60% less 

area. 

 

5-2. Implementing the Design in VHDL 

 

The two main points in comparing the proposed FAU with the standard FAU is to 

compare the number of slice registers and the number of slice LUTs.We implemented 

the design for 173 bits using VHDL Coding and Simulation on Xilinx Artix7 

XC7A200T FPGA . Table 3 shows the data after synthesizing the design. 

 

 

 

 

The third row in table 3 shows that the proposed design have 1076 slice registers with 

almost 0% utilization of available logic.The forth row shows that the proposed design 

have 7404 LUTs with approximately 5% utilization of available logic.  

Table  3.  Synthesized results of 173-bit input 

Table. 2 Comparing area cost of the pipelined multiplicative Inverse with 

our proposed design in terms of NAND 
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One point to clear in the sixth row, it shows the number of bounded input/output with 

utilization exceeding the available logic. This will not give an error when running the 

simulation and the results are correct. But when implementing the design on a physical 

chip some procedures must be taken to insure the utilization doesn’t exceed the 

available logic. One suggestion is to add a buffer to pass 50 bits of the input at a time, 

another suggestion is to choose a chip with a large number of I/O pins. In the next 

section the number of slice registers and LUTs for the proposed design is compared to 

the standard design. 

 

 

5-3. Comparing the Slice Registers and LUTs with the Standard Design. 

 

Standard 

design 

Number 

of slice 

registers 

Number 

of slice 

LUTs 

Clock cycles Minimum time (ns) 

ANDing 

  

173 173 1 1.060 

XORing 

  

173 173 1 1.060 

Sqr /Sqrt 

  

0 0 1 0.400 

Multi 519 699 173 1354.936 

Inv 1366 8884  2170 18139.03 

Total 

  

2231 9929  - -  

Proposed 

design 

1076 

(48%) 

7404 

(25 %) 

Multiplication 179 

Inversion 2516 

1290.59  

18140.36 

 

Table 4 summarize the comparison between the proposed FAU and the standard FAU 

for 173-bit. The first column shows the operations performed in the design. The second 

column shows the number of slice registers for each operation and design. The third 

column shows the number of slice LUTs for each operation and design. The fourth 

column shows the number of clock cycles for each design. The fifth column shows the 

minimum time required to perform the operations. The total number of slice registers 

for the standard design is 2231 and LUTs is 9929, whereas the slice registers for the 

proposed design are 1076 and LUTs are 7404. By comparing the two results, it is 

apparent that the proposed design reduces the number of slice registers by 48% and the 

number of LUTs by 25%. This makes the proposed FAU very attractive and suitable for 

resource-constrained devices. 

 

Table 4. Comparison of slice registers in LUTs of 173-bit design  
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5-4. Running the Design on Different Number of Bits 

 To further evaluate and analyze the proposed design, we ran the code for 233, 

350, and 515 bits and compared the number of slice registers and slice lookup tables 

(LUTs) between the standard FAU and the proposed FAU, as we did with 173 bits . The 

same code was used on all number of bits, the only difference is being that the AND 

XOR circuitry for the Massey-Omura multiplier changed for each number of bits. The 

circuitry was obtained from the 𝜆 matrix described in Section 2-4. The results are given 

in Table 5. 

 

 

No. of Bits Standard Proposed Standard Proposed 

Slice registers Slice LUTs 

173 bit 2231 1076 9929 7404 

233 bit 3087 1436 14682 10945 

350 bit 4679 2491 29901 17088 

515 bit 7353 3650 106364 85442 

 

The first column of Table 5 shows the different number of bits used to 

implement the design. The second column shows the number of slice registers of the 

standard design for the different number of bits, while the third column shows the 

number of slice registers of the proposed design. The fourth column shows the number 

of slice LUTs of the standard design for the different number of bits, while the fifth 

column shows the number of slice LUTs of the proposed design. For the 233-bit input, 

the proposed design reduced the number of slice registers by 46% whereas the number 

of LUTs was reduced by 25%. For the 350-bit input, the proposed design reduced the 

number of slice registers by 53% whereas the number of LUTs was reduced by 42%. 

For the 515-bit input the proposed design reduced the number of slice registers by 49% 

whereas the number of LUTs was reduced by 20%.  

 

Table 5. Comparing the proposed and standard design for different numbers of bits 
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5-5. Analyzing the results 

  

                          

Figure 7 shows that as the number of bits increased in the proposed design of reduction 

of slice registers is nearly half (50%) of the standard design . This is because the 

proposed design removes the additional slice registers needed to perform individual 

addition, ANDing, multiplication and inversion in the standard design. 

 

 

 

Figure 8 compares the lookup tables (LUTs) used in the standard design and in 

our proposed design. To further analyze and understand these results, we need to know 

that in our proposed FAU the inversion operation determines the area cost of our design 

as it performs many multiplications. We must also know that the number of 
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Figure 7. Comparing slice registers of the standard and proposed designs  

Figure 8. Comparing LUTs of the standard and proposed designs  
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multiplications is the primary factor that determines the computation of the inversion 

operation, and that the Itoh-Tsujii inversion algorithm decomposes the exponent to 

reduce multiplications and replace them with squaring operations, depending on the 

number of 1’s in the binary representation of the number of bits (m-1). 

 These factors combine to determine the number of LUTs for each number of 

bits. For example, when we calculate the number of squaring and multiplications in the 

inversion operation of the 350-bit design, we have 𝑙𝑜𝑔2(350 − 1)  = 8 and 349 = 

(101011101). Therefor, when we run the Itoh-Tsujii algorithm we have: 

s = 7 , 

for  𝑖 = 7 𝑑𝑜𝑤𝑛 𝑡𝑜 0 (the inversion algorithm will take 8 iterations)  

First iteration: 

r ← (shift  349 to right by 7 bits) = (101110110) = 374 

Rotate REG2 to left by [𝑟/2] bits = 374/2 = 187 (squaring) 

Second iteration: 

r ← (shift  349 to right by 6 bits) = (011101101) = 237 

Rotate REG2 to left by [𝑟/2] bits = 237/2 = 118 (squaring) 

Third iteration: 

r ← (shift  349 to right by 5 bits) = (111011010) = 474 

Rotate REG2 to left by [𝑟/2] bits = 474/2 = 237 (squaring) 

Fourth iteration: 

r ← (shift  349 to right by 4 bits) = (110110101) = 437 

Rotate REG2 to left by [𝑟/2] bits = 437/2 = 218 (squaring) 

Fifth iteration: 

r ← (shift  349 to right by 3 bits) = (101101011) = 374 

Rotate REG2 to left by [𝑟/2] bits = 374/2 = 187 (squaring) 

Sixth iteration: 

r ← (shift  349 to right by 2 bits) = (011010111) = 215 

Rotate REG2 to left by [𝑟/2] bits = 215/2 = 107 (squaring) 
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Seventh iteration:  

r ← (shift  349 to right by 1 bit) = (110101110) = 430 

Rotate REG2 to left by [𝑟/2] bits = 430/2 = 215 (squaring) 

Final iteration: 

r ← (shift  349 to right by 0 bits) = (101011101) = 349 

Rotate REG2 to left by [𝑟/2] bits = 349/2 = 174 (squaring) 

Sqauring = 174 +215 +107 +187 +218 +237 +118 +187 +5 (the number of 1’s in 

the first 7 bits of 349) + 1 (after all iterations are finished) = 1449. Multiplications = 8 

(number of iterations) +5 (number of 1’s in the first 7 bits of 349) = 13 

 

For the number of squaring and multiplications in the inversion operation of the 

515-bit design, we have 𝑙𝑜𝑔2(515 − 1) =  9  and 514 = (1000000010). 

s = 8, 

for  𝑖 = 8 𝑑𝑜𝑤𝑛 𝑡𝑜 0 (the inversion algorithm will take 9 iterations) 

First iteration: 

r ← (shift  514 to right by 8 bits) = (0000001010) = 10 

Rotate REG2 to left by [𝑟/2] bits = 10/2 = 5 (squaring) 

Second iteration  

r ← (shift  514 to right by 7 bits) = (0000010100) = 20 

Rotate REG2 to left by [𝑟/2] bits = 20/2 = 10 (squaring) 

Third iteration: 

r ← (shift  514 to right by 6 bits) = (0000101000) = 40 

Rotate REG2 to left by [𝑟/2] bits = 40/2 = 20 (squaring) 

Forth iteration: 

r ← (shift  514 to right by 5 bits) = (0001010000) = 80 

Rotate REG2 to left by [𝑟/2] bits = 80/2 = 40 (squaring) 

Fifth iteration: 

r ← (shift  514 to right by 4 bits) = (0010100000) = 160 
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Rotate REG2 to left by [𝑟/2] bits = 160/2 = 80 (squaring) 

Sixth iteration: 

r ← (shift  514 to right by 3 bits) = (0101000000) = 320 

Rotate REG2 to left by [𝑟/2] bits = 320/2 = 160 (squaring) 

Seventh iteration: 

r ← (shift  514 to right by 2 bits) = (1010000000) = 640 

Rotate REG2 to left by [𝑟/2] bits = 640/2 = 320 (squaring) 

Eighth iteration: 

r ← (shift  514 to right by 1 bit) = (0100000001) = 257 

Rotate REG2 to left by [𝑟/2] bits = 257/2 = 128 (squaring) 

Final iteration: 

r ← (shift  514 to right by 0 bits) = (1000000010) = 514 

Rotate REG2 to left by [𝑟/2] bits = 514/2 = 257 (squaring)  

Squaring = 5 + 10 + 20 + 40 + 80 + 160 + 320 +128 + 257 + 1 (number of 1’s in the 

first 9 bits of 514) + 1 (after all iterations are finished) = 1022 

Multiplications = 9 (number of iterations) + 1 (number of 1’s in the first 9 bits of 514) = 

10. 

Comparing the 350-bit design and the 515-bit design reveals that although the 

350-bit design has more multiplications than the 515-bit design, it has fewer LUTs 

because it performes more exponential decomposing and its input has fewer bits. As for 

the 173-bit and 233-bit designs: 𝑙𝑜𝑔2(172)  = 7, 𝑙𝑜𝑔2(232)  = 7, 172 = (10101100), 

233=(11101000). As these have the same logarithm and the same number of 1’s in their binary 

representation , they have the same number of multiplications (7 iterations + 3 number of 1’s in 

the first 7 bits) = 10. Therefore, the 233-bit design has more LUTs because its inputs have more 

bits.  

We conclude that our proposed design yields the best performance when there is more 

multipications and squaring, because our design reduced the number of LUTs in the 350-bit 

design by 42%. 
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5-6. Chapter Summary 

 In this chapter, we calculated the area cost in terms of NAND gates of the 

proposed FAU design compared to the standard FAU design and found it saves 35% of 

the area cost. We also implemented our design and tested it for 173, 233, 350, and 515 

bits and compared the number of slice registers and LUTs, and we found that our design 

reduces the registers by about half compared it to the standard design, which make it 

desirable for resources-constrained devices. The results were validated in model sim.  
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Chapter 6:  

CONCLUSION  

In this thesis, a design was proposed that uses the common parts of the Massey-

Omura multiplier and the Itoh-Tsuji inverter to implement a compact GF(2𝑚) normal 

basis field arithmetic unit. The proposed design is very attractive for resource-

constrained devices when implementing ECCs. The proposed FAU saves 35% of the 

total number of NANDs. This result was compared to the work done in [8] and our 

results were 60% better for m=8. It also saved 48-50% of total slice registers as 

compared to the standard design. The implementation of the design was done by VHDL 

coding and simulation with an Artix7 XC7A200T FPGA. 

 

 

 

Future Work 

 Although the methodologies and results were quite good, there are many ways to 

improve upon this work. Designing the FAU chip from high-level VHDL code was a 

good learning experience for real-world applications, as full-custom chip design is rare. 

All the utilization data were synthesized from the VHDL description. Another way to 

improve work on the design would be to try different multiplication algorithms, like the 

bit-parallel version of the Massey-Omura multiplier [17,18] to see what difference a 

parallel approach can have on the design in terms of area.  
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