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ABSTRACT

This thesis proposes the design of an area-efficient compact
optimal normal basis field arithmetic unit (FAU) utilizing the
common parts between the Massy-Omura multiplier and the Itoh -
Tsugii inverter. The field arithmetic operations include addition,
multiplication, and inversion. Addition can be easily implemented
as an XOR of the corresponding vectors. Multiplication typically
requires more computational time than addition, and it has more
circuit complexity. Multiplicative inversion can be conducted by
repeatedly applying the multiplication squaring algorithm. The
design showed decreased hardware complexity and a decrease in
the number of inputs compared to the standard approach, which
makes the design very attractive when implementing elliptic
curve cryptosystems in resource-constrained devices such as,
smart cards, radio-frequency identification (RFID), and wireless
sensor networks. The design was initially run on 173-bit input; it
was then adjusted to run on 233, 350, and 515-bit inputs. The
proposed design was coded using VHDL on Xilinx’s ISE design
suit 145 and simulated on an Artix7 XC7A200T field-
programmable gate array (FPGA).
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Chapter 1:
INTRODUCTION

1-1. Motivation

Efficient hardware implementation of elliptic curve cryptosystems (ECCs) in
resource-constrained devices is important in many applications on small devices such as
smart cards, radio-frequenciy identification (RFID), and wireless sensor networks.
Computations in finite fields combined with low-hardware-complexity architectures are
important in many areas, including coding theory, computer algebra systems, and
public-key cryptosystems (e.g., ECCs). Although all finite fields of the same cardinality
are isomorphic, their arithmetic efficiency depends greatly on the basis used for field
element representation. The most commonly used are polynomial basis (PB) and normal
basis (NB).

Polynomial basis: PB may also refer to a basis of the extension of the form {1,
Opeene , ™1} where o is the root of a primitive polynomial of degree m equal of

the degree of the extension.

Normal basis: NB GF(2™) is a basis of the form (,3_[;2_[;4_[;8__"___'32<m—1>) ’
where 8 € GF(2™).

Arithmetic over NB finite fields GF(2™) has recently been used in many significant
applications, including error-correcting codes, cryptography, digital signal processing,
switching theory and pseudorandom number generation. Addition, multiplication,
exponentiation, and inversion are the most important computations in finite field
arithmetic. Therefore, fast multiplication algorithms with low circuit complexity are
much desired. Because such computations cannot be performed in real time on general-
purpose computers, hardware-efficient architectures for multiplication in GF(2™) are

highly desirable.
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1-2. Main Contribution
The contributions in this thesis are as follows:

e We propose a new compact optimal normal basis field arithmetic unit (FAU).

e We reduce the area cost in terms of NAND gates compared to a standard FAU.

e We reduce the area cost in terms of NAND gates compared to the research
done in 3.1.

e We reduce the number of slice regiters and slice lookup tables compared to a
standard FAU.

e We model the proposed design using VHDL and Implement it on Xilinx
Artix7 XC7A200T FPGA over GF(2173, 2233, 2350 2515),

1-3. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 introduces the
required background on the field of arithmetic operations and optimal normal basis.
Chapter 3 presents the literature review. Chapter 4 describes the design methodology of
the FAU proposed in this thesis. Chapter 5 shows the results of implementing the design
and comparing it to the standard FAU. Chapter 6 concludes the thesis and discusses
future work.

1-4. Chapter Summary

In this Chapter, we mentioned the motivation for the thesis and what
contributaions were made. Also the whole structure of the thesis was explained. In the
next Chapter we mention some background information regarding field arithmetic and
optimal normal basis.

13



Chapter 2:
BACKGROUND INFORMATION

2-1. Finite Field Arithmetic

A finite field in abstract algebra [1], contains only a finite number of elements.
Finite fields are important in cryptography, algebraic geometry, , number theory, coding
theory, and Galois Theory. A set of elements G with any binary operationm is called a

group , it has the following properties:

Closure:Vamb € G.amb €G.
Associativity: Va.b.c €eG.(amb)mc=am (b mc).
Identity: The group contains an identity element e € G such that

VaeEG.ema=ame.

a & L o

Inverse: Every element a € G has an inverse a~! € G such that ama™! =

alma=e.
Abelian groups are groups with a commutative group operation: i.e,
amb =bmaVa.beG

Cyclic groups are groups that have a generator element. An element € G , is a
generator of the group if each element a € G can be generated by repeated

application of the group operation on g. Thus, V a € G,

a=gmgmg...ug

itimes

Groups with the “+” group operator are called additive groups and are specified as

14



ig=g+gtg+-+g

itimes

Similarly, groups with the “*” group operator are called multiplicative groups and

specified as

9g'=gxg*g*g..xg

itimes

The number of elements in a group is represented by the symbol |G| and is called the
order of the group G. A set of elements F is called a field, it has two binary operations,
represented here as multiplication (*) and addition (+), and have the following

properties:

1. With respect to the “+” operation, F is an abelian group.

2. An abelian group is formed by the elements in the set F* under the “*”
operation.
All the elements in F forms the set F*, except the additive identity.

3. The two binary operations apply the distribution law as follows:
Va.b.c EF.ax(b+c)=(axb)+ (ax*c).

The symbol GF(q) represents the finite fields or “Galois field”, named after
Evariste Galois, . For any positive integer m and prime p, there always exists a Galois
field of order g = p™. The characteristic of the finite field GF(p™) is the prime p.

2-2. Arithmetic Logic Unit

An arithmetic logic unit (ALU) is a combinational digital electronic circuit that
performs arithmetic and bit-wise operations on integer binary numbers. An ALU is a
fundamental building block of many types of computing circuits, including the graphics
processing units (GPUs) and the central processing unit (CPUs) of computers. A
number of basic arithmetic and bit-wise logic functions are commonly supported by
ALUs: Addition, Subtraction, AND,XOR, and Cyclic shifting. To the best of our
knowledge, there are no ALUs that can perform inversion, this thesis propose a way to
implement it.
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2-3. GF(2™) Arithmetic

Binary fields are finite fields of order 2™, also called characteristic-two finite
fields,[2]. They are particularly efficient for hardware implementation. The elements of
GF(2™) have coefficients of either O or 1, and are called binary polynomials. The degree
of each polynomial is less or equal to m — 1 since there are 2™ polynomials in the field.
Therefore, the elements can be represented as m-bit strings. Each bit in the bit string
corresponds to the coefficient in the polynomial at the same position. For
example, GF(2%) contains 8 elements {0, 1, x, x+1, X%, x¥°+1, X’+x, x¥’+x+1}. The term
x+1is actually 0x?+1x+1, so it can be represented as a bit string 011. Similarly, x2+x
= Ix?+1x+0, s0 it can be represented as 110. Arithmetic efficiency depends greatly on
the basis of field element representation. Elements of the field are represented in terms
of a basis. Most implementations use either a PB or a NB. NB is more suitable for
hardware implementations than PB because NB operations mainly comprise rotation,
shifting and exclusive-OR operations, which can be efficiently implemented in

hardware.

2-4. Optimal Normal Basis

An NB GF (2™) is a basis of the form (ﬁ.ﬁz.ﬁ4.ﬁ8.......[)’Z(m'”),

where § € GF(2™).In an NB, an element A € GF(2™) can be uniquely represented in

the form
m-—1
A= Z aiﬁzl
i=0

where a; € {0.1}.

GF(2™) operations [3] using NB are performed as follows:
16



I.  Addition & Subtraction are performed by a simple bit-wise exclusive-OR
(XOR) operation.

In modulo 2 arithmetics, 0+0 = 0 mod 2, 1+0 = 1 mod 2 , and 1+1 = 0 mod 2,
which coincide with bit-XOR, i.e., 0p0=0, 10=1, and 1§1=0, respectively.
Therefore, addition is simply bit-by-bit XOR for binary polynomials.

Also, in modulo 2 arithmetics, -1 = 1 mod 2, and so the result of the subtraction of
elements is the same as addition, For example:

e Addition: (x?+x+1) +(x+1) =x>+2x+2. Because 2 = 0 mod 2 the final result
is x2. It can also be computed as 1116011=100, where. 100 is the bit string
representation of x2.

e Subtraction: (x2+x+1) - (x+1) =

Ii. Squaring is simply a rotate left operation. Thus, if A = (a;,—1, Am—2,---- A1, Qp), then

A% = (A2, pzseee Qg Aoy )
iii. Multiplication: VA. B € GF (2™). where
A=Y"1q,6% and B = Y705 b,p%

The product C=A*B is given by

m—1

C=AxB= Zciﬁz‘

i=0

Then, multiplication is defined in terms of a multiplication table 4;; € {0.1}

m-1m-1

E

/11] al+k j+k
0

i=0 j

the complexity of the multiplication process is defined by the number of non-zero
elements in the A matrix and accordingly the complexity of the hardware
implementation. This value is defined as Cy and it is equal to 2,,,_, for optimal normal
basis (ONB) [4]. An ONB is a normal basis with the minimum number of non-zero

elements in the A;; matrix. Such a basis typically leads to efficient hardware

17



implementations becaause operations mainly comprise rotation, shifting, and exclusive-

OR operations.

Iv. Inversion: The inverse of a € GF(2™), denoted as a™?, is defined as
follows:

aa~! =1mod 2™

Most inversion algorithms used are derived from Fermat’s Little Theorem:
a™l=a?""2 = (g™ '"1)2 Forall a # 0 in GF(2™).

2-5. Types of Optimal Normal Bases

The derivation of values of the A matrix element is dependent on the field size m.
There are two types of ONBs, Type I and Type Il [4]. An ONB Type | exists in a given
field GF(2™) if

e m+lisaprime

e 2isaprimitive in GF(m+1)
An ONB Type Il exists in GF(2™) if

e 2m+1is prime
e Either 2 is a primitive in GF(2m+1) or 2m+1= 3 (mod 4) and 2 generates the
quadratic residues in GF(2m+1)

An ONB exists in GF(2™) for 23% of all possible values of m [4]. The A% matrix

can be constructed by a k-fold cyclic shift to 2 as follows:

(k) _ 4(0)
28 = X

ik j-rforall0<ijk<m-—1

The A matrix is derived differently for the two types of ONBs. For the Type |

ONB, Ag.’) = 1 iff i and j satisfy one of the following two congruencies [5]:

e 21+2=1mod (m+1)
e 2t+2/=0mod (m+1)

For Type 1l ONB /’lg?") = 1if i and j satisfy one of the following four congruencies

[5]:

18



o 2042/ = 2¥mod(2m+1)

o 2042/ = —2Kmod 2m+1)
o 21—-2/= 2¥mod 2m+1)

o 20-2/= —2¥mod 2m + 1)

Therefor, Ag.)) = 0 if i and j satisfy one of the following four congruencies:

2042/ =4+ 1mod 2m+1)

2-6. Elliptic Curve Cryptography
Elliptic Curve Cryptography [6] uses a group of points for cryptographic

schemes with coefficient sizes of 160-256 bits, significantly reducing the computational
effort. The inability to compute the multiplicand given the original and product points
and the ability to compute a point multiplication determines the security of elliptic curve
cryptography. The primary benefit promised by elliptic curve cryptography is a smaller
key size [7], thus reducing storage and transmission requirements, which makes it
popular for use in embedded systems and resource-constrained devices. The size of the
elliptic curve determines the difficulty of the problem. Operations used in ECCs:

* Modular addition and subtraction

* Modular multiplication

=  Modular inversion

2-7. Chapter Summary

This background chapter introduced some important concepts in finite field
GF(2™) arithmetic operations such as addition, multiplication, squaring and inversion.
It also explained the concept of an ONB which has a minimum possible number of non-
zero elements in the 4 ;; matrix that defines its type. There are two types of ONBs, Type
I and Type Il. Each type exists in a given field GF(2™) if one of several conditions that
justify Ag.’) =1 is applied. This chapter also introduced the ECC concept and how its
cryptography uses a group of points for cryptographic schemes with coefficient sizes of
over 160 bits. This last point is very important as it shaped the number of bits selected
to run the design, as described in Chapter 5.
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Chapter 3:
LITERATURE REVIEW

In this chapter, we survey the research on the multiplication and inversion
operations of normal bases GF(2™) and highlight the Massey-Omura multiplier and the

Itoh-Tsuji inversion algorithm, which are used in this thesis.

3-1. Pipelined Multiplicative Inverse Architecture for Advanced Encryption

System Cryptography

Abd-El-Barr and Khattab [8] introduced architecture for performing a recursive
pipeline algorithm to optimize the performance of multiplicative inverse operations in
the Galois Field GF(28), which is used in performing S-Box byte-substitution in
advanced encryption system (AES) cryptosystems. The S-Box performs a non-linear
transformation on the data by replacing each individual byte with a different byte. The
main purpose of the byte substitution is to bring confusion to the data to be encrypted.
By determining the multiplicative inverse of a given state in finite field GF(28 ), the
replacement bytes can be obtained. Abd-El-Barr and Khattab’s improvement was to
efficiently utilize the resources available. Their main observation was that because some
gates could be triggered concurrently, improved circuitry should follow a pipelined
approach. In a pipelined architecture, it is important to emphasize the order of the
operations, and hence pipelined stages will be explicitly shown. Figure .1 shows the
pipeline architecture. Here, the subscript 4 indicates a data size of 4 bits because; the

operations are implemented in the field GF(2%)2.
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Figure 1 . Multiplicative inverse gate implementation over GF(2%)?2 using a pipeline.

After making some calculations, the authors concluded that the total cost for the
architecture in terms of gate cost was 48(¢) and 152(x). where () represented AND
gates and (x) represented XOR gates. In order to convert this area cost into pure two-
way NAND gates, an AND gate took two NAND gates and an XOR gate took four
NAND gates. This way, the total area in NAND gate units was 48(2)+152(4) = 704.
The authers concluded that their proposed pipeline approach decreased the time delay
at the expense of a bit more area.
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3-2. Low-complexity Hardware Architecture of Gaussian Normal Basis

Multiplication over GF(2™) for ECCs

Rashidi, Sayedi, and Farashahi [9] presented an efficient high-speed architecture
of a Gaussian normal basis (GNB) multiplier over a binary finite field GF(2™) The
structure was constructed by using some regular modules for computation of
exponentiation by powers of 2 and low-cost blocks for multiplication by normal
elements of the binary field. For the powers of 2 exponents, the modules were

implemented by some simple cyclic shifts in the NB representation.

>4

2N

0 —m iy

bﬂ_’lg

gjlzslc YY ¥Y ¥ ry FF*\
l

S| KOUUOUU

Load | |

L

S)| =R ey =) = | o

Sequential Input Circuit (SIC)

YYYYYYY
G 00 B Ca G5 Ga

Figure 2. Proposed structure of the digit-serial GNB multiplier over GF(27). withw =4 and d = 2
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For the case of word = 4 and digit = 2, the word representations of B are
B, = bef?* + bsB? + byB?" + byp?
B, = b,B%" + bif?" + byf
And the multiplication result is C = (((C£ + C,)? + C3)% + C,), where C; — C, are
Cr = (A7) %bs + (A7) B)? by
C = (A7) PP bs + (AT )2 'y
C3 = (A7 )2 B by + ((((AZT)F)ZHFB)? by

Co = (A2 B)% by + (A2 )22 B2 b,

The proposed digit-serial GNB method had (m— 1)(T — 1) d + dm number of
XOR gates and dm number of AND gates. After implementing the design in
FPGAVirtex-4 XC4VLX100 for GF (2233) the authors obtained 1458 slice registers and
2811 lookup tables (LUTSs). After comparing their work with other digit-serial
structures, the authers concluded that the proposed work had suitable timing

characteristics and hardware utilization results.

3-3. Massey - Omura Multiplier

In finite field arithmetic, multiplication is more complicated than squaring and
addition operations. For efficient finite field computations, an efficient multiplier is
highly needed. Finite field multipliers using normal bases can be classified into two
main categories: (1) conversion-based multipliers, and (2) A-matrix-based multipliers.
A Massey- Omura multiplier [10] is a A'-matrix-based multiplier that computesc=ax b
based on a matrix-vector product where the constant matrix A is composed of only
GF(2) elements. The notation c[i] is the i-th bit of c (starting with least significant bits
(LSBs)) Massey and Omura proposed an efficient NB bit-serial multiplier over GF(2™)
that required only two m-bit cyclic shift registers and combinational logic (which

consists of a set of AND XOR logic gates). The space complexity of the Massey-Omura

23



multiplier is (2m - 1) AND gates + (2m - 2) XOR gates, depending on the number of

non-zero elements in the A-- matrix.
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Figure 3. 5-bit Massy-Omura Multiplier Circuitry

One advantage of the Massey-Omura multiplier is that it can be used with both
types of optimal normal bases (Type I and Type I1). Another advantage is that it is a bit-
serial multiplier, and hence the same circuitry used to generate cO can be used to
generate c[i] (i=1; 2; :::;m - 1).

Algorithm 1: Massey-Omura multiplication
Operands: a,b in GF(2™) represented in NB

Result:c=a Xb

1. ¢<0

2. forifromOtom —1do

3. c[0] <a XA Xb

4. a<ROL(a 1);b < ROL(b, 1);c —ROL(c, 1)
5. returnc

24



3-4. Itoh-Tsuji Inversion Algorithm

Inversion using NB consists of multiplications and cyclic shifts. The number of
multiplications is the major parameter for efficient inversion because cyclic shifts
require almost trivial time. Inversion algorithms can be classified into three main
categories :(1) standard, (2) exponent grouping (3) exponent decomposing inversion
algorithms. Beacuse the number of multiplications is the main parameter in determining
the computation time of the inversion operation, several algorithms have attempted to
improve the inversion speed by decomposing the exponent to reduce the required
number of multiplications and replacing it with squaring operations, which are much
simpler compared to multiplications. Itoh and Tsuji [11], proposed a GF(2™) inversion
algorithm derived from Fermat’s Little Theorem using normal bases. The basic idea was

to decompose the exponent m -1 as follows:

-1

al=q2"? = (azm—l 12,

The exponent 2™~1 is further decomposed as follows:

1. If misodd, then
(2m-1 —1) = (27_1 - 1) (zmT_1 + 1).
and

2m-1 (a2 2 —1)zT+1

a =
2. Ifmiseven, then

(2m1—1)=202m2 -1 +1= z(zm—_z - 1) (zmT_z +1)+ 1.

and

The proposed algorithm by Itoh and Tsuji is shown below [3]. It requires three m- bit
cyclic shift registers, one barrel shifter, two down counters and one multiplier. It
requires log, (m — 1) + v(m — 1) — 1 multiplications, where v(x) is the number of 1s

in the binary representation of x.
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Algorithm 2: Itoh-Tsujii inversion
Inputs: a
Output: [ =a?
1. Set s «[log,(m—1)]—1
2. Setp<a
3. Fori=sdownto0do
3.1 Setr « shift m — 1 to right by s bit(s)
3.2 Setq < p
3.3 Rotate q to left by [r/2] bit (s)
34 Sett <« pXq
3.5 Iflastbitofr =1
3.5.1 rotate t to left by 1 bit.
352 p«<txa
3.6 Else

361 p«t
37s <s—1
4. Rotate p to left by 1 bit
5 Setlep
6. Return!

3-5. Fast Inversion in GF(2™) with NB Using Hybrid-Double Multipliers

Azarderakhsh, Jarvinen, and Dimitrov [12] presented techniques to exploit
recently proposed hybrid-double multipliers for fast inversions in binary fields GF(2™)
with normal bases. A hybrid-double multiplier computes a double multiplication, the
product of three elements in GF(2™), with a latency comparable to the latency of single

multiplication of two elements.
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Figure 4. The proposed inverter architecture using a hybrid-double multiplier.

The authers concluded that faster inversion times were achieved at the expense
of larger area requirements. The proposed scheme is applicable primarily for high-
performance cryptographic applications where the aim is to maximize the speed of
inversions. However for small devices with limited resources, the IT inverter is

recommended [11].

3-6. Small FPGA-based Multiplication-Inversion Unit for NB Representation in
GF(2™)

Meétairie, Tisserand, and Casseau [13] proposed a small FPGA- based multiplication-
inversion unit that uses permuted normal basis (PNB) representation, Massey-Omura
multiplication, and Itoh-Tsujii inversion algorithms. They produced the output bits of
the multiplication serially, like the original Massy-Omura, but with two bits at each

clock cycle.
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Upon further studying their work and the results they provided, we found that their

multiplication-inversion unit leads to about 20% theoretical speed-up over previous

works at the cost of area efficiency.

3-7. Chapter Summary

In this chapter we surveyed different types multiplication and inversion

algorithms and found that the Massey-Omura multiplier and the Itoh-Tsuji

inverter were the best for resource-constrained devices. In the next chapter, we

introduce and discuss our design.
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Chapter 4:
MYTHODOLOGY

The main idea for this thesis came from a key observation from the Itoh-Tsuji
inverter [11], which was that the inverter’s three cyclic shift registers could be used for
both the multiplier and the inverter by proper scheduling. These cyclic shift registers
could also be used to perform concurrent squaring. Accordingly, a compact GF(2™) NB

field arithmetic unit (FAU) is presented in this section.

4-1. The Proposed Design

The main idea of the proposed FAU is to utilize the common parts of the
Massey-Omura multiplier [10] and the Itoh-Tsujii inverter [11]. The remaining field
arithmetic operations are also included, where these are:

« Addition

» Squaring

» Square root

« AND

* Multiplication

* Inversion

The standard approach of the design performs these operations individually, each with
its input and output registers. The proposed design will combine these operations into a
compact FAU to benefit from shared registers. The ultimate goal was to design an FAU
that can perform the basic operation required of a processor that implements ECC
systems for resource-constrained devices.
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Figure 6. The Proposed FAU design

The proposed FAU consists of three cyclic shift registers, three multiplexers (MUXSs),
two down counters, one barrel shifter, m-AND gates for the AND operation, m-XOR
gates for the XOR operation, an AND plane, which is the 2m - 2 AND gates for the
Massey-Omura multiplier and an XOR tree, which is the 2m - 1 XOR gates for the

Massey-Omura multiplier.

4-2. Operations of the Proposed FAU

Here we have the inputs: A, B.
Outputs: (A AND B)/(A XOR B)/A.B/A1/A2 | B2 /\/JAVB
1. AND/XOR operation: The inner controller loads both A&B into REG1 & REG2.
Accordingly, we get the output A AND/XOR B.
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2. Squaring/Squareroot: The inner controller loads both A&B into REG1 &
REG2. Accordingly, with cyclic shift to left/right we get the outputs A2B?/

VAVB concurrently.

3. Multiplication: The inner controller loads both A&B into REG1 & REG2. The

same procedure for the Massey-Omura multiplier is followed to get the output
AB and the output is saved in REGS3.

4. Inversion: The Itoh-Tsujii algorithm is implemented in the proposed FAU.

Algorithm 3: Itoh-Tsuji inversion in the proposed FAU
Inputs: a
Output: [ = a1
1. Set s« [log,(m—1)]—1
2. SetREGl < a
3. Fori=sdownto0do
3.1 Setr « shift m — 1 to right by s bit(s)
3.2 Set REG2 <« REG1
3.3 Rotate REG2 to left by [r/2] bit ()
3.4 Set REG3 « REG1 X REG?2
3.5 Iflastbitofr =1
3.5.1 Rotate REG3 to left by 1 bit.
3.5.2 REG2 < REG3
3.5.3 REG3 « REG2 X REG1
3.5.4 REG1 <« REG3
3.6 Else

3.6.1 REG1 < REG3
37 s«s—1
4. Rotate REG1 to left by 1 bit
5. Setl « REG1
6. Returnl

31



The inner controller loads input a into REG 1 and logarithm log,(m — 1) is
calculated and stored in variable s to determine the number of iterations the algorithm
will take to produce the inverse (i.e., the number of multiplications and squarings). In
the first iteration, the binary representation of the number of bits m-1 is shifted to the
right s times, converted into decimal form, and stored in variable r. The value in REG 1
is then loaded into REG 2 and rotated to the left (square operation) r/2 times. Next,
REG 1 and REG 2 are multiplied (Massey-Omura multiplication), and the result is
stored in REG 3. Then, the least significant bit in the binary representation of r is then
checked; if it is O the result in REG 3 is loaded into REG 1 and the next iteration begins.
However if it is 1, the result stored in REG 3 is squared (i.e., rotated to the left by 1) and
loaded into REG 2, REG 1 and REG 2 are multiplied, the result is stored in REG 3 and
loaded into REG 1, and the next iteration begins. After the conclusion of all iterations,
the final value in REG 1 is squared (i.e., rotated to the left by 1) and returned as the

inverse | of the input a.

4-3. Chapter Summary:

In this chapter, we described the proposed design concept, which is to utilize the
common parts of the Massey-Omura multiplier and the Itoh-Tsujii inverter. We also
established in detail that it performs addition, squaring, square root, ANDing,
multiplication, and inversion operations. In the next chapter, we present the results
obtained after implementing the design in VHDL, and then we compare the results
with those of the standard approach for multiple number of bits.
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Chapter 5:
IMPLEMENTATION RESULTS

5-1. Evaluating the Proposed Design

To evaluate the proposed FAU, we compared it with a standard FAU that performs

the operations mentioned in 4.1 separately. The standard FAU consists of the following:

m AND gates for the AND operation and 2m - 1 AND gates for the Massey-
Omura multiplier. (total = m + 2m-1 = 3m-1 AND gates)

m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-
Omura multiplier. (total =m + 2m - 2 = 3m — 2 XOR gates)

3m-bit cyclic shift registers for the Massey-Omura multiplier and 3m- bit cyclic
shift registers for the Itoh-Tsuji inverter. (total = 3m + 3m = 6m-bit registers)
2m-bit cyclic shift registers for two concurrent squaring operations.

(total = 2m-bit registers)

Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs)

The proposed FAU consists of the following:

m AND gates for the AND operation and 2m - 1 AND gates for the Massey-
Omura multiplier. . (total = m + 2m-1 = 3m-1)

m XOR gates for the XOR operation and 2m - 2 XOR gates for the Massey-
Omura multiplier. (total =m +2m -2 =3m - 2)

3m-bit cyclic shift registers for both the Massey-Omura multiplier and the Itoh-
Tsuji inverter. (total = 3m-bit registers)

2m-bit cyclic shift registers for two concurrent squaring operations.

(total = 2m-bit registers)

Two m 2-to-1 MUXs for the Itoh-Tsuji inverter. (total = 2m MUXs)
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We convert all combination logic/gate in both designs to their NAND equivalents.

Table. 1 Area cost of proposed design in terms of NAND

Clogic/Gates NANDs Standard NANDs Proposed NANDs
AND 2 3m-1 6m—2 3m-1 6m -2
XOR 4 3m-2 12m -8 3m-2 12m -8

m-bit Reg 4m 8 32m 3 12m
m 2-to-1 3m 2 6m 2 6m
MUX
Total = 56m — 10 Total = 36m - 10

Table 1 summarizes the hardware requirements of the proposed FAU and the
standard FAU. It also shows the equivalent NAND gate cost of both designs. The first
two columns of Table 1 show the combination logic/gates and the required number of
NANDs to implement them, respectively. The third and fourth columns show the
required number of these combinational logic/gates for the standard FAU and their
equivalent NANDs, respectively. Similarly, the fifth and sixth columns show the
required number of these combinational logic/gates for the proposed FAU and their
equivalent NANDs, respectively. Furthermore, the fourth and the sixth columns show
the results of multiplying the second column by the third and fifth columns,
respectively. Finally, the last row shows the total number of NANDs for the standard

and the proposed FAUSs.

The results of Table 1 show that the proposed FAU saves 35% [1- (36m -10)/
(56m -10) *100 = 35 ] of the total number of NANDs as compared to the standard FAU.
For resource-constrained devices such as smart cards [14], RFID [15] and wireless
sensor networks [16], our compact FAU is a very attractive when implementing ECCs.
In Table 2 we compare our results with those of the architecture mentioned in Section
3.1form=8.
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Table. 2 Comparing area cost of the pipelined multiplicative Inverse with
our proposed design in terms of NAND

Clogic/Gates NANDs Pipelined NANDs Proposed NANDs
AND 2 48 96 23 46
XOR 4 152 608 22 88

m-bit Reg 4m - - 3 96
m 2-to-1 3m - - 2 48

MUX
Total = 704 Total = 278

In Table 2. We compare the area cost in NAND gate units that was presented in the

Pipelined Multiplicative Inverse Architecture in Section 3.1 with our Proposed FAU.
The Pipelined Architecture had 48(2) + 152(4) = 704 NAND for m = 8. In our proposed

design we gave m the value 8 and calculated the area cost 36(8) -10 = 278, or 60% less

area.

5-2. Implementing the Design in VHDL

The two main points in comparing the proposed FAU with the standard FAU is to

compare the number of slice registers and the number of slice LUTs.We implemented

the design for 173 bits using VHDL Coding and Simulation on Xilinx Artix7
XC7A200T FPGA . Table 3 shows the data after synthesizing the design.

Table 3. Synthesized results of 173-bit input

Device Utilization Summary (estimated values) [-1
Logic Utilization Used Available Utilization
Mumber of Slice Reqisters 1076 269200 0%
Nurnber of Slice LUTs 7404 134600 5%
Number of fully used LUT-FF pairs 1070 740 14%
Mumber of bonded 10Bs 526 285 184%
Mumber of BUFG/BUFGCTRL/BUFHCES 1 152 0%

The third row in table 3 shows that the proposed design have 1076 slice registers with

almost 0% utilization of available logic.The forth row shows that the proposed design

have 7404 LUTs with approximately 5% utilization of available logic.
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One point to clear in the sixth row, it shows the number of bounded input/output with
utilization exceeding the available logic. This will not give an error when running the
simulation and the results are correct. But when implementing the design on a physical
chip some procedures must be taken to insure the utilization doesn’t exceed the
available logic. One suggestion is to add a buffer to pass 50 bits of the input at a time,
another suggestion is to choose a chip with a large number of 1/O pins. In the next
section the number of slice registers and LUTs for the proposed design is compared to

the standard design.

5-3. Comparing the Slice Registers and LUTs with the Standard Design.

Table 4. Comparison of slice registers in LUTs of 173-bit design

Standard Number Number Clock cycles Minimum time (ns)
design of slice  of slice
registers LUTs
ANDing 173 173 1 1.060
XORing 173 173 1 1.060
Sqr /Sqrt 0 0 1 0.400
Multi 519 699 173 1354.936
Inv 1366 8884 2170 18139.03
Total 2231 9929 - -
Proposed 1076 7404 Multiplication 179 1290.59
design (48%) (25 %) Inversion 2516 18140.36

Table 4 summarize the comparison between the proposed FAU and the standard FAU
for 173-bit. The first column shows the operations performed in the design. The second
column shows the number of slice registers for each operation and design. The third
column shows the number of slice LUTs for each operation and design. The fourth
column shows the number of clock cycles for each design. The fifth column shows the
minimum time required to perform the operations. The total number of slice registers
for the standard design is 2231 and LUTSs is 9929, whereas the slice registers for the
proposed design are 1076 and LUTs are 7404. By comparing the two results, it is
apparent that the proposed design reduces the number of slice registers by 48% and the
number of LUTSs by 25%. This makes the proposed FAU very attractive and suitable for
resource-constrained devices.
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5-4. Running the Design on Different Number of Bits

To further evaluate and analyze the proposed design, we ran the code for 233,
350, and 515 bits and compared the number of slice registers and slice lookup tables
(LUTS) between the standard FAU and the proposed FAU, as we did with 173 bits . The
same code was used on all number of bits, the only difference is being that the AND
XOR circuitry for the Massey-Omura multiplier changed for each number of bits. The
circuitry was obtained from the A matrix described in Section 2-4. The results are given
in Table 5.

Table 5. Comparing the proposed and standard design for different numbers of bits

No. of Bits Standard Proposed Standard Proposed
Slice registers Slice LUTs
173 bit 2231 1076 9929 7404
233 bit 3087 1436 14682 10945
350 bit 4679 2491 29901 17088
515 bit 7353 3650 106364 85442

The first column of Table 5 shows the different number of bits used to
implement the design. The second column shows the number of slice registers of the
standard design for the different number of bits, while the third column shows the
number of slice registers of the proposed design. The fourth column shows the number
of slice LUTs of the standard design for the different number of bits, while the fifth
column shows the number of slice LUTs of the proposed design. For the 233-bit input,
the proposed design reduced the number of slice registers by 46% whereas the number
of LUTs was reduced by 25%. For the 350-bit input, the proposed design reduced the
number of slice registers by 53% whereas the number of LUTs was reduced by 42%.
For the 515-bit input the proposed design reduced the number of slice registers by 49%
whereas the number of LUTs was reduced by 20%.
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5-5. Analyzing the results
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Figure 7. Comparing slice registers of the standard and proposed designs

Figure 7 shows that as the number of bits increased in the proposed design of reduction
of slice registers is nearly half (50%) of the standard design . This is because the
proposed design removes the additional slice registers needed to perform individual
addition, ANDing, multiplication and inversion in the standard design.
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Figure 8. Comparing LUTSs of the standard and proposed designs

Figure 8 compares the lookup tables (LUTS) used in the standard design and in
our proposed design. To further analyze and understand these results, we need to know
that in our proposed FAU the inversion operation determines the area cost of our design
as it performs many multiplications. We must also know that the number of
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multiplications is the primary factor that determines the computation of the inversion
operation, and that the Itoh-Tsujii inversion algorithm decomposes the exponent to
reduce multiplications and replace them with squaring operations, depending on the
number of 1’s in the binary representation of the number of bits (m-1).

These factors combine to determine the number of LUTs for each number of
bits. For example, when we calculate the number of squaring and multiplications in the
inversion operation of the 350-bit design, we have log,(350 — 1) = 8 and 349 =
(101011101). Therefor, when we run the Itoh-Tsujii algorithm we have:

s=7,

for i = 7 down to 0 (the inversion algorithm will take 8 iterations)
First iteration:

r « (shift 349 to right by 7 bits) = (101110110) = 374

Rotate REG2 to left by [r/2] bits = 374/2 = 187 (squaring)
Second iteration:

r « (shift 349 to right by 6 bits) = (011101101) = 237

Rotate REG2 to left by [r/2] bits = 237/2 = 118 (squaring)
Third iteration:

r « (shift 349 to right by 5 bits) = (111011010) = 474
Rotate REG2 to left by [r/2] bits = 474/2 = 237 (squaring)
Fourth iteration:

I « (shift 349 to right by 4 bits) = (110110101) = 437
Rotate REG2 to left by [r/2] bits = 437/2 = 218 (squaring)
Fifth iteration:

r « (shift 349 to right by 3 bits) = (101101011) = 374
Rotate REG2 to left by [r/2] bits = 374/2 = 187 (squaring)
Sixth iteration:

r « (shift 349 to right by 2 bits) = (011010111) = 215

Rotate REG2 to left by [r/2] bits = 215/2 = 107 (squaring)
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Seventh iteration:

r « (shift 349 to right by 1 bit) = (110101110) = 430
Rotate REG2 to left by [r/2] bits = 430/2 = 215 (squaring)
Final iteration:

r « (shift 349 to right by 0 bits) = (101011101) = 349
Rotate REG2 to left by [r/2] bits = 349/2 = 174 (squaring)

Sqauring = 174 +215 +107 +187 +218 +237 +118 +187 +5 (the number of 1’s in
the first 7 bits of 349) + 1 (after all iterations are finished) = 1449. Multiplications = 8
(number of iterations) +5 (number of 1’s in the first 7 bits of 349) = 13

For the number of squaring and multiplications in the inversion operation of the
515-bit design, we have log,(515 — 1) = 9 and 514 = (1000000010).

s=8,

for i = 8 down to 0 (the inversion algorithm will take 9 iterations)
First iteration:

r « (shift 514 to right by 8 bits) = (0000001010) = 10
Rotate REG2 to left by [r/2] bits = 10/2 = 5 (squaring)
Second iteration

r « (shift 514 to right by 7 bits) = (0000010100) = 20
Rotate REG2 to left by [r/2] bits = 20/2 = 10 (squaring)
Third iteration:

r « (shift 514 to right by 6 bits) = (0000101000) = 40
Rotate REG2 to left by [r/2] bits = 40/2 = 20 (squaring)
Forth iteration:

r « (shift 514 to right by 5 bits) = (0001010000) = 80
Rotate REG2 to left by [r/2] bits = 80/2 = 40 (squaring)
Fifth iteration:

r « (shift 514 to right by 4 bits) = (0010100000) = 160
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Rotate REG2 to left by [r/2] bits = 160/2 = 80 (squaring)
Sixth iteration:

r « (shift 514 to right by 3 bits) = (0101000000) = 320
Rotate REG2 to left by [r/2] bits = 320/2 = 160 (squaring)
Seventh iteration:

r « (shift 514 to right by 2 bits) = (1010000000) = 640
Rotate REG2 to left by [r/2] bits = 640/2 = 320 (squaring)
Eighth iteration:

r « (shift 514 to right by 1 bit) = (0100000001) = 257
Rotate REG2 to left by [r/2] bits = 257/2 = 128 (squaring)
Final iteration:

r « (shift 514 to right by 0 bits) = (1000000010) = 514
Rotate REG2 to left by [r/2] bits = 514/2 = 257 (squaring)

Squaring =5+ 10 + 20 + 40 + 80 + 160 + 320 +128 + 257 + 1 (number of 1’s in the
first 9 bits of 514) + 1 (after all iterations are finished) = 1022

Multiplications = 9 (number of iterations) + 1 (number of 1’s in the first 9 bits of 514) =
10.

Comparing the 350-bit design and the 515-bit design reveals that although the
350-bit design has more multiplications than the 515-bit design, it has fewer LUTs
because it performes more exponential decomposing and its input has fewer bits. As for
the 173-bit and 233-bit designs: log,(172) = 7, log,(232) = 7, 172 = (10101100),
233=(11101000). As these have the same logarithm and the same number of 1’s in their binary
representation , they have the same number of multiplications (7 iterations + 3 number of 1’s in
the first 7 bits) = 10. Therefore, the 233-bit design has more LUTs because its inputs have more
bits.

We conclude that our proposed design yields the best performance when there is more
multipications and squaring, because our design reduced the number of LUTs in the 350-bit
design by 42%.
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5-6. Chapter Summary

In this chapter, we calculated the area cost in terms of NAND gates of the
proposed FAU design compared to the standard FAU design and found it saves 35% of
the area cost. We also implemented our design and tested it for 173, 233, 350, and 515
bits and compared the number of slice registers and LUTSs, and we found that our design
reduces the registers by about half compared it to the standard design, which make it

desirable for resources-constrained devices. The results were validated in model sim.
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Chapter 6:

CONCLUSION

In this thesis, a design was proposed that uses the common parts of the Massey-
Omura multiplier and the Itoh-Tsuji inverter to implement a compact GF(2™) normal
basis field arithmetic unit. The proposed design is very attractive for resource-
constrained devices when implementing ECCs. The proposed FAU saves 35% of the
total number of NANDs. This result was compared to the work done in [8] and our
results were 60% better for m=8. It also saved 48-50% of total slice registers as
compared to the standard design. The implementation of the design was done by VHDL
coding and simulation with an Artix7 XC7A200T FPGA.

Future Work

Although the methodologies and results were quite good, there are many ways to
improve upon this work. Designing the FAU chip from high-level VHDL code was a
good learning experience for real-world applications, as full-custom chip design is rare.
All the utilization data were synthesized from the VHDL description. Another way to
improve work on the design would be to try different multiplication algorithms, like the
bit-parallel version of the Massey-Omura multiplier [17,18] to see what difference a

parallel approach can have on the design in terms of area.
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