
1

Design and Implementation of a Compact

GF(2𝑚) Optimal Normal Basis Field Arithmetic Unit

MASTERS DEGREE

BY

HUSAM IBRAHIM RASHAD ALDOOBI

43580349

UMM ALQURA UNIVERSITY

SUPERVISED BY

Prof. Turki Al-Somani

Academic Year 1441/2020

Kingdom of Saudi Arabia

Ministry of Education

Umm Al-Qura University

Colleage of Computer and

Information Systems

Department of Computer

Science and Engineering

2

Design and Implementation of a Compact GF(𝟐𝒎) Optimal

Normal Basis Field Arithmetic Unit

Signature of Author ………………………………………….

Committee Members Signature and Date

Prof. Turki Al-Somani …………………..

Prof. Adnan Qutub ..…………………

Dr. Fahad Al-Dosari …………………..

Date of Degree: Spring 2020

3

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Prof. Turki Al-

Somani and I am deeply indebted to him. The door of his office

was always open whenever I ran into a trouble spot or had a

question about my research or writing. He was very patient with

me and always encourages me during the whole process. I would

like also to acknowledge the continuous support of the previouse

Dean of College of Computer and Information Systems (CIS) and

the current Dean of Information Technology (IT) at Umm Al-

Qura University (Dr. Fahad Al-Dosari), the Dean of CIS (Dr.

Majid Al-Qithami), the Vice Dean of CIS for Research and

Graduate Studies (Dr. Waleed Al-Asmari), the Chairman of the

Department of Computer Engineering (Dr. Mohammed Sinky),

and all faculty members and staff in the CIS.

4

DEDICATION

This thesis is dedicated to my mother who passed away couple of

months ago leaving a huge hole in my heart; may Allah bless her

soul. This work is also dedicated to my wife, who has been a

constant source of support and encouragement during the

challenges of graduate school and life. This work is also

dedicated to my father and my two children.

5

ABSTRACT

This thesis proposes the design of an area-efficient compact

optimal normal basis field arithmetic unit (FAU) utilizing the

common parts between the Massy-Omura multiplier and the Itoh -

Tsugii inverter. The field arithmetic operations include addition,

multiplication, and inversion. Addition can be easily implemented

as an XOR of the corresponding vectors. Multiplication typically

requires more computational time than addition, and it has more

circuit complexity. Multiplicative inversion can be conducted by

repeatedly applying the multiplication squaring algorithm. The

design showed decreased hardware complexity and a decrease in

the number of inputs compared to the standard approach, which

makes the design very attractive when implementing elliptic

curve cryptosystems in resource-constrained devices such as,

smart cards, radio-frequency identification (RFID), and wireless

sensor networks. The design was initially run on 173-bit input; it

was then adjusted to run on 233, 350, and 515-bit inputs. The

proposed design was coded using VHDL on Xilinx’s ISE design

suit 14.5 and simulated on an Artix7 XC7A200T field-

programmable gate array (FPGA).

6

 ملخص الرسالة

 حساب وحدة وبناء تصميم عنوان الرسالة: الاسم كاملا: حسام إبراهيم رشاد الدوبي

الأسس عادية مدمجة

 201 9- 1441تاريخ الدرجة العلمية: التخصص: علوم وهندسة الحاسب الآلي

 باستخدام عادية الأسسأولية مدمجة حسابية قاعدة تصميم الأطروحة هذه تقترح

-)ماسي اومورا(وخوارزمية المعكوس)ايتو مضاعف بين المشتركة الأجزاء

 ، الضرب ، الجمع التي سينفذها التصميم كل من: يةالحساب عملياتال وتشمل تسوجي(.

بينما .XORبوابة منطقية باعتبارها بسهولة تنفيذها يمكن عملية الجمع. المعكوسو

دائرته في التعقيد من المزيد ولديه جمعال من أكثر حسابي ا وقت ا عادة الضرب يتطلب

 التربيعية الضربية خوارزمية تطبيق خلال من المعكوس ستخراجإ يمكن. الكهربائية

باستخدام VHDLلغة البرمجة بواسطة المقترح التصميم إنشاء تم. متكرر بشكل

 Artix7 XC7A200Tقطعة على ومحاكاتها Xilinx 14.5 من ISE برنامج التصميم

FPGA. .ضبطه تم ثم ، بت 173ذات مدخلات على البداية في التصميم تشغيل تم

ا النتائج أظهرت. بت 515 ، 350 ، 233 مدخلات على تشغيله ليتم تعقيد في انخفاض

 مما .القياسي تصميمبال مقارنة المدخلات عدد جميع في المقترح للتصميم المكونات

 وشبكات الذكية البطاقات مثل ، الموارد المحدودة للأجهزة للغاية جذاب ا التصميم جعلي

RFID تطبيق التشفير باستخدام المنحنيات عند ، اللاسلكية الاستشعار وأجهزة

 .الاهليجية

7

Table of Contents

Chapter 1: Introduction……………………………………………………………...…12

1.1 Motivation…………………………..……………….……….….....…..12

1.2 Main Contribution……………………………………………………. .13

1.3 Thesis Organization ……………………………………………………13

1.4 Chapter Summary………………………………………………………13

Chapter 2: Background Information………………………………………………..…..14

 2.1 Finite Field Arithmetic…………………………...…………....…...….14

 2.2 Arithmetic Logic Unit …………..…………..……………..…….……15

 2.3 GF(2𝑚) Arithmetic…………………………..……………….………..16

 2.4 Optimal Normal Basis……………………………………….…….…..16

 2.5 Types of Optimal Normal Basis…………………………………….....18

 2.6 Elliptic Curve Cryptography……………………….……..……..…….19

 2.7 Chapter Summary……………………………………………...………19

Chapter 3: Literature Review…………………………………...……………….……..20

 3.1 Pipelined Multiplicative Inverse Architecture for AES………..…..….20

 3.2 Low-complexity Hardware Architecture of Gaussian Normal Basis

 Multiplication over GF(2𝑚) …………………………………...……...22

 3.3 Massey-Omura multiplier ……….…….……………..……………….23

 3.4 Itoh-Tsuji inversion algorithm…….……………………………..……25

 3.5 Fast Inversion in GF(2𝑚) with Normal Basis Using Hybrid-Double

 Multipliers. ……………………………..….…………………………26

 3.6 Small FPGA based Multiplication-Inversion Unit for Normal Basis

 Representation in GF(2𝑚)…………………………………….…..…..27

 3.7 Chapter Summary ……………………...……..………………………28

Chapter 4: Methodology ……………………..……………….………………….……29

8

 4.1 The Proposed Design…………………………...…….………….……29

 4.2 Operations of the Proposed FAU……………………...………......….30

 4.3 Chapter Summary………………………………….……………..…..32

Chapter 5: Implementation Results …………..……………………..……...........…....33

 5.1 Evaluating the Proposed Design……………………...……............…33

 5.2 Implementing the Design in VHDL………..……………….……......35

 5.3 Comparing Slice Registers and LUTs with the Standard Design….....36

 5.4 Running the Design on Different Numbers of Bits..............................37

 5.5 Analyzing the results…………………………………………...….….38

 5.6 Chapter Summary...…...42

Chapter 6: Conclusion…………………………………………………………..…...…43

References ………………………………………………………..……………......…..44

9

List of Tables

Table 1. Area cost of proposed design in terms of NANDs ………...………….….….34

Table 2. Comparing area cost of pipelined multiplicative Inverse with our design ...…35

Table 3. Synthesize results of 173-bit input………………………………………....…35

Table 4. Comparison of slice registers in LUTs of 173-bit design…………………….36

Table 5. Comparing the proposed and standard design for different numbers of bits....37

10

List of Figures

Figure 1. Multiplicative inverse gate implementation over GF(24)2 using a pipeline...21

Figure 2. Proposed structure of the digit-serial GNB multiplier over GF(27)…..……..22

Figure 3. 5-bit Massey-Omura Multiplier Circuitry …...….……………..…….……....24

Figure 4. The proposed inverter architecture using a hybrid-double multiplier……......27

Figure 5. Architecture of the multiplication-inversion unit (MIU)…………..……...…28

Figure 6. Proposed FAU design……………………….…………………………...…..30

Figure 7. Comparing slice registers of the standard and proposed design……………..38

Figure 8. Comparing LUTs of the standard and proposed design………………...…...38

11

List of Algorithms

Algorithm 1: Massey-Omura multiplication ………….……………………………….24

Algorithm 2: Itoh-Tsujii inversion……………………………………………………..26

Algorithm 3: Itoh-Tsuji inversion in the proposed FAU……………………..………..31

12

Chapter 1:

INTRODUCTION

1-1. Motivation

Efficient hardware implementation of elliptic curve cryptosystems (ECCs) in

resource-constrained devices is important in many applications on small devices such as

smart cards, radio-frequenciy identification (RFID), and wireless sensor networks.

Computations in finite fields combined with low-hardware-complexity architectures are

important in many areas, including coding theory, computer algebra systems, and

public-key cryptosystems (e.g., ECCs). Although all finite fields of the same cardinality

are isomorphic, their arithmetic efficiency depends greatly on the basis used for field

element representation. The most commonly used are polynomial basis (PB) and normal

basis (NB).

Polynomial basis: PB may also refer to a basis of the extension of the form {1,

α,……., 𝛼𝑚−1 } where α is the root of a primitive polynomial of degree m equal of

the degree of the extension.

Normal basis: NB GF(2𝑚) is a basis of the form (𝛽. 𝛽2. 𝛽4. 𝛽8. ……𝛽2
(𝑚−1)

) ,

where 𝛽 𝜖 𝐺𝐹(2𝑚).

Arithmetic over NB finite fields GF(2𝑚) has recently been used in many significant

applications, including error-correcting codes, cryptography, digital signal processing,

switching theory and pseudorandom number generation. Addition, multiplication,

exponentiation, and inversion are the most important computations in finite field

arithmetic. Therefore, fast multiplication algorithms with low circuit complexity are

much desired. Because such computations cannot be performed in real time on general-

purpose computers, hardware-efficient architectures for multiplication in GF(2𝑚) are

highly desirable.

https://en.wikipedia.org/wiki/Basis_(linear_algebra)
https://en.wikipedia.org/wiki/Primitive_polynomial_(field_theory)

13

1-2. Main Contribution

The contributions in this thesis are as follows:

• We propose a new compact optimal normal basis field arithmetic unit (FAU).

• We reduce the area cost in terms of NAND gates compared to a standard FAU.

• We reduce the area cost in terms of NAND gates compared to the research

done in 3.1.

• We reduce the number of slice regiters and slice lookup tables compared to a

standard FAU.

• We model the proposed design using VHDL and Implement it on Xilinx

Artix7 XC7A200T FPGA over GF(2173, 2233, 2350, 2515),

1-3. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 introduces the

required background on the field of arithmetic operations and optimal normal basis.

Chapter 3 presents the literature review. Chapter 4 describes the design methodology of

the FAU proposed in this thesis. Chapter 5 shows the results of implementing the design

and comparing it to the standard FAU. Chapter 6 concludes the thesis and discusses

future work.

1-4. Chapter Summary

In this Chapter, we mentioned the motivation for the thesis and what

contributaions were made. Also the whole structure of the thesis was explained. In the

next Chapter we mention some background information regarding field arithmetic and

optimal normal basis.

14

Chapter 2:

BACKGROUND INFORMATION

2-1. Finite Field Arithmetic

A finite field in abstract algebra [1], contains only a finite number of elements.

Finite fields are important in cryptography, algebraic geometry, , number theory, coding

theory, and Galois Theory. A set of elements G with any binary operation∎ is called a

group , it has the following properties:

1. Closure: ∀ 𝑎∎𝑏 ∈ 𝐺. 𝑎 ∎ 𝑏 ∈ 𝐺.

2. Associativity: ∀ 𝑎. 𝑏. 𝑐 ∈ 𝐺. (𝑎 ∎ 𝑏) ∎ 𝑐 = 𝑎 ∎ (𝑏 ∎ 𝑐).

3. Identity: The group contains an identity element 𝑒 ∈ 𝐺 such that

4. ∀ 𝑎 ∈ 𝐺 . 𝑒 ∎ 𝑎 = 𝑎 ∎ 𝑒 .

5. Inverse: Every element 𝑎 ∈ 𝐺 has an inverse 𝑎−1 ∈ 𝐺 such that 𝑎∎𝑎−1 =

 𝑎−1∎𝑎 = 𝑒.

Abelian groups are groups with a commutative group operation: i.e,

𝑎∎𝑏 = 𝑏∎𝑎 ∀ 𝑎. 𝑏 ∈ 𝐺

Cyclic groups are groups that have a generator element. An element ∈ 𝐺 , is a

generator of the group if each element 𝑎 ∈ 𝐺 can be generated by repeated

application of the group operation on 𝑔. Thus, ∀ 𝑎 ∈ 𝐺,

𝑎 = 𝑔∎𝑔∎𝑔… .∎𝑔⏟
𝑖𝑡𝑖𝑚𝑒𝑠

Groups with the “+” group operator are called additive groups and are specified as

15

𝑖𝑔 = 𝑔 + 𝑔 + 𝑔 +⋯+ 𝑔⏟
𝑖𝑡𝑖𝑚𝑒𝑠

 Similarly, groups with the “*” group operator are called multiplicative groups and

specified as

𝑔𝑖 = 𝑔 ∗ 𝑔 ∗ 𝑔 ∗ 𝑔…∗ 𝑔⏟
𝑖𝑡𝑖𝑚𝑒𝑠

The number of elements in a group is represented by the symbol |G| and is called the

order of the group G. A set of elements F is called a field, it has two binary operations,

represented here as multiplication (*) and addition (+), and have the following

properties:

1. With respect to the “+” operation, F is an abelian group.

2. An abelian group is formed by the elements in the set F* under the “*”

operation.

All the elements in F forms the set F*, except the additive identity.

3. The two binary operations apply the distribution law as follows:

∀ 𝑎. 𝑏. 𝑐 ∈ 𝐹. 𝑎 ∗ (𝑏 + 𝑐) = (𝑎 ∗ 𝑏) + (𝑎 ∗ 𝑐) .

The symbol GF(q) represents the finite fields or “Galois field”, named after

Evariste Galois, . For any positive integer m and prime p, there always exists a Galois

field of order 𝑞 = 𝑝𝑚. The characteristic of the finite field GF(𝑝𝑚) is the prime p.

2-2. Arithmetic Logic Unit

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that

performs arithmetic and bit-wise operations on integer binary numbers. An ALU is a

fundamental building block of many types of computing circuits, including the graphics

processing units (GPUs) and the central processing unit (CPUs) of computers. A

number of basic arithmetic and bit-wise logic functions are commonly supported by

ALUs: Addition, Subtraction, AND,XOR, and Cyclic shifting. To the best of our

knowledge, there are no ALUs that can perform inversion, this thesis propose a way to

implement it.

16

2-3. GF(𝟐𝒎) Arithmetic

 Binary fields are finite fields of order 2m , also called characteristic-two finite

fields,[2]. They are particularly efficient for hardware implementation. The elements of

GF(2m) have coefficients of either 0 or 1, and are called binary polynomials. The degree

of each polynomial is less or equal to m – 1 since there are 2m polynomials in the field.

Therefore, the elements can be represented as m-bit strings. Each bit in the bit string

corresponds to the coefficient in the polynomial at the same position. For

example, GF(23) contains 8 elements {0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1}. The term

x+1 is actually 0x2+1x+1, so it can be represented as a bit string 011. Similarly, x2+x

= 1x2+1x+0, so it can be represented as 110. Arithmetic efficiency depends greatly on

the basis of field element representation. Elements of the field are represented in terms

of a basis. Most implementations use either a PB or a NB. NB is more suitable for

hardware implementations than PB because NB operations mainly comprise rotation,

shifting and exclusive-OR operations, which can be efficiently implemented in

hardware.

2-4. Optimal Normal Basis

 An NB GF (2𝑚) is a basis of the form (𝛽. 𝛽2. 𝛽4. 𝛽8. ……𝛽2
(𝑚−1)

) ,

where 𝛽 𝜖 GF(2𝑚).In an NB, an element 𝐴 ∈ GF(2𝑚) can be uniquely represented in

the form

𝐴 = ∑ 𝑎𝑖𝛽
2𝑖

𝑚−1

𝑖=0

where 𝑎𝑖 𝜖 {0.1}.

GF(2𝑚) operations [3] using NB are performed as follows:

17

i. Addition & Subtraction are performed by a simple bit-wise exclusive-OR

(XOR) operation.

In modulo 2 arithmetics, 0+0 ≡ 0 mod 2, 1+0 ≡ 1 mod 2 , and 1+1 ≡ 0 mod 2,

which coincide with bit-XOR, i.e., 0⊕0=0, 1⊕0=1, and 1⊕1=0, respectively.

Therefore, addition is simply bit-by-bit XOR for binary polynomials.

Also, in modulo 2 arithmetics, -1 ≡ 1 mod 2, and so the result of the subtraction of

elements is the same as addition, For example:

• Addition: (x2+x+1) +(x+1) =x2+2x+2. Because 2 ≡ 0 mod 2 the final result

is x2. It can also be computed as 111⊕011=100, where. 100 is the bit string

representation of x2.

• Subtraction: (x2+x+1) - (x+1) = x2

ii. Squaring is simply a rotate left operation. Thus, if A = (𝑎𝑚−1, 𝑎𝑚−2,.... 𝑎1, 𝑎0), then

 𝐴2 = (𝑎𝑚−2, 𝑎𝑚−3,.... 𝑎0, 𝑎𝑚−1)

iii. Multiplication: ∀A. B ϵ GF (2𝑚). where

𝐴 = ∑ 𝑎𝑖𝛽
2𝑖𝑚−1

𝑖=0 and 𝐵 = ∑ 𝑏𝑖𝛽
2𝑖𝑚−1

𝑖=0

The product C=A*B is given by

𝐶 = 𝐴 ∗ 𝐵 = ∑ 𝑐𝑖𝛽
2𝑖

𝑚−1

𝑖=0

Then, multiplication is defined in terms of a multiplication table 𝜆𝑖𝑗 ∈ {0.1}

𝐶𝑘 = ∑ ∑ 𝜆𝑖𝑗𝑎𝑖+𝑘𝑏𝑗+𝑘

𝑚−1

𝑗=0

𝑚−1

𝑖=0

the complexity of the multiplication process is defined by the number of non-zero

elements in the 𝜆 matrix and accordingly the complexity of the hardware

implementation. This value is defined as 𝐶𝑁 and it is equal to 2𝑚−1 for optimal normal

basis (ONB) [4]. An ONB is a normal basis with the minimum number of non-zero

elements in the 𝜆 𝑖𝑗 matrix. Such a basis typically leads to efficient hardware

18

implementations becaause operations mainly comprise rotation, shifting, and exclusive-

OR operations.

iv. Inversion: The inverse of 𝑎 ∈ 𝐺𝐹(2𝑚), denoted as 𝑎−1, is defined as

follows:

𝑎𝑎−1 = 1 𝑚𝑜𝑑 2𝑚

Most inversion algorithms used are derived from Fermat’s Little Theorem:

𝑎−1 = 𝑎2
𝑚−2 = (𝑎2

𝑚−1−1)2 For all 𝑎 ≠ 0 in GF(2𝑚).

2-5. Types of Optimal Normal Bases

The derivation of values of the 𝜆 matrix element is dependent on the field size m.

There are two types of ONBs , Type I and Type II [4]. An ONB Type I exists in a given

field GF(2𝑚) if

• m+1 is a prime

• 2 is a primitive in GF(m+1)

An ONB Type II exists in GF(2𝑚) if

• 2m+1 is prime

• Either 2 is a primitive in GF(2m+1) or 2m+1= 3 (mod 4) and 2 generates the

quadratic residues in GF(2m+1)

An ONB exists in GF(2𝑚) for 23% of all possible values of m [4]. The 𝜆(𝑘) matrix

can be constructed by a k-fold cyclic shift to 𝜆(0) as follows:

𝜆𝑖𝑗
(𝑘)
= 𝜆𝑖−𝑘.𝑗−𝑘

(0)
 for all 0 ≤ 𝑖. 𝑗. 𝑘 ≤ 𝑚 − 1

The 𝜆(0) matrix is derived differently for the two types of ONBs. For the Type I

ONB, 𝜆𝑖𝑗
(0)
= 1 iff i and j satisfy one of the following two congruencies [5]:

• 2𝑖 + 2 ≡ 1 𝑚𝑜𝑑 (𝑚 + 1)

• 2𝑖 + 2𝑗 ≡ 0 𝑚𝑜𝑑 (𝑚 + 1)

For Type II ONB 𝜆𝑖𝑗
(𝑘)
= 1 if i and j satisfy one of the following four congruencies

[5]:

19

• 2𝑖 + 2𝑗 ≡ 2𝑘 𝑚𝑜𝑑(2m+1)

• 2𝑖 + 2𝑗 ≡ −2𝑘 𝑚𝑜𝑑 (2𝑚 + 1)

• 2𝑖 − 2𝑗 ≡ 2𝑘 𝑚𝑜𝑑 (2𝑚 + 1)

• 2𝑖 − 2𝑗 ≡ − 2𝑘 𝑚𝑜𝑑 (2𝑚 + 1)

Therefor, 𝜆𝑖𝑗
(0)
= 0 if i and j satisfy one of the following four congruencies:

2𝑖 ± 2𝑗 ≡ ± 1 𝑚𝑜𝑑 (2𝑚 + 1)

2-6. Elliptic Curve Cryptography

Elliptic Curve Cryptography [6] uses a group of points for cryptographic

schemes with coefficient sizes of 160-256 bits, significantly reducing the computational

effort. The inability to compute the multiplicand given the original and product points

and the ability to compute a point multiplication determines the security of elliptic curve

cryptography. The primary benefit promised by elliptic curve cryptography is a smaller

key size [7], thus reducing storage and transmission requirements, which makes it

popular for use in embedded systems and resource-constrained devices. The size of the

elliptic curve determines the difficulty of the problem. Operations used in ECCs:

▪ Modular addition and subtraction

▪ Modular multiplication

▪ Modular inversion

2-7. Chapter Summary

This background chapter introduced some important concepts in finite field

GF(2𝑚) arithmetic operations such as addition, multiplication, squaring and inversion.

It also explained the concept of an ONB which has a minimum possible number of non-

zero elements in the 𝜆 𝑖𝑗 matrix that defines its type. There are two types of ONBs, Type

I and Type II. Each type exists in a given field GF(2𝑚) if one of several conditions that

justify 𝜆𝑖𝑗
(0)
= 1 is applied. This chapter also introduced the ECC concept and how its

cryptography uses a group of points for cryptographic schemes with coefficient sizes of

over 160 bits. This last point is very important as it shaped the number of bits selected

to run the design, as described in Chapter 5.

https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

20

Chapter 3:

LITERATURE REVIEW

In this chapter, we survey the research on the multiplication and inversion

operations of normal bases GF(2𝑚) and highlight the Massey-Omura multiplier and the

Itoh-Tsuji inversion algorithm, which are used in this thesis.

3-1. Pipelined Multiplicative Inverse Architecture for Advanced Encryption

System Cryptography

Abd-El-Barr and Khattab [8] introduced architecture for performing a recursive

pipeline algorithm to optimize the performance of multiplicative inverse operations in

the Galois Field GF(28) , which is used in performing S-Box byte-substitution in

advanced encryption system (AES) cryptosystems. The S-Box performs a non-linear

transformation on the data by replacing each individual byte with a different byte. The

main purpose of the byte substitution is to bring confusion to the data to be encrypted.

By determining the multiplicative inverse of a given state in finite field GF(28), the

replacement bytes can be obtained. Abd-El-Barr and Khattab’s improvement was to

efficiently utilize the resources available. Their main observation was that because some

gates could be triggered concurrently, improved circuitry should follow a pipelined

approach. In a pipelined architecture, it is important to emphasize the order of the

operations, and hence pipelined stages will be explicitly shown. Figure .1 shows the

pipeline architecture. Here, the subscript 4 indicates a data size of 4 bits because; the

operations are implemented in the field GF(24)2.

21

 Figure 1 . Multiplicative inverse gate implementation over GF(24)2 using a pipeline.

After making some calculations, the authors concluded that the total cost for the

architecture in terms of gate cost was 48(•) and 152(x). where (•) represented AND

gates and (x) represented XOR gates. In order to convert this area cost into pure two-

way NAND gates, an AND gate took two NAND gates and an XOR gate took four

NAND gates. This way, the total area in NAND gate units was 48(2)+152(4) = 704.

The authers concluded that their proposed pipeline approach decreased the time delay

at the expense of a bit more area.

22

3-2. Low-complexity Hardware Architecture of Gaussian Normal Basis

Multiplication over GF(𝟐𝒎) for ECCs

Rashidi, Sayedi, and Farashahi [9] presented an efficient high-speed architecture

of a Gaussian normal basis (GNB) multiplier over a binary finite field GF(2𝑚) The

structure was constructed by using some regular modules for computation of

exponentiation by powers of 2 and low-cost blocks for multiplication by normal

elements of the binary field. For the powers of 2 exponents, the modules were

implemented by some simple cyclic shifts in the NB representation.

Figure 2. Proposed structure of the digit-serial GNB multiplier over GF(27). with w = 4 and d = 2

23

 For the case of word = 4 and digit = 2, the word representations of B are

𝐵1 = 𝑏6𝛽
26 + 𝑏5𝛽

25 + 𝑏4𝛽
24 + 𝑏3𝛽

23

𝐵2 = 𝑏2𝛽
22 + 𝑏1𝛽

21 + 𝑏0𝛽

And the multiplication result is 𝐶 = (((𝐶1
2 + 𝐶2)

2 + 𝐶3)
2 + 𝐶4), where 𝐶1 − 𝐶4 are

𝐶1 = ((𝐴
2−3)2

3
𝑏6 + (((𝐴

2−3)2
−3
)2
4
𝛽)2

−1
𝑏2

𝐶2 = (((𝐴
2−3)2)2

3−
𝛽)2

3
𝑏5 + ((((𝐴

2−3)2
2
)2
−3
)2
4
𝛽)2

−1
𝑏1

𝐶3 = (((𝐴
2−3)2

2
)2
−3
𝛽)2

3
𝑏4 + ((((𝐴

2−3)2
2
)2
−3
)2
4
𝛽)2

−1
𝑏0

𝐶4 = (((𝐴
2−3)2

3
)2
−3
𝛽)2

3
𝑏3 + ((((𝐴

2−3)2
3
)2
−3
)2
4
𝛽)2

−1
𝑏−1

The proposed digit-serial GNB method had (m− 1)(T − 1) d + dm number of

XOR gates and dm number of AND gates. After implementing the design in

FPGAVirtex-4 XC4VLX100 for GF (2233) the authors obtained 1458 slice registers and

2811 lookup tables (LUTs). After comparing their work with other digit-serial

structures, the authers concluded that the proposed work had suitable timing

characteristics and hardware utilization results.

3-3. Massey - Omura Multiplier

In finite field arithmetic, multiplication is more complicated than squaring and

addition operations. For efficient finite field computations, an efficient multiplier is

highly needed. Finite field multipliers using normal bases can be classified into two

main categories: (1) conversion-based multipliers, and (2) 𝜆.-matrix-based multipliers.

A Massey- Omura multiplier [10] is a 𝜆.-matrix-based multiplier that computes c = a x b

based on a matrix-vector product where the constant matrix 𝜆. is composed of only

GF(2) elements. The notation c[i] is the i-th bit of c (starting with least significant bits

(LSBs)) Massey and Omura proposed an efficient NB bit-serial multiplier over GF(2𝑚)

that required only two m-bit cyclic shift registers and combinational logic (which

consists of a set of AND XOR logic gates). The space complexity of the Massey-Omura

24

multiplier is (2m - 1) AND gates + (2m - 2) XOR gates, depending on the number of

non-zero elements in the 𝜆.- matrix.

One advantage of the Massey-Omura multiplier is that it can be used with both

types of optimal normal bases (Type I and Type II). Another advantage is that it is a bit-

serial multiplier, and hence the same circuitry used to generate c0 can be used to

generate c[i] (i = 1; 2; :::;m - 1).

Algorithm 1: Massey-Omura multiplication

 Operands: a,b in GF(2𝑚) represented in NB

 Result: c = a × b

1. c ← 0

2. for i from 0 to m − 1 do

3. c[0] ← a ×𝜆. × b

4. a ← ROL(a, 1) ; b ← ROL(b, 1) ; c ← ROL(c, 1)

5. return c

Figure 3. 5-bit Massy-Omura Multiplier Circuitry

25

3-4. Itoh-Tsuji Inversion Algorithm

 Inversion using NB consists of multiplications and cyclic shifts. The number of

multiplications is the major parameter for efficient inversion because cyclic shifts

require almost trivial time. Inversion algorithms can be classified into three main

categories :(1) standard, (2) exponent grouping (3) exponent decomposing inversion

algorithms. Beacuse the number of multiplications is the main parameter in determining

the computation time of the inversion operation, several algorithms have attempted to

improve the inversion speed by decomposing the exponent to reduce the required

number of multiplications and replacing it with squaring operations, which are much

simpler compared to multiplications. Itoh and Tsuji [11], proposed a GF(2𝑚) inversion

algorithm derived from Fermat’s Little Theorem using normal bases. The basic idea was

to decompose the exponent m -1 as follows:

 𝑎−1 = 𝑎2
𝑚−2

= (𝑎2
𝑚−1 −1)2.

The exponent 2𝑚−1 is further decomposed as follows:

1. If m is odd, then

 (2𝑚−1

− 1) = (2

𝑚−1

2

− 1) (2
𝑚−1

2

+ 1).

and

 𝑎2
𝑚−1

= (𝑎2
𝑚−1
2

−1)2

𝑚−1
2 +1

2. If m is even, then

 (2𝑚−1

− 1) = 2(2𝑚−2

− 1) + 1 = 2 (2

𝑚−2

2

− 1) (2
𝑚−2

2

+ 1) + 1.

and

 𝑎2
𝑚−1

= 2
2(2

𝑚−2
2

−1)(2
𝑚−2
2

+1)+1

The proposed algorithm by Itoh and Tsuji is shown below [3]. It requires three m- bit

cyclic shift registers, one barrel shifter, two down counters and one multiplier. It

requires 𝑙𝑜𝑔2 (𝑚 − 1) + 𝑣(𝑚 − 1) − 1 multiplications, where v(x) is the number of 1s

in the binary representation of x.

26

Algorithm 2: Itoh-Tsujii inversion

 Inputs: 𝑎

 Output: 𝑙 = 𝑎−1

1. Set 𝑠 ← [𝑙𝑜𝑔2(𝑚 − 1)] − 1

2. Set 𝑝 ← 𝑎

3. For 𝑖 = 𝑠 𝑑𝑜𝑤𝑛 𝑡𝑜 0 do

3.1 Set r ← shift m − 1 to right by s bit(s)

3.2 Set 𝑞 ← 𝑝

3.3 Rotate q to left by [𝑟/2] bit (s)

3.4 Set 𝑡 ← 𝑝 × 𝑞

3.5 If last bit of 𝑟 = 1

3.5.1 rotate t to left by 1 bit.

3.5.2 𝑝 ← 𝑡 × 𝑎

3.6 Else

3.6.1 𝑝 ← 𝑡

3.7 𝑠 ← 𝑠 − 1

4. Rotate 𝑝 to left by 1 bit

5. Set 𝑙 ← 𝑝

6. Return 𝑙

3-5. Fast Inversion in GF(𝟐𝒎) with NB Using Hybrid-Double Multipliers

 Azarderakhsh, Jarvinen, and Dimitrov [12] presented techniques to exploit

recently proposed hybrid-double multipliers for fast inversions in binary fields GF(2𝑚)

with normal bases. A hybrid-double multiplier computes a double multiplication, the

product of three elements in GF(2𝑚), with a latency comparable to the latency of single

multiplication of two elements.

27

 The authers concluded that faster inversion times were achieved at the expense

of larger area requirements. The proposed scheme is applicable primarily for high-

performance cryptographic applications where the aim is to maximize the speed of

inversions. However for small devices with limited resources, the IT inverter is

recommended [11].

3-6. Small FPGA-based Multiplication-Inversion Unit for NB Representation in

GF(𝟐𝒎)

Métairie, Tisserand, and Casseau [13] proposed a small FPGA- based multiplication-

inversion unit that uses permuted normal basis (PNB) representation, Massey-Omura

multiplication, and Itoh-Tsujii inversion algorithms. They produced the output bits of

the multiplication serially, like the original Massy-Omura, but with two bits at each

clock cycle.

Figure 4. The proposed inverter architecture using a hybrid-double multiplier.

28

 Figure 5. Architecture of the multiplication-inversion unit (MIU).

Upon further studying their work and the results they provided, we found that their

multiplication-inversion unit leads to about 20% theoretical speed-up over previous

works at the cost of area efficiency.

3-7. Chapter Summary

In this chapter we surveyed different types multiplication and inversion

algorithms and found that the Massey-Omura multiplier and the Itoh-Tsuji

inverter were the best for resource-constrained devices. In the next chapter, we

introduce and discuss our design.

29

Chapter 4:

MYTHODOLOGY

The main idea for this thesis came from a key observation from the Itoh-Tsuji

inverter [11], which was that the inverter’s three cyclic shift registers could be used for

both the multiplier and the inverter by proper scheduling. These cyclic shift registers

could also be used to perform concurrent squaring. Accordingly, a compact GF(2𝑚) NB

field arithmetic unit (FAU) is presented in this section.

4-1. The Proposed Design

 The main idea of the proposed FAU is to utilize the common parts of the

Massey-Omura multiplier [10] and the Itoh-Tsujii inverter [11]. The remaining field

arithmetic operations are also included, where these are:

• Addition

• Squaring

• Square root

• AND

• Multiplication

• Inversion

The standard approach of the design performs these operations individually, each with

its input and output registers. The proposed design will combine these operations into a

compact FAU to benefit from shared registers. The ultimate goal was to design an FAU

that can perform the basic operation required of a processor that implements ECC

systems for resource-constrained devices.

30

The proposed FAU consists of three cyclic shift registers, three multiplexers (MUXs),

two down counters, one barrel shifter, m-AND gates for the AND operation, m-XOR

gates for the XOR operation, an AND plane, which is the 2m - 2 AND gates for the

Massey-Omura multiplier and an XOR tree, which is the 2m - 1 XOR gates for the

Massey-Omura multiplier.

4-2. Operations of the Proposed FAU

Here we have the inputs: A, B.

 Outputs: (A AND B)/(A XOR B)/A.B/𝐴−1/𝐴2 / 𝐵2/√𝐴√𝐵

1. AND/XOR operation: The inner controller loads both A&B into REG1 & REG2.

Accordingly, we get the output A AND/XOR B.

Figure 6. The Proposed FAU design

In

31

2. Squaring/Squareroot: The inner controller loads both A&B into REG1 &

REG2. Accordingly, with cyclic shift to left/right we get the outputs 𝐴2𝐵2/

√𝐴√𝐵 concurrently.

3. Multiplication: The inner controller loads both A&B into REG1 & REG2. The

same procedure for the Massey-Omura multiplier is followed to get the output

AB and the output is saved in REG3.

4. Inversion: The Itoh-Tsujii algorithm is implemented in the proposed FAU.

Algorithm 3: Itoh-Tsuji inversion in the proposed FAU

Inputs: 𝑎

Output: 𝑙 = 𝑎−1

1. Set 𝑠 ← [𝑙𝑜𝑔2(𝑚 − 1)] − 1

2. Set 𝑅𝐸𝐺1 ← 𝑎

3. For 𝑖 = 𝑠 𝑑𝑜𝑤𝑛 𝑡𝑜 0 do

3.1 Set r ← shift m − 1 to right by s bit(s)

3.2 Set 𝑅𝐸𝐺2 ← 𝑅𝐸𝐺1

3.3 Rotate REG2 to left by [𝑟/2] bit (s)

3.4 Set 𝑅𝐸𝐺3 ← 𝑅𝐸𝐺1 × 𝑅𝐸𝐺2

3.5 If last bit of 𝑟 = 1

3.5.1 Rotate REG3 to left by 1 bit.

3.5.2 𝑅𝐸𝐺2 ← 𝑅𝐸𝐺3

3.5.3 𝑅𝐸𝐺3 ← 𝑅𝐸𝐺2 × 𝑅𝐸𝐺1

3.5.4 𝑅𝐸𝐺1 ← 𝑅𝐸𝐺3

3.6 Else

3.6.1 𝑅𝐸𝐺1 ← 𝑅𝐸𝐺3

3.7 𝑠 ← 𝑠 − 1

4. Rotate 𝑅𝐸𝐺1 to left by 1 bit

5. Set 𝑙 ← 𝑅𝐸𝐺1

6. Return 𝑙

32

The inner controller loads input 𝑎 into REG 1 and logarithm 𝑙𝑜𝑔2(𝑚 − 1) is

calculated and stored in variable s to determine the number of iterations the algorithm

will take to produce the inverse (i.e., the number of multiplications and squarings). In

the first iteration, the binary representation of the number of bits m-1 is shifted to the

right s times, converted into decimal form, and stored in variable r. The value in REG 1

is then loaded into REG 2 and rotated to the left (square operation) r/2 times. Next,

REG 1 and REG 2 are multiplied (Massey-Omura multiplication), and the result is

stored in REG 3. Then, the least significant bit in the binary representation of r is then

checked; if it is 0 the result in REG 3 is loaded into REG 1 and the next iteration begins.

However if it is 1, the result stored in REG 3 is squared (i.e., rotated to the left by 1) and

loaded into REG 2, REG 1 and REG 2 are multiplied, the result is stored in REG 3 and

loaded into REG 1, and the next iteration begins. After the conclusion of all iterations,

the final value in REG 1 is squared (i.e., rotated to the left by 1) and returned as the

inverse l of the input 𝑎.

4-3. Chapter Summary:

In this chapter, we described the proposed design concept, which is to utilize the

common parts of the Massey-Omura multiplier and the Itoh-Tsujii inverter. We also

established in detail that it performs addition, squaring, square root, ANDing,

multiplication, and inversion operations. In the next chapter, we present the results

obtained after implementing the design in VHDL, and then we compare the results

with those of the standard approach for multiple number of bits.

33

Chapter 5:

IMPLEMENTATION RESULTS

5-1. Evaluating the Proposed Design

To evaluate the proposed FAU, we compared it with a standard FAU that performs

the operations mentioned in 4.1 separately. The standard FAU consists of the following:

• m AND gates for the AND operation and 2m - 1 AND gates for the Massey-

Omura multiplier. (total = m + 2m-1 = 3m-1 AND gates)

• m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-

Omura multiplier. (total = m + 2m - 2 = 3m – 2 XOR gates)

• 3m-bit cyclic shift registers for the Massey-Omura multiplier and 3m- bit cyclic

shift registers for the Itoh-Tsuji inverter. (total = 3m + 3m = 6m-bit registers)

• 2m-bit cyclic shift registers for two concurrent squaring operations.

(total = 2m-bit registers)

• Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs)

The proposed FAU consists of the following:

• m AND gates for the AND operation and 2m - 1 AND gates for the Massey-

Omura multiplier. . (total = m + 2m-1 = 3m-1)

• m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-

Omura multiplier. (total = m + 2m - 2 = 3m - 2)

• 3m-bit cyclic shift registers for both the Massey-Omura multiplier and the Itoh-

Tsuji inverter. (total = 3m-bit registers)

• 2m-bit cyclic shift registers for two concurrent squaring operations.

(total = 2m-bit registers)

• Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs)

34

We convert all combination logic/gate in both designs to their NAND equivalents.

Clogic/Gates NANDs Standard NANDs Proposed NANDs

AND 2 3m - 1 6m – 2 3m - 1 6m - 2

XOR 4 3m - 2 12m – 8 3m - 2 12m – 8

m-bit Reg 4m 8 32m 3 12m

m 2-to-1

MUX

3m 2 6m 2 6m

 Total = 56m – 10 Total = 36m - 10

 Table 1 summarizes the hardware requirements of the proposed FAU and the

standard FAU. It also shows the equivalent NAND gate cost of both designs. The first

two columns of Table 1 show the combination logic/gates and the required number of

NANDs to implement them, respectively. The third and fourth columns show the

required number of these combinational logic/gates for the standard FAU and their

equivalent NANDs, respectively. Similarly, the fifth and sixth columns show the

required number of these combinational logic/gates for the proposed FAU and their

equivalent NANDs, respectively. Furthermore, the fourth and the sixth columns show

the results of multiplying the second column by the third and fifth columns,

respectively. Finally, the last row shows the total number of NANDs for the standard

and the proposed FAUs.

 The results of Table 1 show that the proposed FAU saves 35% [1- (36m -10)/

(56m -10) *100 = 35] of the total number of NANDs as compared to the standard FAU.

For resource-constrained devices such as smart cards [14], RFID [15] and wireless

sensor networks [16], our compact FAU is a very attractive when implementing ECCs.

In Table 2 we compare our results with those of the architecture mentioned in Section

3.1 for m = 8.

Table. 1 Area cost of proposed design in terms of NAND

35

Clogic/Gates NANDs Pipelined NANDs Proposed NANDs

AND 2 48 96 23 46

XOR 4 152 608 22 88

m-bit Reg 4m - - 3 96

m 2-to-1

MUX

3m - - 2 48

 Total = 704 Total = 278

In Table 2. We compare the area cost in NAND gate units that was presented in the

Pipelined Multiplicative Inverse Architecture in Section 3.1 with our Proposed FAU.

The Pipelined Architecture had 48(2) + 152(4) = 704 NAND for m = 8. In our proposed

design we gave m the value 8 and calculated the area cost 36(8) -10 = 278, or 60% less

area.

5-2. Implementing the Design in VHDL

The two main points in comparing the proposed FAU with the standard FAU is to

compare the number of slice registers and the number of slice LUTs.We implemented

the design for 173 bits using VHDL Coding and Simulation on Xilinx Artix7

XC7A200T FPGA . Table 3 shows the data after synthesizing the design.

The third row in table 3 shows that the proposed design have 1076 slice registers with

almost 0% utilization of available logic.The forth row shows that the proposed design

have 7404 LUTs with approximately 5% utilization of available logic.

Table 3. Synthesized results of 173-bit input

Table. 2 Comparing area cost of the pipelined multiplicative Inverse with

our proposed design in terms of NAND

36

One point to clear in the sixth row, it shows the number of bounded input/output with

utilization exceeding the available logic. This will not give an error when running the

simulation and the results are correct. But when implementing the design on a physical

chip some procedures must be taken to insure the utilization doesn’t exceed the

available logic. One suggestion is to add a buffer to pass 50 bits of the input at a time,

another suggestion is to choose a chip with a large number of I/O pins. In the next

section the number of slice registers and LUTs for the proposed design is compared to

the standard design.

5-3. Comparing the Slice Registers and LUTs with the Standard Design.

Standard

design

Number

of slice

registers

Number

of slice

LUTs

Clock cycles Minimum time (ns)

ANDing

173 173 1 1.060

XORing

173 173 1 1.060

Sqr /Sqrt

0 0 1 0.400

Multi 519 699 173 1354.936

Inv 1366 8884 2170 18139.03

Total

2231 9929 - -

Proposed

design

1076

(48%)

7404

(25 %)

Multiplication 179

Inversion 2516

1290.59

18140.36

Table 4 summarize the comparison between the proposed FAU and the standard FAU

for 173-bit. The first column shows the operations performed in the design. The second

column shows the number of slice registers for each operation and design. The third

column shows the number of slice LUTs for each operation and design. The fourth

column shows the number of clock cycles for each design. The fifth column shows the

minimum time required to perform the operations. The total number of slice registers

for the standard design is 2231 and LUTs is 9929, whereas the slice registers for the

proposed design are 1076 and LUTs are 7404. By comparing the two results, it is

apparent that the proposed design reduces the number of slice registers by 48% and the

number of LUTs by 25%. This makes the proposed FAU very attractive and suitable for

resource-constrained devices.

Table 4. Comparison of slice registers in LUTs of 173-bit design

37

5-4. Running the Design on Different Number of Bits

 To further evaluate and analyze the proposed design, we ran the code for 233,

350, and 515 bits and compared the number of slice registers and slice lookup tables

(LUTs) between the standard FAU and the proposed FAU, as we did with 173 bits . The

same code was used on all number of bits, the only difference is being that the AND

XOR circuitry for the Massey-Omura multiplier changed for each number of bits. The

circuitry was obtained from the 𝜆 matrix described in Section 2-4. The results are given

in Table 5.

No. of Bits Standard Proposed Standard Proposed

Slice registers Slice LUTs

173 bit 2231 1076 9929 7404

233 bit 3087 1436 14682 10945

350 bit 4679 2491 29901 17088

515 bit 7353 3650 106364 85442

The first column of Table 5 shows the different number of bits used to

implement the design. The second column shows the number of slice registers of the

standard design for the different number of bits, while the third column shows the

number of slice registers of the proposed design. The fourth column shows the number

of slice LUTs of the standard design for the different number of bits, while the fifth

column shows the number of slice LUTs of the proposed design. For the 233-bit input,

the proposed design reduced the number of slice registers by 46% whereas the number

of LUTs was reduced by 25%. For the 350-bit input, the proposed design reduced the

number of slice registers by 53% whereas the number of LUTs was reduced by 42%.

For the 515-bit input the proposed design reduced the number of slice registers by 49%

whereas the number of LUTs was reduced by 20%.

Table 5. Comparing the proposed and standard design for different numbers of bits

38

5-5. Analyzing the results

Figure 7 shows that as the number of bits increased in the proposed design of reduction

of slice registers is nearly half (50%) of the standard design . This is because the

proposed design removes the additional slice registers needed to perform individual

addition, ANDing, multiplication and inversion in the standard design.

Figure 8 compares the lookup tables (LUTs) used in the standard design and in

our proposed design. To further analyze and understand these results, we need to know

that in our proposed FAU the inversion operation determines the area cost of our design

as it performs many multiplications. We must also know that the number of

0

1000

2000

3000

4000

5000

6000

7000

8000

173 233 350 515

Standard

Proposed

0

20000

40000

60000

80000

100000

120000

173 233 350 515

Standard

Proposed

Figure 7. Comparing slice registers of the standard and proposed designs

Figure 8. Comparing LUTs of the standard and proposed designs

39

multiplications is the primary factor that determines the computation of the inversion

operation, and that the Itoh-Tsujii inversion algorithm decomposes the exponent to

reduce multiplications and replace them with squaring operations, depending on the

number of 1’s in the binary representation of the number of bits (m-1).

 These factors combine to determine the number of LUTs for each number of

bits. For example, when we calculate the number of squaring and multiplications in the

inversion operation of the 350-bit design, we have 𝑙𝑜𝑔2(350 − 1) = 8 and 349 =

(101011101). Therefor, when we run the Itoh-Tsujii algorithm we have:

s = 7 ,

for 𝑖 = 7 𝑑𝑜𝑤𝑛 𝑡𝑜 0 (the inversion algorithm will take 8 iterations)

First iteration:

r ← (shift 349 to right by 7 bits) = (101110110) = 374

Rotate REG2 to left by [𝑟/2] bits = 374/2 = 187 (squaring)

Second iteration:

r ← (shift 349 to right by 6 bits) = (011101101) = 237

Rotate REG2 to left by [𝑟/2] bits = 237/2 = 118 (squaring)

Third iteration:

r ← (shift 349 to right by 5 bits) = (111011010) = 474

Rotate REG2 to left by [𝑟/2] bits = 474/2 = 237 (squaring)

Fourth iteration:

r ← (shift 349 to right by 4 bits) = (110110101) = 437

Rotate REG2 to left by [𝑟/2] bits = 437/2 = 218 (squaring)

Fifth iteration:

r ← (shift 349 to right by 3 bits) = (101101011) = 374

Rotate REG2 to left by [𝑟/2] bits = 374/2 = 187 (squaring)

Sixth iteration:

r ← (shift 349 to right by 2 bits) = (011010111) = 215

Rotate REG2 to left by [𝑟/2] bits = 215/2 = 107 (squaring)

40

Seventh iteration:

r ← (shift 349 to right by 1 bit) = (110101110) = 430

Rotate REG2 to left by [𝑟/2] bits = 430/2 = 215 (squaring)

Final iteration:

r ← (shift 349 to right by 0 bits) = (101011101) = 349

Rotate REG2 to left by [𝑟/2] bits = 349/2 = 174 (squaring)

Sqauring = 174 +215 +107 +187 +218 +237 +118 +187 +5 (the number of 1’s in

the first 7 bits of 349) + 1 (after all iterations are finished) = 1449. Multiplications = 8

(number of iterations) +5 (number of 1’s in the first 7 bits of 349) = 13

For the number of squaring and multiplications in the inversion operation of the

515-bit design, we have 𝑙𝑜𝑔2(515 − 1) = 9 and 514 = (1000000010).

s = 8,

for 𝑖 = 8 𝑑𝑜𝑤𝑛 𝑡𝑜 0 (the inversion algorithm will take 9 iterations)

First iteration:

r ← (shift 514 to right by 8 bits) = (0000001010) = 10

Rotate REG2 to left by [𝑟/2] bits = 10/2 = 5 (squaring)

Second iteration

r ← (shift 514 to right by 7 bits) = (0000010100) = 20

Rotate REG2 to left by [𝑟/2] bits = 20/2 = 10 (squaring)

Third iteration:

r ← (shift 514 to right by 6 bits) = (0000101000) = 40

Rotate REG2 to left by [𝑟/2] bits = 40/2 = 20 (squaring)

Forth iteration:

r ← (shift 514 to right by 5 bits) = (0001010000) = 80

Rotate REG2 to left by [𝑟/2] bits = 80/2 = 40 (squaring)

Fifth iteration:

r ← (shift 514 to right by 4 bits) = (0010100000) = 160

41

Rotate REG2 to left by [𝑟/2] bits = 160/2 = 80 (squaring)

Sixth iteration:

r ← (shift 514 to right by 3 bits) = (0101000000) = 320

Rotate REG2 to left by [𝑟/2] bits = 320/2 = 160 (squaring)

Seventh iteration:

r ← (shift 514 to right by 2 bits) = (1010000000) = 640

Rotate REG2 to left by [𝑟/2] bits = 640/2 = 320 (squaring)

Eighth iteration:

r ← (shift 514 to right by 1 bit) = (0100000001) = 257

Rotate REG2 to left by [𝑟/2] bits = 257/2 = 128 (squaring)

Final iteration:

r ← (shift 514 to right by 0 bits) = (1000000010) = 514

Rotate REG2 to left by [𝑟/2] bits = 514/2 = 257 (squaring)

Squaring = 5 + 10 + 20 + 40 + 80 + 160 + 320 +128 + 257 + 1 (number of 1’s in the

first 9 bits of 514) + 1 (after all iterations are finished) = 1022

Multiplications = 9 (number of iterations) + 1 (number of 1’s in the first 9 bits of 514) =

10.

Comparing the 350-bit design and the 515-bit design reveals that although the

350-bit design has more multiplications than the 515-bit design, it has fewer LUTs

because it performes more exponential decomposing and its input has fewer bits. As for

the 173-bit and 233-bit designs: 𝑙𝑜𝑔2(172) = 7, 𝑙𝑜𝑔2(232) = 7, 172 = (10101100),

233=(11101000). As these have the same logarithm and the same number of 1’s in their binary

representation , they have the same number of multiplications (7 iterations + 3 number of 1’s in

the first 7 bits) = 10. Therefore, the 233-bit design has more LUTs because its inputs have more

bits.

We conclude that our proposed design yields the best performance when there is more

multipications and squaring, because our design reduced the number of LUTs in the 350-bit

design by 42%.

42

5-6. Chapter Summary

 In this chapter, we calculated the area cost in terms of NAND gates of the

proposed FAU design compared to the standard FAU design and found it saves 35% of

the area cost. We also implemented our design and tested it for 173, 233, 350, and 515

bits and compared the number of slice registers and LUTs, and we found that our design

reduces the registers by about half compared it to the standard design, which make it

desirable for resources-constrained devices. The results were validated in model sim.

43

Chapter 6:

CONCLUSION

In this thesis, a design was proposed that uses the common parts of the Massey-

Omura multiplier and the Itoh-Tsuji inverter to implement a compact GF(2𝑚) normal

basis field arithmetic unit. The proposed design is very attractive for resource-

constrained devices when implementing ECCs. The proposed FAU saves 35% of the

total number of NANDs. This result was compared to the work done in [8] and our

results were 60% better for m=8. It also saved 48-50% of total slice registers as

compared to the standard design. The implementation of the design was done by VHDL

coding and simulation with an Artix7 XC7A200T FPGA.

Future Work

 Although the methodologies and results were quite good, there are many ways to

improve upon this work. Designing the FAU chip from high-level VHDL code was a

good learning experience for real-world applications, as full-custom chip design is rare.

All the utilization data were synthesized from the VHDL description. Another way to

improve work on the design would be to try different multiplication algorithms, like the

bit-parallel version of the Massey-Omura multiplier [17,18] to see what difference a

parallel approach can have on the design in terms of area.

44

REFERENCES

1. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A.Vanstone, and T.

Yaghoobian, 1993. “Applications of Finite Fields”, (Kluwer Academic

Publishers, Boston, MA).

2. R, Lidl, and H. Niederreiter, 1994. “Introduction to finite fields and their

applications”, (Cambridge University Press, Cambridge, UK, revised edition).

3. T. F. Al-Somani, and A. Amin, 2006. “Hardware Implementations of GF 2𝑚

arithmetic using normal basis” J. Appl. Sci. 6(6) 1362-1372.

4. R. C. Mullin, I. M. Onyszchuk, S. A.Vanstone, and R. M. Wilson, 1988.

“Optimal normal bases in GF(𝑝𝑚)”, Discrete Appl. Math., 22(2), 149-161.

5. M. Rosing, 1999. “Implementing Elliptic Curve Cryptography” (Manning

Publication Co., Shelter Island, NY).

6. N. Koblitz, 1987. “Elliptic curve cryptosystems”, Math. Comput. 48, 203-209.

7. A. J. Menezes, 1993 “Elliptic Curve Public Key Cryptosystems”, (Kluwer

Academic Publishers, Dordrecht, The Netherlands).

8. M. Abd-El-Barr, and A. Khattab, 2014. “An efficient pipelined multiplicative

inverse Architecture for the AES cryptosystem” Int. J. Inf. Electr. Eng. 4(2), 81.

9. B. Rashidi, M. Sayedi, and R. Farashhani, 2017. “Efficient and low-complexity

hardware architecture of Gaussian normal basis multiplication over GF (2𝑚) for

elliptic curve cryptosystems” IET Circ. Devices Syst.,11(2), 103 –112.

10. J. L. Massey, and J. K. Omura, 1986. “Computational method and apparatus for

finite field arithmetic” U.S. Patent Number 4,587,627.

11. T. Itoh, and S. Tsujii, 1988, “A fast algorithm for computing multiplicative

inverses in GF(2𝑚) using normal basis”, Info. Comput. 78, 171-177.

12. R. Azarderakhsh, K. Jarvinen, and V. Dimitrov, 2014. “Fast inversion in GF

(2𝑚) with normal basis using hybrid-double multipliers” IEEE Trans. Comput.

63(4), 1041-1047.

13. J. Métairie, A. Tisserand, E. Casseau, 2015. “Small FPGA-based multiplication-

inversion unit for normal basis representation in GF(2𝑚)” IEEE Computer

Society Annual Symposium on VLSI, 440-445.

14. Secure Technology Alliance. 2017. “About Smart Cards: Introduction:

Primer” 7 August 2019.

http://www.smartcardalliance.org/smart-cards-intro-primer/
http://www.smartcardalliance.org/smart-cards-intro-primer/

45

15. RFID Security. 2008. The Government of the Hong Kong Special

Administrative Region document,

“https://www.infosec.gov.hk/english/technical/files/rfid.pdf” 7 August 2019.

16. C. Daniel, F. Solenir, and Gledson, O. 2017. “Cryptography in wireless

multimedia sensor networks: A survey and research directions” Cryptogr. J.

1(4). doi:10.3390/cryptography1010004

17. A. Reyhani-Masoleh, and M.A. Hasan, 2002. “A new construction of Massey-

Omura parallel multiplier over GF (2𝑚)” IEEE Trans. Comput. 51, 511-520.

18. C.K. Koc, and B. Sunar, 1998 “Low complexity bit parallel canonical and

normal basis multiplier for a class of finite fields” IEEE Trans. Comput. 47,

353-356.

19. C. Wang, T. Truong, H. Shao, L. Deutsch, J. K. Omura, and I. Reed, 1985

“VLSI architectures for computing multiplications and inverses in GF(2𝑚)”,

IEEE Trans. Comput. 34(8), 709-716.

20. T. F. Al-Somani, “Design and analysis of efficient and secure elliptic curve

cryptoprocessors” PhD Dissertation, (King Fahd University of Petroleum and

Minerals, Saudi Arabia).

https://www.infosec.gov.hk/english/technical/files/rfid.pdf

