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Abstract

We introduce the concept of pseudoblock for finite dimensional algebras, and investi-
gate the pseudoblock structure for various finite dimensional algebras such as semisimple
algebras, the group algebras of cyclic groups, and the triangular algebras. Towards the
end, we determine the pseudoblocks for the group algebra FSL(2, p) in characteristic p,
which turns out to be identical with the Brauer blocks.
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Notations

A The finite dimension F -algebra.
F = Fp The field in characteristic prime number p.

N The set of nonnegative integers (natural numbers).
Z The set of integers.
Q The rational field.
Λ The group algebra FG.

AA The left regular module (as left A-module).
Mn(F ) The algebra of all n× n matrices over a field F .
≈
PSA

The pseudoblock linkage principle on IndA.

≈
A

The Brauer linkage principle on modA.

B ⊗ C The tensor producte of B and C over the field F .
⊕ The internal direct sum of moduls.
P |A P is dircte summand of A.
a|b a divides b.
a - b a does not divide b.
|G : H| The index of a subgroup H in a group G.
|G| The order of the group G.
Dt The transpose of the matrix D.
f ◦ g The composition of maps.
∼= Is isomorphic to.

∼ and ≡ Is equivalent to
gcd(p,m) The greatest common divisor of p and m.

In The identity matrix n× n.
1A The identity element of A.
FG The trivial module.
StG The Steinberg representation.

CharF The characteristic of F .
dimΛ The dimension of Λ.
IndA The set of indecomposable A-module.
IndsY The set of isomorphism classes of indecomposable direct

A-summands of Y .
modA The category of finite dimensional left A-modules.

HomA(X, Y ) = (X, Y )A All morphism from A-module X to A-module Y .
Mor

MmodA
(X, Y ) The space of morphisms from X to Y .

E = EndA(Y ) Endomorphism algebra.
Irr(E(Y )) The set of isomorphism classes of irreducible E(Y )-

module.
modF The category of vector space over F .
MmodA The category whose objects are the covariant functors.

indGHL = LG The induction FG-module.
resGH(M) = M |H = MH The restriction FH-module.

PIM The projective indecomposable A-module.
vx(M) The vertices of the indecomposable FG-module M .
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GL(m, p) The general linear group.
SL(m, p) The special linear group.
PSL(m, p) The projective special linear group.

FS3 The symmetric group algebra.
FCn The group algebra of cyclic groups.

FSL(2, p) The group algebra of special linear group.
rad(A) The radical of A.
soc(A) The socal of A.
ACC The ascending chain condition.
DCC The descending chain condition.
Kerg The kernel of g.
Img The image of g.
d.v.r The discrete valuation ring.

Sylp(G) The Sylow p-subgroup of G.
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INTRODUCTION

The pseudoblock is the branch of block theory that it partitions the set of classes
of indecomposable modules in a very useful way. The origins of pseudoblock were in
the paper of Ahmed A. Khammash “ The Pseudoblocks of Endomorphism Algebras”,
written in 2009, [16]. In this work, he introduced the notion of pseudoblock of the en-
domorphism algebra E(Y ) = EndA(Y ) and showed the compatibility of the pseudoblock
distribution of the indecomposable A-summands of Y with the block distribution of the
simple EA(Y )-modules. In 2014, Ahmed A. Khammash [17] studied compatibility be-
tween the pseudoblock of endomorphism algebras and the tensor product, and he related
the Brauer-Fitting correspondence as well as the notion of pseudoblocks of endomorphism
algebras to the tensor product of modules and algebras.

In this dissertation, we borrow the notion “pseudoblock” from [16] to introduce it to
finite dimensional (not necessary endomorphism) algebras. We shall investigate the pseu-
doblock structure of several finite dimensional algebras. The dissertation is organized as
follows:

Chapter 0 is a background chapter collects all basic notions and results which are
needed for this dissertation.
Chapter 1, we introduce the concept of pseudoblocks of finite dimensional algebras A,
and we explain the concept of the Brauer linkage principle of finite dimensional algebras,
then we borrow the notion of pseudoblocks of an endomorphism algebra of a module and
introduce it for any finite dimensional algebras in the light of the Brauer-Fitting corre-
spondence, where we find that the pseudoblocks for the indecomposable A-summand of Y
is compatible with the block for the simple EndA(Y )-module. Also, we introduce criteria
simplifies the determination of the pseudoblock linkage principle.
Chapter 2, we discuss the connection between the Brauer linkage principle ≈

A
and the

pseudoblock linkage principle ≈
PSA

, where we find that the pseudoblock linkage principle

is stronger than the Brauer linkage principle.
Chapter 3, we revise the concept of tensor product of algebras and modules. Then we
prove that the notion of pseudoblocks is compatible with the tensor product. We also
study compatibility between the tensor product and the indecomposable A-module, and
Brauer linkage principle.
Chapter 4, we discuss the pseudo-block distribution of the indecomposable modules for
some various finite dimensional algebras such as semisimple algebras, the triangular alge-
bra A, the symmetric group algebra FS3 in all characteristics, cyclic group algebra over
a field of characteristic prime number p, and p-group algebra.
Chapter 5, we determine the pseudoblock structure of the group algebra of special linear
group Λ = FG;G = SL(2, p) in characteristic prime number p. We have chosen the
group algebra Λ = FSL(2, p), because this is the only finite group of Lie type, which
is of finite representation type; i.e. Λ has finite indecomposable modules. Furthermore,
we introduce the complete set of projective indecomposable Λ-module as stated in [2],
and then we describe the complete set of indecomposable Λ-module as stated in the pa-
per of D. Craven [4], where we use the Green Correspondence theory, which relates the
isomorphism classes of indecomposable FG-modules with isomorphism classes of inde-
composable FNG(U)-modules; So that we can use theorem (0.3.11). Also, we find the
block theory of Λ-modules as stated in [9].
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Finally, we determine the pseudoblocks of the group algebra Λ = FSL(2, p) in charac-
teristics p, also we study the pseudoblocks of group algebra FSL(2, p) in characteristics
p = 2, 3 and 5, and then compare the block and pseudoblock theory of the group algebra
Λ in characteristics p.
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Chapter 0

PRELIMINARIES

We devote this chapter to recall some necessary background for the next chapters. Here,
we introduce the most important basic concepts in finite dimensional algebras.

0.1 ALGEBRAS AND MODULES

ALGEBRAS AND GROUP ALGEBRAS
First, we introduce the concept of algebra, and we recall its basic properties.

DEFINITION 0.1.1. ([13], p.227). Let F be a field. A is an algebra over the field F
or (A is an F -algebra) iff

1. A is a ring;

2. A is a vector space over F ;

3. let λ ∈ F, ∀a, b ∈ A. Then (λa)b = λ(ab) = a(λb).

Furthermore, if A is a finite dimension, then A is called a finite dimension algebra
over the field F .

Note: The basic concepts of linear algebra can be taken from the following book [13].

EXAMPLE 0.1.2. ([13], p.227). Every a field (F,+, .) is an algebra over itself, in which
(F,+, .) is a ring, (F,+, .) is a vector space, and λ ∈ F, ∀α, β ∈ F then λ(αβ) = (λα)β =
α(λβ).

See, examples in ([13], p.227).

DEFINITION 0.1.3. ([10], p.13). Let F be a field, and let A, B be F -algebras. A map
f : A −→ B is an F -algebra homomorphism (or f is an algebra map). if

1. f(a+ b) = f(a) + f(b);

2. f(ab) = f(a)f(b);

3. f(λa) = λf(a);

4. f(1A) = 1B, ∀a, b ∈ A, λ ∈ F.

Moreover, F -algebra homomorphism HomF (X,X) = EndF (X) is endomorphism al-
gebra.

1



Also in this dissertation, we need to talk about group algebra, where group algebra is
an F -algebra.

DEFINITION 0.1.4. ([19], p.42). Let F be a field, and let G be a finite group, where
G = {g1, g2, ..., gd : |G| = d}. Then FG = {

∑d
i=1 αigi : αi ∈ F, gi ∈ G} is the group

algebra of G over F , which satisfying the following;

1.
∑d

i=1 αigi +
∑d

i=1 α
′
igi =

∑d
i=1(αi + α′i)gi;

2. (
∑d

i=1 αigi)(
∑d

j=1 αjgj) =
∑d

i=1

∑d
j=1 αiαjgigj =

∑d
k=1(

∑d
i,j αiαj)gk;

3. λ(
∑d

i=1 αigi) =
∑d

i=1(λαi)gi, where λ ∈ F.

Furthermore, if group algebra FG is finite dimension, then the dimension of FG is equal
to the order of the group G.

EXAMPLE 0.1.5. ([10], p.6). Let F be a field, and let G be the cyclic group of order
3, in which G =< x >, i.e. G = {x, x2, 1}. Then FG = {r0 + r1x + r2x

2 : ∀r0, r1, r2 ∈
F & x, x2, 1 ∈ G} is group algebra, where FG satisfies the definition (0.1.4).

More details on algebra are given in [10, 13].

MODULES AND REPRESENTATIONS
A vector space over a field F is an A-module, where A is an F -algebra. Also, algebra A
and A-module are equivalent. So, we introduce the concept of A-module and some of its
properties

DEFINITION 0.1.6. ([19], p.8). Let G be a group. The vector space V over the field
F is called FG-module if a multiplication vx, (v ∈ V, x, y ∈ G) is defined, such that:

(i) vx ∈ V ;

(ii) (hv + kw)x = h(vx) + k(wx), (v, w ∈ V, h, k ∈ F );

(iii) v(xy) = (vx)y;

(iv) 1v = v.

See, examples in ([10], section 2.1).

DEFINITION 0.1.7. ([19], p.10). Let V be an A-module. Then U is a submodule of
V if

• U is vector subspace of V , (i.e. U ⊂ V );

• U is an A-module, i.e. ux ∈ U , ∀u ∈ U and ∀x ∈ G;

in which if {0
V
} $ U $ V is an A-submodule of V . Then V is called reducible over F ;

otherwise it is called (simple) irreducible over F .

DEFINITION 0.1.8. ([19], p.23). Let V be an A-module. Then V is semisimple
(completely reducible) if V = U1⊕U2⊕ . . .⊕Ul, where Ui; ∀i = 1, 2, . . . , l are (irreducible)
simple A-modules.

DEFINITION 0.1.9. ([13], p.181). Let R be a ring with identity. Then the unitary
module H is a free R-module if it satisfies at least one of the following condition:

2



1. H has a non-empty basis;

2. H is the internal direct sum of a family of cyclic R-module, each of which is iso-
morphic as a left R-module to R;

3. H is R-module isomorphic to a direct sum of copies of the left R-module R.

In ([19], p.8), we find that an FG-module is equivalent to the matrix representation.
Hence,

DEFINITION 0.1.10. ([19], p.3) A matrix representation over a field F of degree
m ∈ N for a group G is a group homomorphism ρ : G → GL(m,F ), where GL(m,F ) is
the general linear group of degree m over F .

See, examples in ([19], p.18).

REMARK.

1. General linear group GL(m,F ) is the set of all non-singular m ×m matrices with
coefficients in a given field F , in([19], p.3).

2. G = SL(m, p) is special linear group, where SL(m, p) = {X ∈ GL(m,F ) : detX =
1, CharF = p} from ([7], p.75).

3. It is well-known (see [19]) that the notions of matrix representation of a group G
over a field F (or algebra A) and FG-modules (A-modules) are equivalent. All
modules considered in this dissertation will be left modules.

DEFINITION 0.1.11. ([19],p.4). If g : G −→ GL(m,F ) is injective, then g is called
faithful representation.

Now, we recall some concepts of induced modules.

DEFINITION 0.1.12. ([6], p.228). Let FG be a group algebra, let M be a left FG-
module, and let H be a subgroup of G (i.e. FH ⊆ FG). Then the operation of the
restriction of scalars from group algebra FG to FH assigns to each left FG-module M a
left FH-module resGH(M); we denote it by M |H or MH .

DEFINITION 0.1.13. ([6], p.228) Let FG be a group algebra, let H be a subgroup
of group G where FH ⊆ FG, and let L be a left FH-module. Then the operation of
induction from FH-modules to FG-modules assigns to each left FH-module L a left FG-
module indGH(L) given by

LG = indGH(L) = FG⊗FH L.

i.e. if L is matrix representation of H over a field F , then LG denotes the matrix repre-
sentation of G afforded by L.

The following theorem shows the dimension of induction LG.

THEOREM 0.1.14. ([2], p.56). Let L be a left FH-module, and let LG be induction
from FH-modules to FG-modules. Then

dim indGH(L) = |G : H| dim(L).

More details on induced modules are given in [6].

3



THEOREM 0.1.15. (Lifting Process) ([19], p.58) . Let N be a normal subgroup of G
and let A0(Nx) is a representation of degree m of the group G/N . Then

A(x) = A0(Nx)

defines a representation of G, lifted from G/N .
Moreover, if M is an FG-module, M can be regarded as F (G/N)-module, where mx =
m(Nx);∀x ∈ G,m ∈M is well-defined of G/N on M , hence N acts trivially on M .

Now, we introduce some notions related to an FG-module homomorphism.

DEFINITION 0.1.16. ([19], p.24). Let F be a field, let G be a group, and let FG be
a group algebra, and let X, Y be an FG-modules. Then θ : X → Y is an FG-module
homomorphism HomFG(X, Y ) = (X, Y )FG if:

1. θ(x+ y) = θ(x) + θ(y), ∀x, y ∈ X;

2. θ(λx) = λθ(x), ∀x ∈ X,λ ∈ F ;

3. θ(xg) = (θx)g, ∀x ∈ X, g ∈ G.

DEFINITION 0.1.17. ([19]). Let F be a field, let G be a group, and let FG be a group
algebra, let X be an FG-module, and let θ : X −→ X be an FG-module homomorphism.
Then θ is an FG-module endomorphism.

EndFG(X) = {θ : X −→ X | θ is FG-map}.

DEFINITION 0.1.18. ([13], p.31). Let A be an F -algebra, and let g : X −→ Y be an
A-module homomorphism.

1. The kernel of g is kerg = {a ∈ X | g(a) = 0Y ∈ Y }, where 0Y is the identity in Y .

2. The image of g is Img = {b ∈ Y | ∃a ∈ X, g(a) = b}.

From important theorems of algebra that has been used the First Isomorphism The-
orem:

THEOREM 0.1.19. (First Isomorphism Theorem) ([13], p.44). Let A be an F -algebra,

and let g : X −→ B be an A-module homomorphism. Then
X

kerg
∼= Img.

More details on modules and representation theory are given in [10, 19].
Now, we introduce some concepts of p-modular system.

DEFINITION 0.1.20. ([6], p.402). Let K be a field of characteristic zero, let R be
a discrete valuation ring (d.v.r), and let F be a field of characteristic prime number p,
where F = R/radR; radR is radical R. Then the system (K,R, F ) is called p-modular
system.

More details on p-modular system and discrete valuation ring are given in [6, Chap-
ter2] and [6, p.81].

From concepts that we need it a lot in this dissertation are the decomposition matrix
and the Cartan matrix.
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DEFINITION 0.1.21. ([3], p.17). Let F be a field, let G be a group, and let FG be a
group algebra. The decomposition matrix D = (dij)r×s has rows indexed by the ordinary
characters χi; 1 ≤ i ≤ r of G and column indexed by the modular characters φi; 1 ≤ i ≤ s
of G, and the entry dij is the multiplicity of φj in the modular reduction of χi. It is
known that DDt = C = (cij)s×s; the Cartan matrix, where cij is the multiplicity of φi as
a composition factor of the projective cover of φj.

REMARK. Let Λ = FG be a group algebra. Then

1. Let StG be denote the Steinberg module for group G, see ([14], p.300).

2. The Steinberg module is the unique largest irreducible Λ-module, and also StG is
projective indecomposable Λ-module as stated in ([12], p.256, p.259).

3. The dimension of StG is equal to the order of a Sylow p-subgroup as stated in ([12],
p.250).

4. The diagonal form of decomposition matrix D corresponding to the blocks of FG,
see ([11], section16.3).

One of the most important concepts that we need it a lot in this dissertation is p-
regular. Hence,

DEFINITION 0.1.22. ([5], p.283). Let p be a prime number. An element g ∈ G is
p-regular if p does not divide the order of g. An element whose order is a power of p is
called p-singular.
Consequently, a conjugate class C in G is p-regular if all its elements are p-regular.

The following theorem shows, how do we know the number of simple modules?

THEOREM 0.1.23. ([2], p.14). Let F be a field, let G be a group, and let FG be a
group algebra. Then the number of simple FG-modules equals the number of p-regular
conjugacy classes of G.

EXAMPLE 0.1.24. Let F be a field of characteristic p, let G = S3 =< a, b|a3 = b2 =
1, bab−1 = a−1 >, and let C1 = {1}, C2 = {a, a2}, and C3 = {b, ab, a2b} be conjugacy
classes. If p = 2, then the group algebra FG has 2 2-regular conjugacy classes of G; it is
C1 and C2; and if p = 3, then FG has 2 3-regular conjugacy classes of G; it is C1 and
C3.

0.2 INDECOMPOSABLE MODULES

Indecomposable modules important type of modules. Here, we introduce the concept of
indecomposable modules, and some of its theorems. Details can be found in [2, 5].

DEFINITION 0.2.1. ([5], p.81). Let A be an F -algebra. An A-module U is indecom-
posable if U 6= 0 and if it cannot be written as a direct sum of two non-trivial submodules
(i.e. U 6= b1 ⊕ b2, where b1, b2 are non-trivial submodules). Otherwise, it is said to be
decomposable.

EXAMPLE 0.2.2. Z-module (Z3,+3) is indecomposable Z-module, while Z6 = Z3 ⊕ Z2

is decomposable Z-module.

We introduce the concept of idempotent, nilpotent, orthogonal, and primitive ele-
ments.

5



DEFINITION 0.2.3. ([3], p.11). Let A be an F -algebra, and let x, y be a non-zero
element in A. x is idempotent if x2 = x, also 1− x is idempotent.

If there exists a positive integer n such that yn = 0, then y is nilpotent.

Two idempotents x1, x2 are orthogonal if x1x2 = x2x1 = 0.

An idempotent x is primitive if we cannot write x = x1 + x2, with x1, x2 are orthog-
onal idempotents.

Now, we introduce the concept of local algebra as follows:

DEFINITION 0.2.4. ([2], p.21). An F -algebra A is local algebra (or local) if and only
if every element of A is nilpotent or invertible.

The following lemma shows that, local algebra has only 0 and the identity idempotents.

LEMMA 0.2.5. ([10], p.135). Let E be a local F -algebra. Then the only idempotents
in E are 0 and the identity 1

E
.

Proof. Let E be a local F -algebra. By definition (0.2.4), for all elements in E is nilpotent
or invertible. Let e ∈ E be an idempotent, (i.e. e2 = e). Then 1

E
− e is also idempotent.

If e has inverse, and also (1
E
− e) has inverse. Let x ∈ E, where x(1

E
− e) = 1

E
.

Then e = 1
E
e = x(1

E
− e)e = xe− xe2 = 0, this gives e = 0.

Also, There exists a ∈ E such that ae = 1
E

. Then e = 1
E
e = aee = ae2 = ae = 1

E
, this

gives e = 1
E

.
Accordingly, the only idempotents in E are 0 and 1

E
.

The endomorphism algebra of U is local, if and only if U is indecomposable A-module,
as follows:

THEOREM 0.2.6. ([2], p.22). Let A be an F -algebra. The A-module U is indecompos-
able if and only if End(U) is local.

DEFINITION 0.2.7. ([5], p.340). Let F be a field, let G be a group, and let FG be
a group algebra, let M be a left FG-module, and let M1,M2, . . . ,Mr, where r in N be
indecomposable FG-modules component of M , i.e.

M = m1M1 ⊕m2M2 ⊕ . . .⊕mrMr.

Then M is multiplicity free FG-module if all M1,M2, . . . ,Mr appear exactly once, i.e.
m1 = m2 = . . . = mr = 1.

The identity element of group algebra FG can be written uniquely as a sum of com-
muting primitive idempotents as follows:

THEOREM 0.2.8. ([11], p.67). Let F be a field, let G be a group, let Λ = FG be a
group algebra, let 1Λ be the identity element of Λ, and let 1Λ = e1 ⊕ e2 ⊕ . . .⊕ en, where
ei; 1 ≤ i ≤ n be a primitive idempotents. Then 1Λ = e1 ⊕ e2 ⊕ . . .⊕ en is unique.

Now, we recall the definition of projective indecomposable A-module. From good ref-
erences for projective indecomposable modules are [3, 13]

6



DEFINITION 0.2.9. ([3], p.6). Let A be an F -algebra, let P be an A-module, and
let W , V be any two A-modules. There are λ : P −→ V and µ : W −→ V , where
µ is epimorphism (i.e. µ is an A-module homomorphism & surjective), and there is
ν : P −→ W . Then P is projective. It is shown in Figure (1). Moreover, if λ : P −→ V
is an essential epimorphism, then P is projective cover for V .

Figure 1:

REMARK. 1. P is a projective if and only if P is a direct summand of a free module
([13], p.192).

2. Let A be an F -algebra, and let N be an A-module, also we have an A-module epi-
morphism µ : W → V . Then A-module homomorphism λ : V → N is essential if λ

is surjective, and if for each sequence of A-modules W
µ−→ V

λ−→ N such that λµ is
surjective ([6], p.131).

EXAMPLE 0.2.10. ([13], p.193). Let Z3, Z2 be Z6-modules. There is Z6
∼= Z2 ⊕ Z3.

Then Z2 and Z3 are projective Z6-modules, because Z3 & Z2 are direct summand of free
module.

0.3 p-GROUPS

In this section, we introduce the concept of p-group, and finite group with a BN-pair. We
also recall their properties, which we need in this dissertation. The basics concepts of
group theory can be taken from the following book [13].

DEFINITION 0.3.1. ([13], p.93). Let G be a finite group, and let p be a prime natural
number. Then G is called p-group if every element in G (∀g ∈ G) has order a power of
prime number as form: pr, r ∈ N, where gp

r
= 1, (i.e. |g| = pr). Moreover, G is p-group

if and only if |G| = pr.

DEFINITION 0.3.2. ([13], p.93). Let G be a p-group, and let U be a subgroup of group
G. If U is a p-group, then U is p-subgroup of G; i.e. Each a subgroup U of p-group G is
also p-group.

The following definition shows the concept of the Sylow p-subgroup.

DEFINITION 0.3.3. ([13], p.95). Let G be a group, |G| = prm where gcd(p,m) = 1,
r is a non-negative integer (pr | |G|). Then the subgroup of G of order pr is called Sylow
p-subgroup of G, and denote for all Sylow p-subgroup of G by Sylp(G).
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THEOREM 0.3.4. (Third Sylow Theorem)([13], p.95). Let G be a finite group of order
n = prm, where gcd(p,m) = 1, r is a non-negative integer. Then the number of Sylow
p-subgroups of G divides |G|, and is of the form λp+ 1 for some λ ≥ 0.

EXAMPLE 0.3.5. Let G = S3 =< a, b|a3 = b2 = 1, bab−1 = a−1 >, the order of S3 is
6. We will find the Sylow 2-subgroup of S3 of order 2, and the Sylow 3-subgroup of S3 of
order 3.

If p = 3, k = 1 + 3λ.
At λ = 0 ⇒ k = 1, hence 1 | 6, and at λ = 1 ⇒ k = 4, hence 4 - 6. Then the Sylow
3-subgroup of S3 of order 3 is A3 = {1, a, a2}, where A3 =< a > is cyclic.

If p = 2, k = 1 + 2λ.
At λ = 0 ⇒ k = 1, hence 1 | 6, at λ = 1 ⇒ k = 3, hence 3 | 6, and at λ = 2 ⇒ k = 5,
hence 5 - 6. Then there are 3 Sylow 2-subgroups < b >, < ab >, and < a2b >, where they
are cyclic.

If algebra A has a finite number of indecomposable A-modules, then A has a finite
representation type as follows:

DEFINITION 0.3.6. ([11], p.73). Let A be a finite dimension F -algebra. Then alge-
bra A has finite representation type if and only if A possesses a finite number of non-
isomorphism classes of indecomposable A-modules.

If the group G has a Sylow p-subgroup, where it is cyclic, then the group algebra FG
has a finite number of non-isomorphism classes of indecomposable modules, according to
the following well-known theorem.

THEOREM 0.3.7. (G. Higman) ([3], p.64). Let F be a field of characteristic p, and
let U be a Sylow p-subgroup of G. Then the group algebra FG has finite representation
type if and only if a Sylow p-subgroup of G is cyclic.

Proof. The proof can be found in ([3], Corollary 2.12.9).

The following corollary shows that the trivial module is the only simple module in a
p-group algebra.

COROLLARY 0.3.8. ([2], p.14). If F is a field of characteristic p, and G is a finite
p-group, then the only simple FG-module is the trivial module.

Proof. The identity element is the only one of order not divisible by p, so by theorem
(0.1.23), FG has a unique simple module, namely the trivial module [2].

The following proposition shows that every projective FG-module has dimension di-
visible by the order of Sylow p-subgroup.

PROPOSITION 0.3.9. ([2], p.33). Let F be a field, let G be a group, let FG be a
group algebra, and let U be a Sylow p-subgroup of G has order pa, then every projective
FG-module has dimension divisible by pa.

The following theorem shows that, for group G whose a Sylow p-subgroup is cyclic
normal, the indecomposable FG-modules can be obtained as quotients of the projective
indecomposable modules
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THEOREM 0.3.10. ([6], p.478). Let D be a cyclic normal Sylow p-subgroup of a finitely
group G, and let F be any field of characteristic prime number p, not necessarily a splitting
field for G.
Let {Ui : 1 ≤ i ≤ s} be a basic set of projective indecomposable FG-module, and let

D =< x : xp
d

= 1 >, N = rad(FD) = (x− 1)FD,

so N is nilpotent of exponent pd. Put

Mij = Ui/N
jUi; 1 ≤ j ≤ pd, 1 ≤ i ≤ s.

Then the s.pd modules {Mij} are a full set of non-isomorphic indecomposable FG-module.

From the previous theorem, we find that:

THEOREM 0.3.11. ([2], p.42) Let F be a field of characteristic p, let G be a finite group
has a cyclic normal Sylow p-subgroup, and let FG be a group algebra. Then any indecom-
posable FG-module is a homomorphic image of the projective indecomposable module.

The following definition introduces the concept of a finite group with BN -pairs.

DEFINITION 0.3.12. ([7],p.561). Let W be a finite group. If

W =< s1, s2, . . . , sn : (sisj)
mij = 1 ∀i, j >,

where the {mij} are positive integers such that

mii = 1,mij > 1 if i 6= j, and mij = mji for all i, j.

Then W is called a finite Coxeter group. The pair (W,S) is called a finite Coxeter system,
where S = {s1, s2, . . . , sn} is a set of generators of W .

EXAMPLE 0.3.13. The cyclic group of order 2; W =< S1|S2
1 = 1 >, then W is finite

Coxeter group.

DEFINITION 0.3.14. ([7], p.576). Let G be a finite group, and let B,N be a pair of
subgroups of G. Then a finite group with a BN-pair satisfying the following axioms:

1. G =< B,N >;

2. B ∩N EN ;

3. Let W = N/B∩N , and for each w ∈ W choose a coset representative ẇ ∈ N . Then
W is generated by a set S = {s1, s2, . . . , sn} such that

ṡiBẇ ⊆ BẇB ∪BṡiwB

and
ṡiBṡi 6= B,

for each w ∈ W and each si ∈ S.

Details can be found in ([7], section 65).
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0.4 CHAINS

In this section, we introduce the concept of composition series, in which we use it to
determine all indecomposable A-modules.

DEFINITION 0.4.1. ([13], p.375). Let A be an F -algebra, and let D be an A-module.
A normal series for D is a chain of A-submodules

D = D0 ⊃ D1 ⊃ D2 ⊃ ... ⊃ Dn

is called composition series for A-module D if Di/Di+1 for all 0 ≤ i < n is simple A-
module, where Di/Di+1 for all 0 ≤ i < n is called composition factors.

EXAMPLE 0.4.2. ([10], p.64). Let A be an F -algebra, let D =
{(a b

0 c

)
: a, b, c ∈ F

}
be upper triangular matrices over a field F , and let D = A-module B,

B1 =
{(a 0

0 0

)
: a ∈ F

}
& B2 =

{(a b
0 0

)
: a, b ∈ F

}
.

The chain
0 = B0 ⊂ B1 ⊂ B2 ⊂ B3 = B,

is composition series, because the dimension of composition factor Bi/Bi−1 for all i =
1, 2, 3, is one. Since every simple module has dimension one as stated in ([10], Example
3.2, p.61), then the composition factor Bi/Bi−1 is simple.

DEFINITION 0.4.3. ([9], p.255). Let A be a finite dimension F -algebra, and let D be
an A-module. Then D satisfies the descending chain condition (DCC) if every descending
chain of submodules is finite. Thus, D is Artinian, i.e.

D1 ⊃ D2 ⊃ D3 ⊃ . . .

of A-submodules of D, there is r ∈ N such that Di = Dr ∀i ≥ r.

DEFINITION 0.4.4. ([9], p.255). Let A be a finite dimension F -algebra, and let B be
an A-module. Then B satisfies the ascending chain condition (ACC) if every ascending
chain of submodules is finite. Thus, B is Noetherian, i.e.

B1 ⊂ B2 ⊂ B3 ⊂ . . .

of A-submodules of B, there is m ∈ N such that Bi = Bm ∀i ≥ m.

Consequently, A is Artinian if the A-module A satisfies the DCC, or A is Noetherian
if the A-module A satisfies the ACC.

THEOREM 0.4.5. (Jordan-Holder Theorem) ([13], p.375). Let A be a finite dimension
F -algebra. Then any two composition series of A are equivalent.
Details can be found in [9, 13].

We will use the radical series in the determination of the indecomposable A-modules.
So, we introduce the concept of the radical series.

DEFINITION 0.4.6. ([2], p.3). Let A be a finite dimension F -algebra. Then the radical
of A is equal to each of the following;

1. rad(A) is the intersection of all the maximal submodules of A;
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2. rad(A) is the largest nilpotent ideal of algebra A.

REMARK. ([3], p.1). Let M be an A-module. Then M/radM is the head of M .

DEFINITION 0.4.7. ([3], p.1). Let A be a finite dimension F -algebra, and let M be
an A-module. Then the socle of M is the sum of all the irreducible submodules of M , i.e.

soc(M) = m1 ⊕m2 ⊕ . . .⊕mn,

where mi ∀i = 1, 2, . . . , n is irreducible submodules of M .
Moreover, if M = soc(M), then M is completely reducible (semisimple).

COROLLARY 0.4.8. ([2], p.3). Let A be a finite dimension F -algebra. If radA = 0,
then A is semisimple.

DEFINITION 0.4.9. ([11], p.129). Let A be an F -algebra, let M be an A-module.
Then the radical series of M is

M = rad0(M) ⊃ rad1(M) ⊃ rad2(M) ⊃ . . . ⊃ radr(M) = 0.

Also, the socle series of M is

0 = soc0(M) ⊂ soc1(M) ⊂ soc2(M) ⊂ . . . ⊂ socr(M) = M.

From ([18], section 8, p.25), there exists r ∈ N such that radr(M) = 0. By Loewy
series, then

M/rad(M)
rad(M)/rad2(M)
rad2(M)/rad3(M)

...
radr−1(M),

where the head is M/rad(M) and the socle is radr−1(M). More details on Loewy series
are given in [11, 18].

The following theorem shows that, the head of projective indecomposable FG-module
is isomorphic to socle of M .

THEOREM 0.4.10. ([2], p.43). Let F be a field, let G be a group, and let FG be a
group algebra, and let M be a projective indecomposable FG-module. Then M/rad(M) ∼=
soc(M).

The head of projective indecomposable FG-module is simple as follows:

COROLLARY 0.4.11. ([2], p.41). Let P be a projective indecomposable FG-module.
Then soc(P ) is simple.

The following definition shows the concept of uniserial module and uniserial algebra.

DEFINITION 0.4.12. ([7], p.505). Let A be a finite dimension F -algebra, and let M
be a finite generated A-module. Then M is a uniserial module if M has a unique composi-
tion series. Hence, every submodule and factor module of M is then also uniserial. While
A is called a uniserial F -algebra, if every projective indecomposable module is a uniserial
module.

Also, let N =radA, and let the radical series

M ⊃ NM ⊃ N2M ⊃ . . . ⊃ 0

be a chain of submodules such that each quotient N iM/N i+1M is semisimple A-module.
Then M is uniserial ⇔ N iM/N i+1M is simple for all i = 0, 1, 2, . . ..
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0.5 EXACT SEQUENCE

We benefit from this section in the determination of the constructing an indecomposable
A-module.

We first introduce the definition of exact sequence.

DEFINITION 0.5.1. ([9], p.283). Let A be an F -algebra, and let A0, A1, A2, . . . , An be
an A-modules. The sequence

A0
f1−→ A1

f2−→ A2
f3−→ . . .

fn−1−−→ An−1
fn−→ An

of A-module homomorphism fi is exact at Ai if and only if

Im(fi) = ker(fi+1), ∀i = 0, 1, ..., n.

A short exact sequence is an exact sequence, in which M is an A-module, and Vn submodule
of M , then

0→ Vn
i−→M

f−→ Vm → 0, (1)

where i : Vn → M is inclusion map, and f : M → Vm is surjective map, also Im(i) =
ker(f).

REMARK. Since Vn submodule of M , then

0→ Vn
i−→M

f−→M/Vn → 0

is short exact, then from (1), Vn ∼= i(Vn) a submodule of M , and Vm ∼= M/i(Vn).

DEFINITION 0.5.2. ([9], p.283). Let A be an F -algebra, let

0→ Vn
i−→M 8 f−→ Vr → 0

be a short exact sequence of an A-module, and let Vr, Vn be two submodules of A-module

M 8, where M 8 = Vn ⊕ Vr. Then the short exact sequence 0→ Vn
i−→ Vn ⊕ Vr

f−→ Vr → 0 is
called split exact sequence.

Here, we introduce the concept of non-split extension, and we show the structure of
any indecomposable A-module M .

DEFINITION 0.5.3. ([6], p.175). The short exact sequence in definition (0.5.1) is
called a non-split extension of Vm by Vn. We denote it by ExtA(Vm, Vn).
i.e. ExtA(Vm, Vn) 6= 0, then M is indecomposable A-module.

The structure of M is

Vm

Vn . But, the short exact sequence in definition (0.5.2) is called a
split extension.
i.e., ExtA(Vr, Vn) = 0, then M 8 is decomposable A-module.

There are very important theorems to determine the structure of projective indecom-
posable A-module, which we need in chapter 5 they are:
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THEOREM 0.5.4. ([2], p.76). There is a non-split short exact sequence of FG-modules,
1 6 i < p− 1,

0→ Vp−i−1 → V → Vi → 0.

THEOREM 0.5.5. ([2], p.77). There is a non-split short exact sequence of FG-modules,
1 < i 6 p− 1,

0→ Vp+1−i → V → Vi → 0.

THEOREM 0.5.6. ([2], p.47). Let V be an FG-module, and let P be a projective
FG-module. Then V ⊗ P is also projective.

THEOREM 0.5.7. ([2], p.50). If 2 6 n < p, then V2 ⊗ Vn ∼= Vn−1 ⊕ Vn+1.

0.6 CATEGORY

In this section, we describe a category modA. We also recall some of its properties, where
modA is the category of finite dimensional left A-modules.

DEFINITION 0.6.1. ([13], p.52). Let A be an algebra over the field F . Then a category
is a class modA of objects D,B, ... together with

1. A class of disjoint sets, every element of HommodA(D,B) is called a morphism from
D to B (∀f ∈ HommodA(D,B); f : D −→ B is A-map).

2. For all D,B,C ∈ modA, there exists a function

HommodA(D,B)×HommodA(B,C) −→ HommodA(D,C),

is called the composition by (f, g) 7−→ g ◦ f such that f ∈ HommodA(D,B) and g ∈
HommodA(B,C); we have g ◦ f : D −→ C, in which

• Associativity. h ◦ (g ◦ f) = (h ◦ g) ◦ f , where f : D → B, g : B → C, and h :
C → E are morphisms of modA.

• The identity morphism on B, 1B ∈ HommodA(B,B), where 1B : B −→ B,
f : D → B, and g : B → C such that

1B ◦ f = f, and g ◦ 1B = g.

See, examples in ([13], p.53).

DEFINITION 0.6.2. ([13], p.465). Let A be an algebra over the field F , and let
MmodA be a category whose objects are the covariant functors.

K : modA −→ modF

is a pair of functions, where modF is the category of vector spaces over F . The first, for
each the objects of modA X, then K(X) is object of modF.
The second, for each a morphism, t ∈ HommodA(X,X ′), where X,X ′ ∈ modA, then
K(t) ∈ HommodF (K(X), K(X ′)) in modF such that:

• K(1X) = 1K(X) such that 1X is identity morphism of modA.

• For all f ∈ HommodA(D,B), and for all g ∈ HommodA(B,C), then K(g ◦ f) =
K(g) ◦K(f), in which K(f) : K(D) −→ K(B) and K(g) : K(B) −→ K(C), where
composite g ◦ f is defined.

Details can be found in ([13], Section X.1).

COROLLARY 0.6.3. ([15], p.4). If V, V ′ ∈ modA, then Mor
MmodA

(( , V ), ( , V ′)) 6=
0 if and only if (V, V ′) 6= 0, where Mor

MmodA
(( , V ), ( , V ′)) is denoted the space of

morphisms from ( , V ) to ( , V ′).
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Chapter 1

THE CONCEPT OF
PSEUDOBLOCKS

In [16], the concept of the pseudoblocks of an endomorphism algebra of a module was
introduced in terms of its indecomposable summands. Here, we borrow this notion and
introduce it for any finite dimensional algebras.

1.1 THE PSEUDOBLOCK PRINCIPLE

Here, we present the concept of pseudoblocks of finite dimensional algebras, where we use
the notation ≈

PSA
to mean “lie in the same pseudoblock of A” or “pseudoblock linkage

principle”.

DEFINITION 1.1.1. ([16], p.2366). Let A be a finite dimension algebra over the field
F . Then the pseudoblock linkage principle ≈

PSA
on the class of all indecomposable A-module

IndA as follows: If X, Y ∈ IndA, then X ≈
PSA

Y if and only if there is a sequence of

modules X = X1, X2, ..., Xt = Y such that for all i ∈ {1, 2, ..., t} either

(Xi, Xi+1)A 6= 0 or (Xi+1, Xi)A 6= 0.

It is clear that ≈
PSA

is an equivalence relation on IndA, and hence IndA is partitioned

into equivalence classes IndA/ ≈
PSA

.

REMARK. In [16], let A be a finite dimension F -algebra, and let Y be a finite dimension
A-module

Y = d1Y1 ⊕ d2Y2 ⊕ . . .⊕ drYr.

The notion of pseudoblocks of an endomorphism algebra EndA(Y );Y in the category of
finite dimensional left A-modules (modA) in terms of the indecomposable direct summands
of the module Y , and it shows (Theorem (1.3.4)) that the pseudoblocks of EndA(Y ) control
the (Brauer) linkage principle of the simple EndA(Y )-modules in the light of the Brauer-
Fitting correspondence. We will explain this in detail in the section (1.3).

1.2 THE BRAUER LINKAGE PRINCIPLE

In this section, we explain the concept of the Brauer linkage principle ≈
A

on modA.
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DEFINITION 1.2.1. ([3], p.13). Let F be a field of characteristic p > 0, and let A be
an F -algebra. If we can write 1 = e1 + e2 + ...+ er, where 1 is the identity element in A,
and ei for all i = 1, 2, ..., r are orthogonal central idempotents, then A = B1⊕B2⊕ ...⊕Br,
where Bi = Aei for all i = 1, 2, ..., r are indecomposable as two-sided ideals. Thus, Bi for
all i = 1, 2, ..., r are called the blocks of A.
Moreover, ei for all i = 1, 2, ..., r are primitive if and only if Bi are indecomposable.

The direct summands of a module are unique up to isomorphism and order according
to the following well-known theorem.

THEOREM 1.2.2. (Krull-Schmidt Theorem) ([2], Theorem3). Let V be an A-module.
If V = V1 ⊕ V2 ⊕ . . . ⊕ Vs and V = U1 ⊕ U2 ⊕ . . . ⊕ Ur are two decompositions into the
direct sum of indecomposable modules, then r = s and after suitable renumbering, Ui ∼= Vi
for all i = 1, 2, . . . , s.

Proof. Let V = V1 ⊕ V2 ⊕ . . . ⊕ Vs and V = U1 ⊕ U2 ⊕ . . . ⊕ Ur. Then from definition
(1.2.1), Vi = V ei ∀i = 1, 2, . . . , s and Uj = V fj ∀j = 1, 2, . . . , r, where ei, fj for all i, j
are primitive idempotents.
Let 1V be the identity element of V ; it has the decomposition 1V = e1 ⊕ e2 ⊕ . . .⊕ es.
From theorem(0.2.8), 1V = e1 ⊕ e2 ⊕ . . . ⊕ es is unique; i.e. 1V = e1 ⊕ e2 ⊕ . . . ⊕ es =
f1 ⊕ f2 ⊕ . . .⊕ fr, where s = r, hence ei = fi ∀1 ≤ i ≤ r.
Then,

r⊕
i=1

V ei =
r⊕
i=1

V fi.

Thus, Vi ∼= Ui for all i = 1, 2, . . . , r.

The following lemma shows that, the blocks of algebra A are unique.

LEMMA 1.2.3. ([3], Lemma1.6.1). Let A be an F -algebra. If A = B1 ⊕B2 ⊕ . . .⊕Br,
where Bi = Aei, ei is central primitive orthogonal idempotent for all i = 1, 2, . . . , r, then
the decomposition of A is unique, i.e. the blocks Bi ∀i = 1, 2, . . . , r. are unique.

Proof. From Krull-Schmidt Theorem (1.2.2), the decomposition of A is unique, i.e. the
blocks Bi for all i = 1, 2, . . . , r are unique.

REMARK. ([2], p.93).

1. We can distribute an indecomposable A-module M lies in the block Bi (M ∈ Bi) if
BiM = M and BjM = 0, where Bi = Aei for all j, j 6= i.

2. If a module belongs to a block, then all of its composition factors belong to that block.

We can classify all indecomposable A-modules in blocks by the following theorem:

THEOREM 1.2.4. ([2], Section 13). Let A be an F -algebra, and let X, Y be two
simple A-modules. Then X, Y lie in the same block (i.e. X ≈

A
Y ) if and only if there is a

sequence from projective indecomposable modules Pj = P1, P2, . . . , Pt = Pk corresponding
the simple A-modules such that for all i ∈ {1, 2, . . . , t} either

(Pi, Pi+1)A 6= 0 or (Pi+1, Pi)A 6= 0.

Moreover, If X, Y are two indecomposable A-modules with there exists A-module homo-
morphism from A-module X to A-module Y ((X, Y )A 6= 0), then X ≈

A
Y.

More details on block theory are given in [2], [11].
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1.3 CONNECTION WITH THE BLOCKS OF EN-

DOMORPHISM ALGEBRAS

In this section, we study compatibility between the pseudoblocks of indecomposable direct
summands of the module Y and the Brauer linkage principle of the simple EndA(Y )-
modules by Brauer-Fitting correspondence. Then we introduce the notion of pseudoblocks
of indecomposable direct summands of the module Y for any finite dimensional algebra.

DEFINITION 1.3.1. ([17], p.897). Let A be a finite dimension F-algebra, where F is
an algebraically closed field of characteristic p > 0, let Y be a finite dimension A-module
and

Y = d1Y1 ⊕ d2Y2 ⊕ . . .⊕ drYr,

where Yi is indecomposable A-module, and let E(Y ) = EndA(Y ) be an endomorphism.
Then the Brauer-Fitting correspondence is a bijection between the set Irr(E(Y )) of iso-
morphism classes of simple E(Y )-module and the set Inds(Y ) of isomorphism classes of
indecomposable direct A-summands of Y , where Inds(Y ) = {Y1, Y2, . . . , Yr}. Then the
Brauer-Fitting correspondence is given by the following bijection

Yi ←→ Si =
Pi

radPi
, (1.1)

where Pi = (Yi, Y )A is projective indecomposable E(Y )-module, radPi is the radical of Pi,
and dimSi = di represents the number of times Yi appears for all 1 ≤ i ≤ r.

REMARK. Connection between the representation theory of the endomorphism algebra
E(Y ) and the representation theory of A in definition (1.3.1) is provided by Brauer-Fitting
Correspondence.

THEOREM 1.3.2. ([15], p.4). If Si ≈
E(Y )

Sj, then Yi ≈
A
Yj.

Proof. Let Si ≈
E(Y )

Sj. By theorem (1.2.4), there exists a sequence of projective indecom-

posable modules
Pi = P1, P2, . . . , Pt = Pj,

corresponding the simple E(Y)-modules such that for all r ∈ {1, 2, . . . , t} either

(Pr, Pr+1)E(Y ) 6= 0 or (Pr+1, Pr)E(Y ) 6= 0, (1.2)

but Pr = (Yr, Y )A = HomA(Yr, Y ), hence from (1.2),
HomE(Y )((Yr, Y ), (Yr+1, Y ) 6= 0 or HomE(Y )((Yr+1, Y ), (Yr, Y ) 6= 0 ∀1 6 r 6 t.
Then the space of morphisms Mor

MmodA
((Yr,−), (Yr+1,−)) 6= 0 or

Mor
MmodA

((Yr+1,−), (Yr,−)) 6= 0 ∀1 6 r 6 t.
From corollary (0.6.3), Mor

MmodA
((Yr,−), (Yr+1,−)) 6= 0 if and only if (Yr, Yr+1)A 6= 0,

and
Mor

MmodA
((Yr+1,−), (Yr,−)) 6= 0 if and only if (Yr+1, Yr)A 6= 0. Hence from theorem

(1.2.4),
(Yr, Yr+1)A 6= 0 or (Yr+1, Yr)A 6= 0 ∀1 6 r 6 t.

Thus, Yi ≈
A
Yj.

But the converse of the theorem (1.3.2) is not true by providing a counterexample.
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EXAMPLE 1.3.3. ([15], p.6). Let F be a field of characteristic 2, and let G = SL(2, 4) ∼=
A5.
From theorem(0.1.23), A5 has four 2-regular conjugacy classes {(1), (123), (12345), (12345)2}.
Hence, A5

∼= SL(2, 4) has 4 non-isomorphic classes of irreducible representations;
namely 1, 21, 22, and 4, where 1 is a trivial module and 4 is a Steinberg module (StG).
Then there are four projective indecomposable modules.
Since Klein four V = V4 is subgroup of A5, then V is the Sylow 2-subgroup of G, where
V ∼= C2 × C2 is not cyclic (i.e. FG is infinite representations type).
Since |V | = 4, then the dimension of the Steinberg module is four.

Let Y = indGV (1) = FG⊗FV 1. From theorem(0.1.14), then

dim
F
Y = |G : V |dim(1) = |G|/|V | = 60/4 = 15.

From (Krull-Schmidt Theorem (1.2.2)) then,

Y = 1⊕
21

1
22

⊕
22

1
21

⊕ 4. (1.3)

FG has two blocks. 1, 21, 22, and 4 are irreducible FG-modules, of which the first three ir-
reducible FG-modules belong to the same block, and the last one is the Steinberg module 4.

Y is multiplicity free FG-module. Hence, from Brauer-Fitting correspondence in def-
inition (1.3.1), there exists one-to-one correspondence between indecomposable projective

FG-module {1,
21

1
22

,
22

1
21

, 4} and the simple EndFG(Y )-module {ψ1, ψ2, ψ3, ψ4} respectively,

where dimψi = 1 ∀i = {1, 2, 3, 4}.

The group G has a split BN-pair, in which B =

{(
x λ
0 x−1

)
: x ∈ F ∗4 , λ ∈ F4

}
, N ={(

x 0
0 x−1

)
∪
(

0 y
z 0

)
: x, y, z ∈ F ∗4

}
, and H = B∩N =

{
h(x) =

(
x 0
0 x−1

)
: x ∈ F ∗4

}
,

where H EN and N/H = W =< w/w2 = 1 > is Coxeter group.
The set of multiplicative F-characters of H is Ĥ = {χr : r = 0, 1, 2}, where χr(h(x)) =
xr ∀x ∈ F ∗4 .
Hence P (χr) = {wi ∈ R : χr|V ∩wiV = 1}, R = {w} is the set of simple generators, then
P (χ0) = R = {w}, and P (χ

1
) = P (χ

2
) = φ.

From equation (1.3), then

Y = Y (χ0 , R)⊕ Y (χ1 , φ)⊕ Y (χ2 , φ)⊕ Y (χ0 , φ),

this means that the head M(χ0 , R) = 1,M(χ1 , φ) = 21,M(χ2 , φ) = 22, and M(χ0 , φ) = 4,
where M(χr, P (χr)) is composition factor of Y (χr, P (χr)).

The simple EndFG(Y )-module is ψ1 = ψ(χ0 , R), ψ2 = ψ(χ1 , φ), ψ3 = ψ(χ2 , φ), and
ψ4 = ψ(χ0 , φ).
From theorem 2 in paper ([15], p.5), then EndFG(Y ) has three blocks as follows: {ψ1},

{ψ2 , ψ3} and {ψ4}. Then 1 ≈
FG

21

1
22

, but ψ1 6≈
E(Y )

ψ2.

Thus, if Yi ≈
A
Yj, then Si 6≈

E(Y )

Sj .
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So from theorem (1.3.2), and example (1.3.3), the Brauer-Fitting correspondence is
not compatible with the (Brauer) block for the indecomposable A-summands of Y and
the (Brauer) block for the simple EndA(Y )-modules.

Moreover, the concept of the pseudoblocks for the indecomposable A-summand of
Y is compatible with the block for the simple EndA(Y )-module by the Brauer-Fitting
correspondence. The follows theorem shows it.

THEOREM 1.3.4. ([16], p.2367). Si ≈
E(Y )

Sj if and only if Yi ≈
PSA

Yj.

Proof. From theorem (1.3.2), if Si ≈
E(Y )

Sj, then Yi ≈
A
Yj. Since

(Yr, Yr+1)A 6= 0 or (Yr+1, Yr)A 6= 0 ∀1 6 r 6 t,

then Yi ≈
PSA

Yj.

Conversely, if Yi ≈
PSA

Yj, then

(Yr, Yr+1)A 6= 0 or (Yr+1, Yr)A 6= 0 ∀1 6 r 6 t.

From corollary (0.6.3), if and only if Mor
MmodA

((Yr,−), (Yr+1,−)) 6= 0.
Then HomEnd(Y )((Yr, Y ), (Yr+1, Y )) 6= 0. Since Pr = (Yr, Y )A and Pr+1 = (Yr+1, Y )A,
then (Pr, Pr+1)E(Y ) 6= 0, similarly (Pr+1, Pr)E(Y ) 6= 0.
Hence, every sequence of projective indecomposable modules

Pi = P1, P2, . . . , Pt = Pj,

is
(Pr, Pr+1)E(Y ) 6= 0 or (Pr+1, Pr)E(Y ) 6= 0 ∀1 ≤ r ≤ t.

Since Pi, Pj are the projectives cover of two simple EndA(Y )-modules Si, Sj, then from
theorem (1.2.4), Si ≈

E(Y )
Sj.

REMARK. The pseudoblock of finite dimensional algebras control the Brauer linkage
principle of simple EndA(Y )-modules by the Brauer-Fitting correspondence.

1.4 A USEFUL CRITERION

In this section, we prove a criterion (lemma 1.4.1) for having nonzero homomorphism
space between two indecomposable modules. This criteria simplifies the determination of
the pseudoblock linkage principle by looking at the composition series of modules.

As the pseudoblock linkage principle is defined in terms of a sequence of module
homomorphisms, the following lemma describes a criterion, which simplifies the relation
≈
PSA

.

LEMMA 1.4.1. Let X, Y ∈ IndA. Then (X, Y )A 6= 0 if and only if ∃K 6A X: X/K ∼=
a submodule of Y .

Proof. Let (X, Y )A 6= 0. If 0 6= f ∈ (X, Y )A, where f : X −→ Y is an A-module homo-
morphism.
K = kerf 6 X, and X/K ∼= Imf 6 Y from first isomorphism theorem.
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Conversely, if there exists K 6 X such that X/K ∼= T 6 Y , then g : X/K −→ Y
and natural map θ : X −→ X/K.
Hence, the composing f = g ◦ θ : X −→ Y , then (X, Y )A 6= 0.

This criterion is illustrated by the following picture.

Figure 1.1:

19



Chapter 2

CONNECTION WITH THE
BLOCK THEORY

In this chapter, we study the connection between the (Brauer) linkage principle and the
pseudoblock linkage principle on IndA. We shall prove that the pseudoblock linkage
principle implies the Brauer block linkage principle. Most results of this chapter are
taken from [15], [16].

2.1 THE PSEUDOBLOCK PRINCIPLE IMPLIES

THE LINKAGE PRINCIPLE

The following theorem demonstrates the connection between the two equivalence relations
≈
PSA

, ≈
A

.

THEOREM 2.1.1. Every pseudoblock linkage principle implies the Brauer linkage prin-
ciple, i.e. if X, Y ∈ IndA, then

X ≈
PSA

Y ⇒ X ≈
A
Y.

Proof. If X ≈
PSA

Y , then from definition(1.1.1), there is a sequence of modules X =

X1, X2, . . . , Xt = Y in IndA such that for all i ∈ {1, 2, . . . , t}, either

(Xi, Xi+1)A 6= 0 or (Xi+1, Xi)A 6= 0,

from theorem (1.2.4), then Xi ≈
A
Xi+1 or Xi+1 ≈

A
Xi for all i ∈ {1, 2, . . . , t}. Then all

indecomposable A-modulesX = X1, X2, . . . , Xt = Y lie in the same block. Hence, X ≈
A
Y .

Otherwise, let M1,M2 ∈ IndA. If M1 and M2 lie in the blocks B1 and B2 respectively.
Then (M1,M2)A = 0 and (M2,M1)A = 0; i.e. we do not have a sequence of modules
M1 = N1, N2, . . . , Nt = M2 in IndA, where for all i ∈ {1, 2, . . . , t}

(Ni, Ni+1)A 6= 0 or (Ni+1, Ni)A 6= 0.

Then M1 6≈
PSA

M2.

REMARK. It follows from theorem (2.1.1) that the pseudoblock linkage principle ≈
PSA

is

stronger than the Brauer block linkage principle ≈
A

.
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2.2 AN ALGEBRA FOR WHICH THE TWO CON-

CEPTS DIFFER

In this section, we find that the pseudoblock linkage principle is different from the Brauer
linkage principle, which comes from the converse of the theorem (2.1.1). We find in the
example(2.2.1) that the converse of the theorem (2.1.1) is not true; i.e.

X ≈
A
Y ; X ≈

PSA
Y.

EXAMPLE 2.2.1. In example (1.3.3), FG in characteristic 2 has two blocks. 1, 21, 22

and 4 are irreducible FG-modules, of which the first three irreducible FG-modules belong
to the same block and the last one is the Steinberg module 4.

Then, IndsFG = {1,
21

1
22

,
22

1
21

, 4}, in which there are two blocks, B1 = {1,
21

1
22

,
22

1
21

} and B2 =

{4}, but the pseudoblocks of Λ = FG are {1}, {
21

1
22

,
22

1
21

}, and {4}.

We find that the two indecomposable modules 1,
21

1
22

belong to different pseudoblocks of

Λ = FG, because there is no nonzero homomorphism from 1 to
21

1
22

and from
21

1
22

to 1; i.e.

(
21

1
22

, 1)Λ = 0 & (1,
21

1
22

)Λ = 0. Hence,

1 ≈
Λ

21

1
22

, but 1 6≈
PSΛ

21

1
22

.

REMARK. In the previous example, it follows that in general some (Brauer) blocks of
A will split into a union of pseudoblocks, and so, we have

|IndA/ ≈
A
| 6 |IndA/ ≈

PSA
|.

Figure 2.1: SOME BLOCKS IN IndA SPLIT INTO UNION OF PSEUDOBLOCKS

21



Chapter 3

CONNECTION WITH THE
TENSOR PRODUCT

In this chapter, we revise the concepts of tensor product of algebras and modules. We
also prove that the notion of pseudoblocks is compatible with the tensor product.

3.1 TENSOR PRODUCT OF ALGEBRAS AND MOD-

ULES

In this section, we revise the concept of tensor product of algebras and modules. The
results of this section can be found in several standard algebra text books such as [13].

TENSOR PRODUCT OF MODULES

Let R be a ring, let M be a left R-module (RM), and let L be a right R-module (LR).
The tensor product of L and M over R is an Abelian group.

DEFINITION 3.1.1. ([6], p.23). Let R be a ring, let LR and RM be right and left R-
module, and let G be an Abelian group (Additive). Then balanced map (middle linear map)
from L×M to G is the function f : L×M −→ G such that ∀l, l1, l2 ∈ L, ∀m,m1,m2 ∈M ,
and ∀a ∈ R, where

1. f(l1 + l2,m) = f(l1,m) + f(l2,m);

2. f(l,m1 +m2) = f(l,m1) + f(l,m2);

3. f(la,m) = f(l, am).

DEFINITION 3.1.2. ([6], p.23). Let R be a ring, let M be a left R-module, and let L
be a right R-module. Consider the Cartesian product L×M = {(l,m) : l ∈ L,m ∈M}.
Let (H,+) be the free Abelian group, which is generated by L×M .
H =< L×M >= {

∑m
i=1 ni(l,m) : l ∈ L,m ∈M,ni ∈ Z},

H =< L×M >= Z(L×M).

Let K be the subgroup of H, which is generated by

K =< (l1 + l2,m)−(l1,m)−(l2,m), (l,m1 +m2)−(l,m1)−(l,m2), (l, am)−(la,m) >

∀l, l1, l2 ∈ L, ∀m,m1,m2 ∈M , and ∀a ∈ R.
The tensor product of L and M over R is the quotient H/K (i.e. the tensor product
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L⊗
R
M is additive abelian group).

L⊗
R
M = H/K = {t+K : t ∈ H} = {(l,m) +K : l ∈ L,m ∈M}.

REMARK. ([13], p.208).

1. The tensor product L⊗
R
M is Abelian group;

2. The tensor product L⊗
R
M is quotient group;

3. Since H/K ≡ L⊗
R
M , then (l,m) +K = l ⊗

R
m, where

(l,m) ∈ K ⇔ (l,m) +K = K ⇔ l ⊗
R
m = 0L⊗

R
M ,

i.e. H/K = L⊗
R
M is generated by all elements (cosets) of the form (l ⊗

R
m).

So, (l,m) has one of the following form

(l1 + l2,m)− (l1,m)− (l2,m) or

(l,m1 +m2)− (l,m1)− (l,m2) or

(la,m)− (l, am);

∀l, l1, l2 ∈ L, ∀m,m1,m2 ∈M , and ∀a ∈ R.

4. The zero of the tensor (0L, 0M) +K = 0L⊗
R
M is the zero element of the tensor.

5. We may have l ⊗
R
m = l′ ⊗

R
m′, but l 6= l′ and m 6= m′, becaus

(l,m) +K = (l′,m′) +K;
(l,m)− (l′,m′) +K = K;
so, (l,m)− (l′,m′) ∈ K.

6. It is possible that L⊗
R
M = 0, but L 6= 0 & M 6= 0.

Some computation in tensor product.

(i) (l1 + l2)⊗
R
m = (l1 ⊗

R
m) + (l2 ⊗

R
m);

(ii) l ⊗
R

(m1 +m2) = (l ⊗
R
m1) + (l ⊗

R
m2);

(iii) la⊗
R
m = l ⊗

R
am = a(l ⊗

R
m);

(iv) l ⊗
R

0M = 0L ⊗
R
m = 0L ⊗

R
0M = 0L⊗

R
M .

7. Let LR and RM be two modules over a ring R, and let i : L×M −→ L⊗
R
M given

by (l,m) 7−→ l ⊗
R
m be a middle linear map. Then the map i is canonical middle

linear map.

8. The typical element of H is a sum
∑r

i=1 ni(li,mi), where ni ∈ Z, li ∈ L, and
mi ∈M. Hence, the coset L⊗

R
M = H/K is of the form

∑r
i=1 ni(li ⊗

R
mi).

The following theorem shows that, the tensor product of two modules is a module.
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THEOREM 3.1.3. ([5], p.70). Let G be a group, and let W , V be two vector spaces
over the field F . If W, V are two FG-modules, then V ⊗

F
W is an FG-module.

Proof. Let V , W are two FG-modules. From defintion (0.1.6), we have the following:

(i) vx ∈ V ;

(ii) (hv1 + kv2)x = h(v1x) + k(v2x), (v1, v2 ∈ V , x ∈ G, h, k ∈ F );

(iii) v(xy) = (vx)y, (y ∈ G);

(iv) v1 = v.

Similarly; W is an FG-module, because

(i) wy ∈ W ;

(ii) (hw1 + kw2)y = h(w1y) + k(w2y), (w1, w2 ∈ W , y ∈ G, h, k ∈ F );

(iii) w(yx) = (wy)x, (y, x ∈ G);

(iv) w1 = w.

Then, we prove that V ⊗
F
W is an FG-module;

1. vx⊗
F
wy = (v ⊗

F
w)xy ∈ V ⊗

F
W ;

2. [h(v1 ⊗
F
w1) + k(v2 ⊗

F
w2)]xy = h(v1 ⊗

F
w1)xy + k(v2 ⊗

F
w2)xy

= h(v1x⊗
F
w1y) + k(v2x⊗

F
w2y);

3. (v ⊗
F
w)(xy)z = (vx⊗

F
wy)z;

4. (v ⊗
F
w)1 = v ⊗

F
w;

for all w,w1, w2 ∈ W , v, v1, v2 ∈ V , x, y, z, xy ∈ G and h, k ∈ F.

Then, V ⊗
F
W is an FG-module.

EXAMPLE 3.1.4. Let Z be a ring, let (Zn,⊕n) be a right Z-module, and let Q be a left

Z-module. Then, Zn ⊗
Z
Q = 0̄, ∀n. Let m ∈ Zn, and let

a

q
∈ Q. Then

m⊗
Z

a

q
= m⊗

Z
n
a

nq
, (n ∈ Z)

= mn⊗
Z

a

qn

= 0̄⊗
Z

a

qn
= 0̄.

DEFINITION 3.1.5. ([13], p.209). Let R be a Ring, and let f : A −→ A′, g : B −→ B′

be two R-module homomorphism (R-map), where A,A′ are two left R-module, and B,B′

are two right R-module. Then there is unique R-module homomorphism f⊗
R
g : A⊗

R
B −→

A′ ⊗
R
B′ by f ⊗

R
g(a⊗

R
b) = f(a)⊗

R
g(b).
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TENSOR PRODUCT OF ALGEBRAS

Let F be a field, let X, Y be two F -algebras. We will write X ⊗
F
Y as follows X ⊗ Y.

DEFINITION 3.1.6. ([19], p.85). Let V , W be two vector spaces over the same field
F , and let vi ∈ V , wj ∈ W. Then the tensor product of two vector spaces is V ⊗

F
W =∑

i,j αij(vi ⊗
F
wj), where αij ∈ F .

The following theorem shows that, the tensor product of two algebras is algebra.

THEOREM 3.1.7. ([5], p.72). Let F be a field, and let A1, A2 be two finite dimensional
algebras over a field F (i.e. A1, A2 are two F -algebras). Then A1 ⊗ A2 is an F -algebra.

Proof. The proof can be found in ([5], p.72).

COROLLARY 3.1.8. ([17], p.897). Let F be a field, let A1, A2 be F -algebras, let Y1 be
an A1-module, and let Y2 be an A2-module. Then Y1⊗Y2 is an A1⊗A2-module, in which

(a⊗ b)(x⊗ y) = ax⊗ by,

where for all a ∈ A1, b ∈ A2, x ∈ Y1, and y ∈ Y2.

REMARK. The radical of algebras satisfies

rad(Y1 ⊗ Y2) = rad(Y1)⊗ Y2 + Y1 ⊗ rad(Y2). (3.1)

3.2 COMPATIBLITY WITH THE TENSOR PROD-

UCT

Let F be a field, and let A1, A2 be two finite dimensional F -algebras.

THEOREM 3.2.1. ([17], p.897). Let Yi be an Ai-module, where i = 1, 2. Then E(Y1⊗
Y2) ∼= E(Y1)⊗ E(Y2) as F -algebras.

LEMMA 3.2.2. ([17], p.897). Let A1, A2 be two finite dimensional F -algebras, and let
Xi, Yi be two Ai-modules, where i = 1, 2. Then,

1. (X1, Y1)A1 ⊗ (X2, Y2)A2
∼= (X1 ⊗X2, Y1 ⊗ Y2)A1⊗A2;

2. rad((X1⊗X2, Y1⊗Y2)A1⊗A2) = [rad((X1, Y1)A1)⊗(X2, Y2)A2 ]⊕[(X1, Y1)A1⊗rad((X2, Y2)A2)].

Proof. 1. The map (f, g) 7−→ f⊗g is the balanced map, i.e. (X1, Y1)A1×(X2, Y2)A2 −→
(X1, Y1)A1 ⊗ (X2, Y2)A2 .
Then, (X1 ×X2, Y1 × Y2)A1×A2 −→ (X1, Y1)A1 ⊗ (X2, Y2)A2 . From theorem (3.2.1),
then (X1, Y1)A1 ⊗ (X2, Y2)A2

∼= (X1 ⊗X2, Y1 ⊗ Y2)A1⊗A2 .

2. From equation (3.1),
(
(radX1⊗X2)⊕(X1⊗radX2), (radY1⊗Y2)⊕(Y1⊗radY2)

)
A1⊗A2

=

[rad
(
(X1, Y1)A1

)
⊗ (X2, Y2)A2 ]⊕ [(X1, Y1)A1 ⊗ rad

(
(X2, Y2)A2

)
] .

The tensor product of two indecomposable modules is an indecomposable module
according to the following theorem.
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THEOREM 3.2.3. Let F be a field, let A1, A2 be two F -algebras, let M be an inde-
composable A1-module, and let N be an indecomposable A2-module. Then M ⊗ N is an
indecomposable A1 ⊗ A2-module.

Proof. Let A1, A2 be two F -algebras, let M be an indecomposable A1-module, and let N
be an indecomposable A2-module. From theorem (0.2.6), End(M) and End(N) are local.
Hence, from lemma (0.2.5), the only idempotents in End(M) and End(N) are zero and
the identity 1.
Since from theorem (3.2.1), EndA1⊗A2(M ⊗N) ∼= EndA1(M)⊗ EndA2(N),
then EndA1⊗A2(M ⊗ N) has idempotents are zero and 1. Hence, EndA1⊗A2(M ⊗ N) is
local. Thus, M ⊗N is an indecomposable A1 ⊗ A2-module.

The tensor product of two projective indecomposable modules is a projective inde-
composable module from the following lemma.

LEMMA 3.2.4. ([17], p.898). Let P be a projective indecomposable A1-module, and let
Q be a projective indecomposable A2-module. Then P ⊗Q is a projective indecomposable
A1 ⊗ A2-module.

Proof. Let P be a projective indecomposable A1-module, and let Q be a projective inde-
composable A2-module.
From theorem (3.2.3), P ⊗Q is an indecomposable A1 ⊗ A2-module.

Let P = A1α and Q = A2β, where α and β are primitive idempotents

P ⊗Q = A1α⊗ A2β = (A1 ⊗ A2)(α⊗ β).

Since α, β are primitive idempotents, i.e. α2 = α and β2 = β, also α 6= α1 + α2 and
β 6= β1 + β2, where α1, α2, β1 and β2 are orthogonal idempotents.
Then α⊗ β = α2 ⊗ β2 = (α⊗ β)(α⊗ β) = (α⊗ β)2. Hence, α⊗ β is an idempotent.
Also, α⊗ β 6= (α1 + α2)⊗ (β1 + β2) = (α1 + α2)⊗ β1 + (α1 + α2)⊗ β2,
then α⊗ β 6= (α1 ⊗ β1) + (α2 ⊗ β1) + (α1 ⊗ β2) + (α2 ⊗ β2). Thus, α⊗ β is a primitive.
So, P ⊗Q is a projective indecomposable A1 ⊗ A2-module.

The following theorem shows that, the tensor product of projective indecomposable
modules is compatible with the Brauer linkage principle.

THEOREM 3.2.5. ([17], p.898). Let P ⊗Q, P ′ ⊗Q′ be two projective indecomposable
A1 ⊗ A2-modules. Then

P ⊗Q ≈
A1⊗A2

P ′ ⊗Q′ if and only if P ≈
A1

P ′ and Q ≈
A2

Q′.

Proof. From theorem (1.2.4), let P⊗Q, P ′⊗Q′ be two projective indecomposable A1⊗A2-
modules.

P ⊗ Q ≈
A1⊗A2

P ′ ⊗ Q′ if and only if there is a sequence from projective indecomposable

A1 ⊗ A2-modules P ⊗Q = P1 ⊗Q1, P2 ⊗Q2, . . . , Pt ⊗Qt = P ′ ⊗Q′; such that

(Pi ⊗Qi, Pi+1 ⊗Qi+1)A1⊗A2 6= 0 or (Pi+1 ⊗Qi+1, Pi ⊗Qi)A1⊗A2 6= 0.

From lemma (3.2.2), if and only if (Pi, Pi+1)A1 ⊗ (Qi, Qi+1)A2 6= 0 or (Pi+1, Pi)A1 ⊗
(Qi+1, Qi)A2 6= 0 for all i = {1, 2, . . . , t};
if and only if (Pi, Pi+1)A1 6= 0 or (Pi+1, Pi)A1 6= 0 and (Qi, Qi+1)A2 6= 0 or (Qi+1, Qi)A2 6= 0
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for all i = {1, 2, . . . , t}; where there is a sequence from projective indecomposable A1-
modules P = P1, P2. . . . , Pt = P ′ and there is a sequence from projective indecomposable
A2-modules Q = Q1, Q2. . . . , Qt = Q′;
if and only if P ≈

A1

P ′ and Q ≈
A2

Q′.

It follows that the tensor product of simple modules is compatible with the Brauer
linkage principle as follows:

COROLLARY 3.2.6. Let X1 ⊗X2, Y1 ⊗ Y2 be two simple A1 ⊗ A2-modules. Then

X1 ⊗X2 ≈
A1⊗A2

Y1 ⊗ Y2 if and only if X1 ≈
A1

Y1 and X2 ≈
A2

Y2.

The following theorem shows that, the Brauer-Fitting correspondence is compatible
with the tensor product of modules and algebras.

THEOREM 3.2.7. ([17], p.896). Let A1, A2 be two finite dimensonal algebras, and let
Yi be an Ai-module, where i = 1, 2.
If Xi ∈ Inds(Yi) having Brauer-Fitting correspondents Si ∈ Irr(E(Yi)), then X1 ⊗X2 ∈
Inds(Y1 ⊗ Y2) with Brauer-Fitting correspondent S1 ⊗ S2 ∈ Irr(E(Y1 ⊗ Y2)).

Proof. The proof can be found in ([17], theorem1).

The tensor operation is compatible with the pseudoblocks of the endomorphism algebra
according to the following theorem.

THEOREM 3.2.8. ([17], p.896). Let A1, A2 be two finite dimensional algebras, Let Yi
be Ai-module, where i = 1, 2, and let X1 ⊗X2, X ′1 ⊗X ′2 ∈ Inds(Y1 ⊗ Y2). Then

X1 ⊗X2 ≈
PS(A1⊗A2)

X ′1 ⊗X ′2 if and only if X1 ≈
PS(A1)

X ′1 ∧ X2 ≈
PS(A2)

X ′2.

Proof. Let Xi, X
′
i ∈ Inds(Yi), where ∀i = 1, 2. Then Xi, X

′
i have Brauer-Fitting Corre-

spondents Si, S
′
i ∈ Irr(E(Yi)),where∀i = 1, 2.

Hence (Xi, Yi)Ai , (X
′
i, Yi)Ai , where i = 1, 2 are two projective indecomposable E(Yi)-

module.

Let X1 ≈
PS(A1)

X ′1 ∧ X2 ≈
PS(A2)

X ′2

⇔ S1 ≈
E(Y1)

S ′1 ∧ S2 ≈
E(Y2)

S ′2

⇔ (X1, Y1)A1 ≈
E(Y1)

(X ′1, Y1)A1 ∧ (X2, Y2)A2 ≈
E(Y2)

(X ′2, Y2)A2 (by theorem (1.3.4))

⇔ (X1, Y1)A1 ⊗ (X2, Y2)A2 ≈
E(Y1⊗Y2)

(X ′1, Y1)A1 ⊗ (X ′2, Y2)A2 (by lemma (3.2.4) and the-

orem (3.2.5)

⇔ (X1 ⊗X2, Y1 ⊗ Y2)A1⊗A2 ≈
E(Y1⊗Y2)

(X ′1 ⊗X ′2, Y1 ⊗ Y2)A1⊗A2 (by lemma (3.2.2), (1))

⇔ S1 ⊗ S2 ≈
E(Y1⊗Y2)

S ′1 ⊗ S ′2, (by theorem (3.2.7))

⇔ X1 ⊗X2 ≈
PS(A1⊗A2)

X ′1 ⊗X ′2, (by theorem (1.3.4)).

The following theorem shows that the tensor operator on algebras and modules is
compatible with the pseudoblock linkage principle.
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THEOREM 3.2.9. Let A1 ⊗ A2 be a finite dimension algebra over the field F , where
A1, A2 be two finite dimensional F -algebras; for each X1⊗X2, X ′1⊗X ′2 ∈ Ind(A1⊗A2),
where X1 ∧X ′1 ∈ IndA1 and X2 ∧X ′2 ∈ IndA2. Then

X1 ⊗X2 ≈
PS(A1⊗A2)

X ′1 ⊗X ′2 if and only if X1 ≈
PS(A1)

X ′1 ∧ X2 ≈
PS(A2)

X ′2.

Proof. Let A1 ⊗A2 be a finite dimension algebra over the field F . For each X1 ⊗X2 and
X ′1 ⊗X ′2 ∈ Ind(A1 ⊗ A2).

Suppose X1⊗X2 ≈
PS(A1⊗A2)

X ′1⊗X ′2. Then from definition (1.1.1), there is a sequence

of indecomposable modules

X1 ⊗X2 = U1 ⊗ V1, U2 ⊗ V2, . . . , Ut ⊗ Vt = X ′1 ⊗X ′2,

in Ind(A1 ⊗ A2), then either

(Uj ⊗ Vj, Uj+1 ⊗ Vj+1)A1⊗A2 6= 0 or (Uj+1 ⊗ Vj+1, Uj ⊗ Vj)A1⊗A2 6= 0,

for all j = 1, 2, . . . , t; from lemma (3.2.2),

⇔ (Uj, Uj+1)A1 ⊗ (Vj, Vj+1)A2 6= 0 or (Uj+1, Uj)A1 ⊗ (Vj+1, Vj)A2 6= 0

⇔ (Uj, Uj+1)A1 6= 0 and (Vj, Vj+1)A2 6= 0 or (Uj+1, Uj)A1 6= 0 and (Vj+1, Vj)A2 6= 0
∀j = 1, 2, . . . , t.

Where there is a sequence of indecomposable modules X1 = U1, U2, . . . , Ut = X ′1 in IndA1

and there is a sequence of modules X2 = V1, V2, . . . , Vt = X ′2 in IndA2 if and only if

X1 ≈
PS(A1)

X ′1 ∧ X2 ≈
PS(A2)

X ′2.
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Chapter 4

WORKED EXAMPLES

In this chapter, we investigate the pseudo-block distribution of the indecomposable mod-
ules for some known finite dimensional algebras. We shall give in detail the construction,
and the composition factors of each indecomposable modules, and then determine their
pseudo-block distributions. Because of the connection with the Brauer block theory, our
pseudo-block distribution will be based on the (Brauer) block distribution.

4.1 SEMISIMPLE ALGEBRAS

In this section, we find that the regular left A-module AA is semisimple, and then A
is semisimple as algebra. We also give the composition factors of each indecomposable
modules, and then compare the two notions block and pseudoblock of semisimple algebras.

DEFINITION 4.1.1. ([10], p.91). Let A be an algebra over a field F . A is semisimple
if the regular left A-module AA is semisimple.

THEOREM 4.1.2. ([13], p.452). Let A be an F -algebra. Then every simple algebra
A-module is a simple module over ring A.

The following theorem shows that, the group algebra is semisimple if the characteristic
of a field does not divide the order of a group.

THEOREM 4.1.3. Let F be a field, let G be a group, and let FG be a group algebra.
Then FG is semisimple if the characteristic of F does not divide the order of G according
to Maschke’s Theorem in ([19], p.21).

THE ALGEBRA OF MATRICES Mn(F ).
Let A = Mn(F ) be an algebra of all n × n matrices over a field F . We show that A is
semisimple algebra, and determine all finite dimensional A-modules (up to isomorphism).

We need to prove that A is semisimple algebra.
Step1. Take any finitely generated A-module V (notation: V ∈ modA). Then V is finite
dimension implies that V = V1 ⊕ V2 ⊕ . . .⊕ Vn, where Vi ∈ IndA.

Step2. Consider

S = F n =

{
α =


α1

α2
...
αn

 , αi ∈ F

}
= {α1e1 + . . . + αnen|αi ∈ F}; e1 =


1
0
...
0

, e2 =


0
1
...
0
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into, en =


0
0
...
1

.

Define a left action ofA on S by matrix multiplication. We note that S is simpleA-module,

for if not then ∃0 6= W ≤ S, and so, ∃0 6= α =


α1

α2
...
αn

 ∈ W ;αi 6= 0F ∀i = {1, 2, . . . , n}.

Now, if we take:
ith position
↓

a =


0 α−1

i 0

0 0


n×n

∈ A, h =


h1

h2
...
hn

 ∈ S.

Then,


h1 0 . . . . . . 0

h2 0 . . . . . .
...

...
... . . . . . .

...
hn 0 . . . . . . 0

 aα =


h1 0 . . . . . . 0

h2 0 . . . . . .
...

...
... . . . . . .

...
hn 0 . . . . . . 0




1
0
...
0

 =


h1

h2
...
hn

 = h ∈ W .

Therefore, S ≤ W , and so, S = W .

Stepe3. We have AA ∈ modA⇒ AA = L1 ⊕ . . .⊕ Ln, where

Lγ =

{
0 . . . a1γ . . . 0
0 . . . a2γ . . . 0
... . . .

... . . .
...

0 . . . anγ . . . 0

 ; aiγ ∈ F

}
.

Proof. Clear that Lγ ≤ AA, and for every a =


a11 a12 . . . a1n

a21 a22 . . . a2n
... . . . . . .

...
an1 an2 . . . ann

 ∈ A;

we have a =


a11 0 . . . 0
a21 0 . . . 0
... . . . . . .

...
an1 0 . . . 0

 +


0 a12 . . . 0
0 a22 . . . 0
... . . . . . .

...
0 an2 . . . 0

 + . . . +


0 0 . . . a1n

0 0 . . . a2n
... . . . . . .

...
0 0 . . . ann

 ∈

∑n
i=1 Li; this representation is unique. Hence, AA = L1 ⊕ . . .⊕ Ln.

Step4. Each Lγ; γ = 1, 2, . . . , n, is simple A-module. In fact, Lγ ∼= S. To prove that
define λγ : S −→ Lγ as follows:

λγ(


α1

α2
...
αn

) =


0 . . . α1γ . . . 0
0 . . . α2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ . . . 0


n×n
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It is clear that λγ : S −→ Lγ is a bijective map, because λγ is surjective;

∀


0 . . . α1γ . . . 0
0 . . . α2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ . . . 0

 ∈ Lγ, ∃


α1

α2
...
αn

 ∈ S such that

λγ(


α1

α2
...
αn

) =


0 . . . α1γ . . . 0
0 . . . α2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ . . . 0

 .

Also, λγ is injective; ∀


α1

α2
...
αn

 ,


β1

β2
...
βn

 ∈ S. Then,

λγ(


α1

α2
...
αn

) = λγ(


β1

β2
...
βn

)


0 . . . α1γ . . . 0
0 . . . α2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ . . . 0

 =


0 . . . β1γ . . . 0
0 . . . β2γ . . . 0
... . . .

... . . .
...

0 . . . βnγ . . . 0



α1

α2
...
αn

 =


β1

β2
...
βn

 .

Thus, λγ is bijective. Also, λγ is an A-map, because
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1.

λγ(


α1

α2
...
αn

+


β1

β2
...
βn

) = λγ(


α1 + β1

α2 + β2
...

αn + βn

)

=


0 . . . α1γ + β1γ . . . 0
0 . . . α2γ + β2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ + βnγ . . . 0



=


0 . . . α1γ . . . 0
0 . . . α2γ . . . 0
... . . .

... . . .
...

0 . . . αnγ . . . 0

+


0 . . . β1γ . . . 0
0 . . . β2γ . . . 0
... . . .

... . . .
...

0 . . . βnγ . . . 0



= λγ(


α1

α2
...
αn

) + λγ(


β1

β2
...
βn

)

2.

λγ(µ


β1

β2
...
βn

) = λγ(


µβ1

µβ2
...

µβn

) =


0 . . . µβ1γ . . . 0
0 . . . µβ2γ . . . 0
... . . .

... . . .
...

0 . . . µβnγ . . . 0



= µ


0 . . . β1γ . . . 0
0 . . . β2γ . . . 0
... . . .

... . . .
...

0 . . . βnγ . . . 0

 = µλγ(


β1

β2
...
βn

),

where µ ∈ F.

Therefore, Lγ ∼= S is simple A-module.
It follows that, AA = L1 ⊕ . . .⊕ Ln is a direct sum of simple modules.
Therefore, AA is semisimple (as module). From definition (4.1.1), then A is semisimple
as algebra. Hence, any V ∈ modA is semisimple. From step1, then any indecomposable
A-module is simple.

Step5. To find the simple A-module. Suppose that N is simple A-module. Choose
0 6= n ∈ N , and define fn : AA −→ N by (fn(a) = an). It is clear that fn is an
A-epimorphism, because

1. fn is an A-homomorphism, ∀a, b ∈ AA, ∃α ∈ F, where

• fn(a+ b) = n(a+ b) = na+ nb = fn(a) + fn(b);

• fn(αa) = n(αa) = α(na) = αfn(a).

2. fn is surjective, i.e. ∀y ∈ N,∃a ∈ AA, and n ∈ N , then fn(a) = na = y ∈ N.
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So, if K = kerfn, then K ≤ A. From First Isomorphism Theorem (0.1.19), A/K ∼= N
is simple A-module. It follows that every simple A-module is isomorphic to a simple
quotient (a composition factor) of AA. But, we have the following composition series
for AA

AA = L1 ⊕ . . .⊕ Ln ⊃ L1 ⊕ . . .⊕ Ln−1 ⊃ . . . ⊃ L1 ⊕ L2 ⊃ L1. (4.1)

And for each γ, we have

L1 ⊕ . . .⊕ Lγ/L1 ⊕ . . .⊕ Lγ−1
∼= Lγ ∼= S.

And so, every composition factor of AA in (4.1) is simple. By Jordan-Holder The-
orem (0.4.5), A/K ∼= S, and A/K ∼= N , hence N ∼= S. So

1. Every simple A-module is isomorphic to S.

2. Every A-module is isomorphic to direct sum of copies of S.

Since, every A-module is isomorphic to direct sum of copies of S, and A is semisimple
as algebra. Then the blocks of A are simple, hence all blocks do not split into union of
pseudoblocks. Therfore, we have the following:

THEOREM 4.1.4. For semisimple algebras the two notions (Blocks and Pseudoblocks)
coincide.

4.2 THE TRIANGULAR ALGEBRA A

A = {(aij) ∈Mn(F )|aij = 0;∀i > j} =

{
a =


a11 a12 . . . a1n

a22 . . . a2n

. . .
...
ann

 ; aij ∈ F

}

is known to be of finite representation type (in fact uniserial algebra). We determine
indecomposable module, projective indecomposable module (PIM), and the pseudoblock
of A.

1. The algebra A acts on the space of column vectors

U = F n =

{
t1
t2
...
tn

 : ti ∈ F ;∀i = 1, 2, . . . , n

}
;

by usually matrix vector product.

LEMMA 4.2.1. N =

{
0 a12 . . . . . . a1n

0 a23 . . . a2n

. . . . . .
...

0 an−1n

0

 : aij ∈F, i < j

}
= rad(A),

where radA is the radical of A, N is called strictly upper triangular matrix

Proof. By definition(0.4.6), rad(A) is the intersection of all the maximal submodule
of A. Hence, the maximal submodules of A is strictly upper triangular matrix.
Then, the radical of A is strictly upper triangular matrix.
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2.

LEMMA 4.2.2. The triangular algebra has n simple (in fact 1-dimensional) rep-
resentations.

Proof. From theorem (0.4.10), A/radA ∼= socA =


a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . ann

.

Hence,

socA =


a11 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⊕


0 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 0 . . . 0

⊕ . . .⊕


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . ann


= S1 ⊕ S2 ⊕ . . .⊕ Sn.

, where Si ∀i = {1, 2, . . . , n}; are simple A-modules. Then, A has n simple, where
dimSi = 1 ∀ = 1, 2, . . . , n.

LEMMA 4.2.3. Let F be a feild, and let A be a triangular matrix. Then ψv :
A −→ F (a 7−→ avv), where v = 1, 2, . . . , n, is algebra map.

Proof. For all a, b ∈ A such that

a =


a11 a12 . . . a1n

a22 . . . a2n

. . .
...
ann

 ;∀aij ∈ F, and b =


b11 b12 . . . b1n

b22 . . . b2n

. . .
...
bnn

 ;∀bij ∈ F,

then,

• ψv(a+ b) = (avv + bvv) = ψv(a) + ψv(b);

• ψv(ab) = (ab)vv = avvbvv = ψv(a)ψv(b);

• ψv(λa) = λavv = λψv(a), where λ ∈ F ;

• ψv(1A) = (1A)vv = 1 ∈ F.

These representations are mutually inequivalent (if ψv = ψµ, we should have Kerψv=Kerψµ,
but clearly Kerψv=Kerψµ ⇒ v = µ).

3. We have NU =

{
v1

v2
...

vn−1

0

 : vi ∈ F

}
, and N iU =

{
v1
...

vn−i
0
0

 : vi ∈ F

}
.

So U ⊃ NU ⊃ . . . ⊃ Nn−1U ⊃ 0 is a composition series with dimN i−1U/N iU =
1;∀i = 1, 2, . . . , n. Also, N i−1U/N iU affords the 1-dimension representation ψn−i+1

of A; so the series
U ⊃ NU ⊃ N2U ⊃ . . . ⊃ Nn−1U ⊃ 0

ψn ψn−1 ψn−2 . . . ψ2 ψ1

has composition factors as shown.
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4. Since the series above is also the radical series of U , it is the only composition series
for U . For if U ′ 6= U is maximal in U , then U ′ ≥ NU, but NU is also maximal in
U . So U ′ = NU. Similarly if U ′′ 6= NU is maximal in NU , we find that U ′′ = N2U ,
. . . , etc.

5. By (4), each A-module Ui,α = Nn−iU/Nn−i+αU has a unique composition series
with composition factors of type ψi, ψi−1, ψi−2, . . . , ψi−α+1.

Figure 4.1:

It follows that Ui,α = Nn−iU/Nn−i+αU is indecomposable (i = 1, 2, . . . , n & α =
1, 2, . . . , i). (The number of such indecomposable module is 1 + 2 + 3 + . . . + n =
n(n+1)/2 giving a complete set of indecomposable A-modules). Note that (by
looking at the composition series), Ui,α ∼= Uj,β iff i = j and α = β, and dimUi,α = α.
Also, U1,1 affords the simple representation ψ1, because U1,1 = Nn−1U/NnU = ψ1,
in which Ui,1 = Nn−1U/Nn−i+1U = ψn−(n−i) = ψi.

Summarizing we have the following:

THEOREM 4.2.4. The A-module Ui,α = Nn−iU/Nn−i+αU ; (i = 1, 2, . . . , n &

α = 1, 2, . . . , i) give a complete set of
n(n+ 1)

2
indecomposable A-module.

6. Now, we can find the PIM’s for A. We have A = L1 ⊕ . . . ⊕ Ln, where Lv ={
0 0 a1v . . . 0
...

...
...

...
...

...
... avv

...
...

0 0 0 0 0

 ; aiv ∈ F

}
. Clearly Lv < A and Lv ∼= Nn−vU from (5),

then Uv,v = Nn−vU/NnU ∼= Lv, i.e. (see (3)∼= Uv,v). Hence, U1,1, U2,2, . . . , Un,n are a
full set of PIM’s. Note that, composition factors of Uv,v = Nn−vU/NnU = Nn−vU
is as shown
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Figure 4.2:

Thus, we have the following result:

THEOREM 4.2.5. The modules U1,1, U2,2, . . . , Un,n give a full set of projective
indecomposable A-modules.

7. We already had A = L1 ⊕ . . .⊕ Ln =
∑

1≤v≤n Uv,v (sum of PIM).
Since rad(A) = N is non-trivial, A is not semisimple, because rad(A) 6= 0 from
corollary (0.4.8), and so A has a non-trivial block theory. However, this algebra is
known to be connected algebra; i.e. it has exactly one non-zero central idempotent,
namely the identity matrix n× n (In). Hence,

THEOREM 4.2.6. The triangular algebra A has a single block.

EXAMPLE 4.2.7. Take n = 2 it is easy to deduce the following:

PROPOSITION 4.2.8. Idempotents in A =

(
∗ ∗
0 ∗

)
⊂M2(F ) are

{
I2,

(
1 λ
0 0

)
,(

0 λ
0 1

)
;λ ∈ F

}
, where ∗ denotes elements in a field F . The only central idempo-

tent of A =

(
∗ ∗
0 ∗

)
is I2.

Then, A has 2(2 + 1)/2 = 3 indecomposable modules Ui,α = Nn−iU/Nn−i+αU (i =

1, 2 & α = 1, 2, . . . , i), namely U1,1 = ψ1, U2,1 = ψ2, and U2,2 =
ψ2

ψ1
all lie in one

pseudoblock, because there are A-module homomorphisms between all indecomposable
modules as follows:

U2,1

↑
U1,1 → U2,2

.

EXAMPLE 4.2.9. Take n = 3, A =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ⊂M3(F ). This algebra has 3(3+

1)/2 = 6 indecomposable modules Ui,α = Nn−iU/Nn−i+αU (i = 1, 2, 3 & α =
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1, 2, . . . , i), namely U1,1 = ψ1, U2,1 = ψ2, U2,2 =
ψ2

ψ1
, U3,1 = ψ3, U3,2 =

ψ3

ψ2
, and

U3,3 =
ψ3

ψ2

ψ1

all lie in one pseudoblock, because there are A-module homomorphisms

between all indecomposable modules as follows:

U3,1

↑
U2,1 → U3,2

↑ ↑
U1,1 → U2,2 → U3,3

EXAMPLE 4.2.10. Take n = 4, A =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 ⊂ M4(F ). This algebra has

4(4 + 1)/2 = 10 indecomposable modules Ui,α = Nn−iU/Nn−i+αU (i = 1, 2, 3, 4 &

α = 1, 2, . . . , i), namely U1,1 = ψ1, U2,1 = ψ2, U2,2 =
ψ2

ψ1
, U3,1 = ψ3, U3,2 =

ψ3

ψ2
,

U3,3 =
ψ3

ψ2

ψ1

, U4,1 = ψ4, U4,2 =
ψ4

ψ3
, U4,3 =

ψ4

ψ3

ψ2

, U4,4 =

ψ4

ψ3

ψ2

ψ1

, all lie in one pseudoblock,

because there are A-module homomorphisms between all indecomposable modules as
follows:

U4,1

↑
U3,1 → U4,2

↑ ↑
U2,1 → U3,2 → U4,3

↑ ↑ ↑
U1,1 → U2,2 → U3,3 → U4,4

Now, we show in general that all the n(n+1)/2 indecomposable A-modules
Ui,α = Nn−iU/Nn−i+αU ; (i = 1, 2, . . . , n & α = 1, 2, . . . , i) are related (either
ways) by homomorphisms:

Take any n ∈ Z, A =


∗ ∗ . . . ∗
0 ∗ . . . ∗
0 0

. . .
...

0 0 0 ∗

 ⊂ Mn(F ). This algebra has n(n + 1)/2

indecomposable modules Ui,α = Nn−iU/Nn−i+αU (i = 1, 2, . . . , n & α = 1, 2, . . . , i),

namely U1,1 = ψ1, U2,1 = ψ2, U2,2 =
ψ2

ψ1
, U3,1 = ψ3, U3,2 =

ψ3

ψ2
, U3,3 =

ψ3

ψ2

ψ1

, U4,1 = ψ4,

U4,2 =
ψ4

ψ3
, U4,3 =

ψ4

ψ3

ψ2

, U4,4 =

ψ4

ψ3

ψ2

ψ1

, into Un,1 = ψn, Un,2 =
ψn
ψn−1

, Un,3 =
ψn
ψn−1

ψn−2

, into

37



Un,α =

ψn
ψn−1

...
ψn−α+1

, into Un,n =

ψn
ψn−1

...
ψ1

all lie in one pseudoblock, because there are A-

module homomorphisms between all indecomposable modules as follows:

Un,1
↑
...
↑

U4,1 → . . . → Un,n−3

↑ ↑
U3,1 → U4,2 → . . . → Un,n−2

↑ ↑ ↑
U2,1 → U3,2 → U4,3 → . . . → Un,n−1

↑ ↑ ↑ ↑
U1,1 → U2,2 → U3,3 → U4,4 → . . . → Un,n

8. Hence, all these modules lie in the same pseudoblock. So, we have the following:

THEOREM 4.2.11. For the triangular algebra, the block and pseudoblock notions
coincide.

4.3 FS3 IN ALL CHARACTERISTICS

In this section, we explain the pseudoblock structure for the symmetric group algebra
Λ = FS3 over a field F in all characteristics, and then compare the two notions “block”
and “pseudoblock” in the category of FS3-modules.

First: Representation of G = S3 in characteristic zero and characteristic prime num-
bers (p′ ≥ 5); from Maschke’s theorem in ([19], p.21), then FS3 completely reducible
(semisimple); because 0 - 6, 5 - 6, 7 - 6, . . . and p′ - |S3|.
From section (4.1), then for FS3 the two notions (blocks and pseudoblocks) coincide.

Second: Representation of G = S3 in characteristic 2. It is known that S3
∼=

SL(2, 2) ∼= GL(2, 2) =< a, b|a3 = b2 = 1, bab−1 = a−1 >.
Therefor, in characteristic 2; from theorem (0.1.23), S3 has two classes of simple mod-
ule (it has 2 2-regular conjugacy classes < 1 >,< a > from example (0.1.24)); namely
the trivial module FG and the 2-dimensional simple module StG (The Steinberg repre-
sentation). It is known that S3 in characteristic 0 has 3 irreducible characters (χ1 : the
trivial, χ2 : the sing, and χ3 : the Steinberg characters). The sign and the trivial character
coincide over the field of characteristic 2 and Steinberg character remains irreducible. So,
the character table of S3 as stated in ([19], p.50),

1 a b
χ1 1 1 1
χ2 1 1 -1
χ3 2 -1 0

This group has two 2-modular (Brauer) characters φ1, φ2, where φ1 is the trivial char-
acter, and φ2 is the Steinberg character,
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1 a
φ1 1 1
φ2 1 1

Then, the decomposition matrix of S3 is D =

(
1 1 0
0 0 1

)
, and hence the Cartan matrix

is C = DDt =

(
1 1 0
0 0 1

)1 0
1 0
0 1

 =

(
2 0
0 1

)
.

Hence, it has 2 blocks; from theorem (2.1.1), hence at least two pseudoblocks.
Then

FS3 =
FG
FG
⊕ StG ⊕ StG.

REMARK. FS3 is finite representation type, because Sylow 2-subgroup of S3 {< b >,<
a2b >,< ab >} is cyclic of order two. Hence, the number of indecomposable module is
(p− 1)2 + 2.

Then, this group algebra has (2 − 1)2 + 2 = 3 classes of indecomposable module two

of them are projective
FG
FG

, StG and the trivial module FG is the third indecomposable

module.
Now, we find clearly that the pseudoblock distribution of the indecomposable modules

as following: {FG,
FG
FG
}, and {StG} which is identical with the (Brauer) block distribution.

Third: Representation of G = S3 in characteristic 3.
Let G = S3 and take F to be a field of characteristic 3. It is known, by Higman’s criterion
(0.3.7) that the group algebra FG is of finite representation type (Since its Sylow 3-
subgroup is cyclic from example (0.3.5)). We shall construct the complete set of
indecomposable FG-modules for S3. This comes out as a special case of a general
algorithm by theorem (0.3.10) for constructing the complete set of indecomposable
FG-module for a finite group G with cyclic normal Sylow p-subgroup. We have

G = S3 =< a, b|a3 = b2 = 1, bab−1 = a−1 > and H =< a >∈ Syl3(G).
Also, H is normal subgroup of G. The group algebra

FH =< a− 1|(a− 1)3 = 0 >= F.1⊕ F.(a− 1)⊕ F.(a− 1)2,

(∀x ∈ FG, x = λ01 + λ1a + λ2a
2 = λ01 + (λ1 − λ2)(a − 1) + (λ0 + λ1 − λ2)(a − 1)2) has

the following unique composition series (since FH is projective) as a left FH-module

FH ⊃ (a− 1)FH ⊃ (a− 1)2FH ⊃ 0 (4.2)

‖ ‖

F.(a− 1)⊕ F.(a− 1)2 F (a− 1)2

Putting Wr = FH/(a − 1)rFH, r = 1, 2, 3, we see (from a general theory (0.3.10)) that
Wr ∈ IndFH, and that {Wi|i = 1, 2, 3} is a full set of indecomposable FH-module with
dimFWr = r.

Note: Since H is 3-group and F is of characteristic 3; it follows that H has only one
simple module namely the trivial FH-module FH from corollary (0.3.8), and W3

∼= FH
is the (only) projective indecomposable FH-module, which is the projective cover of FH .
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Define e0 = 1
2
(1 + b), e1 = 1

2
(1− b) ∈ FG. Then e2

i = ei; i = 0, 1 and

be0 = e0 & be1 = −e1 [i.e. bej = (−1)jej] (4.3)

& b(a− 1)r = b(a− 1)rb−1b = (a−1 − 1)rb = (a2 − 1)rb = (a+ 1)r(a− 1)rb.

Also, 1 = e0 + e1 and e0e1 = 0. Therefore, FG = FGe0 ⊕ FGe1. Write Vj = FGej;
j = 0, 1. Then, from the actions in (4.3), we see that Vj = FGej ∼= FHej has an F -basis
{ej, (a − 1)ej, (a − 1)2ej}. Clearly, FHFH → Vj, (α 7−→ αej;α ∈ FH) defines an FH-
isomorphism, and so (Vj)H ∼= FH, which means (since H ∈ Syl3(G)) that Vj ∈IndFG.
Note that, we can easily see that V0 = indG

<b>
k = FG ⊗

F<b>
k and V1 = indG

<b>
ε =

FG⊗
F<b>

ε. Next, from (4.3), (a− 1)rVj = (a− 1)rFHej is an FG-module, and hence

Vj ⊃ (a− 1)Vj ⊃ (a− 1)2Vj ⊃ 0

is a (unique) FG-composition series for Vj.

We are now ready to give the full set of indecomposable FG-module. Write Vj,r =
Vj/(a− 1)rVj; j = 0, 1 & r = 1, 2, 3

Vj ⊃ (a− 1)Vj ⊃ (a− 1)2Vj ⊃ 0. (4.4)

Note: G has two (3-regular conjugacy classes; namely < 1 >,< b >) simple modules each
of dimension one, let S0 and S1.
The character table of S3 as stated in ([19], p.50) is

1 a b
χ1 1 1 1
χ2 1 1 -1
χ3 2 -1 0

This group has two 3-modular (Brauer) characters φ1, φ2, where φ1 is the trivial char-
acter and φ2 is the Steinberg character given by the table

1 b
φ1 1 1
φ2 1 -1

Then, the decomposition matrix of FS3 is D =

(
1 1 0
0 1 1

)
, and hence its Cartan matrix

is C = DDt =

(
1 1 0
0 1 1

)1 0
1 1
0 1

 =

(
2 1
1 2

)
, which indicate the dimensions and compo-

sition factors of each projective indecomposable module (i.e. it has one block).

Summarizing, we have the following theorem:

THEOREM 4.3.1. 1. {Vj,r | j = 0, 1 & r = 1, 2, 3 } is a full set of IndFG.

2. Vj,r is projective ⇔ r = 3, in which case Vj,3 ∼= Vj.

3. {Sj = Vj,1 | j = 0, 1} is full set of simple FG-modules.
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4. Composition factors of V0, V1, V1,2, and V0,2 are as shown

V0 ∼
S0

S1

S0

, V1 ∼
S1

S0

S1

, V1,2 ∼
S1

S0
, V0,2 ∼

S0

S1
,

Hence indecomposable (6 isomorphism classes) are determined by sequence of com-
position factors concerned modules.

Proof. 1. {Vj,r | j = 0, 1 & r = 1, 2, 3 } is a full set of IndFG.

Let F be a field of characteristic 3, and let G be a finite group with normal Sylow 3-
subgroup H. Then from ([6], proposition20.13 (ii), p.479) the number of indecomposable
FG-module is |G| = 6. Thus, indecomposable FG-modules are V0,1, V0,2, V0,3, V1,1, V1,2

and V1,3. So { Vj,r | j = 0, 1 & r = 1, 2, 3 } is a full set of IndFG, where the dimVj,r = r
for all j, r.

2. Vj,r is projective ⇔ r = 3, in which case Vj,3 ∼= Vj.

Let r = 3 in which case Vj,3 ∼= Vj

⇔ FG ∼= V0 ⊕ V1

⇔ FG ∼=
V0

(a− 1)3V0

⊕ V1

(a− 1)3V1

, where (a− 1)3 = 0

⇔ FG ∼= V0,3 ⊕ V1,3

⇔ Vj,3 is projective, because Vj,3 is direct summand of FG (Vj,3|FG). Hence, Vj,r is
projective at r = 3, where j = 0, 1.

3. {Sj = Vj,1 | j = 0, 1} is full set of simple FG-modules.
The conjugacy classes of S3 are {1}, {b, ab, a2b} and {a, a2}. Hence, there exist two
3-regular conjugacy classes of S3. Then from theorem (0.1.23), there are two simple
FG-modules S0 and S1, where dimSj = 1 from ([6], proposition20.13 (i), p.479). Then

V1,1 =
V1

(a− 1)V1

= S1 and V0,1 =
V0

(a− 1)V0

= S0; i.e. {Sj = Vj,1|j = 0, 1} is full set of

simple FG-module.

4. Composition factors of V0, V1, V1,2, and V0,2 are as shown

V0 ∼
S0

S1

S0

, V1 ∼
S1

S0

S1

, V1,2 ∼
S1

S0
, V0,2 ∼

S0

S1
,

Hence, indecomposable (6 isomorphism classes) are determined by sequence
of composition factors concerned modules.

From 2., V0 and V1 are projective indecomposable FG-module. From proposition
(0.3.9), then dimV0 = 3 and dimV1 = 3, because Sylow 3-subgroup H is order 3, then
every projective FG-module has dimension divisible by 3, in which |FG| = 6, hence
dimV0 = 3 and dimV1 = 3.
From (4.4), then the structure of complete set of indecomposable FG-modules are
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V0 = V0,3 =
V0

(a− 1)3V0

∼
S0

S1

S0

,

also, V1 = V1,3 =
V1

(a− 1)3V1

∼
S1

S0

S1

;

from 3., then V1,1 =
V1

(a− 1)V1

= S1 and V0,1 =
V0

(a− 1)V0

= S0;

from 1., V0,2 =
V0

(a− 1)2V0

∼ S0

S1
, where dimV0,2 = 2,

and V1,2 =
V1

(a− 1)2V1

∼ S1

S0
, where dimV1,2 = 2.

From the Cartan matrix

(
2 1
1 2

)
, FG has one block (the principle block B0) with

2 projective indecomposable modules V0 =
S0

S1

S0

and V1 =
S1

S0

S1

, and we have the following

decomposition FS3FS3 = V0 ⊕ V1 =
S0

S1

S0

⊕
S1

S0

S1

; i.e. every indecomposable FG-module in

the same block. In fact, FG also has one pseudoblock, because there exist FG-module
homomorphisms between all indecomposable FG-modules as follows:

S0 ←
S0

S1
←

S0

S1

S0

→
S1

S0

S1

→ S1

S0
→ S1.

Summarizing, we have the following conclusion:

THEOREM 4.3.2. The blocks and pseudoblocks coincide for the group algebra FS3 for
any field F .

4.4 THE CASE Λ = FCn; n = pae; p - e.
Here, we shall construct a complete set of indecomposable FCn-modules, and then com-
pare the two notions “blocks” and “pseudoblocks” in the category of FCn-modules. Since
FCn is semisimple when the characteristic of F (CharF ) - n, it is enough to consider the
case when CharF = p.

It is known (see [2], p.24, p.25, and p.34) that Λ = FG; G = Cn has e simple mod-
ules, because G has n conjugacy classes, but G has e elements of order is not divisible by
p; then, G has e p-regular conjugacy classes from theorem (0.1.23). Also, FG has a total
of n = pae indecomposable modules, because F is a field of characteristic p, and Cn is
finite group with cyclic Sylow p-subgroup P , then from ([6], proposition20.13, p.479), the
number of indecomposable FG-modules is |Cn| = n = pae.

We now describe the (n = pae) indecomposable (of which e are simple) FG-modules.
There are e simple modules {Sλ|λ is an e-th root of 1} are all 1-dimensional, where Sλ =
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F on which G acts by multiplication with λ. For each integer 1 ≤ m ≤ pa, there is
a uniserial module Lλ,m of dimension m with each composition factor isomorphic to Sλ
(note that Lλ,1 = Sλ).

Consequently, the group algebra FG has (ge − 1) is nilpotent element, hence N =
(ge − 1) is radFG from definition (0.4.6) and from definition(0.4.12). So, we have the
radical series

Lλ ⊃ NLλ ⊃ N2Lλ ⊃ ... ⊃ NpaLλ = 0. (4.5)

Thus, Lλ/N
mLλ is composition factor ∀λ = 1, ..., e, and ∀m = 1, 2, ..., pa. So, Lλ,m =

Lλ/N
mLλ, ∀λ = 1, 2, ..., e and ∀m = 1, 2, ..., pa given all indecomposable FG-modules.

Accordingly, The set {Lλ,m|λ,m} gives a complete set of n = pae indecomposable FG-
modules, and {Lλ,pa |λ} are the complete set of projective indecomposable FG-modules
(Lλ,pa is the projective cover of Sλ). Then,
first: the structure of all simple FG-modules are S1 = L1,1, S2 = L2,1, into,
Se = Le,1 = Le

NLe
, where dimSλ = 1.

Second: the structure of all projective indecomposable FG-modules are

L1,pa ∼

S1

S1
...
S1

, L2,pa ∼

S2

S2
...
S2

, into Le,pa = Le
NpaLe

∼

Se
Se
...
Se

, where dimLλ,pa = pa.

Finally: the structure of all non-simple and non-projective indecomposable
FG-modules are

Lλ,2 ∼
Sλ
Sλ

, Lλ,3 ∼
Sλ
Sλ
Sλ

, into Lλ,pa−1 = Lλ
Npa−1Lλ

∼

Sλ
Sλ
...
Sλ

, where dimLλ,pa−1 = pa − 1.

We also have FG = FCn =
∑⊕

λ Lλ,pa . Clearly, FG = FCn has e Brauer p-blocks{
Bλ

}
1≤λ≤e, where Bλ =

{
Lλ,m; 1 ≤ m ≤ pa

}
1≤λ≤e

. All indecomposable FCn-modules

in the block Bλ are uniserial with all of its composition factors isomorphic to Lλ,1 = Sλ.
Therefore, they all lie in the one pseudoblock Bλ, because there exist FG-module ho-
momorphisms between all indecomposable FG-modules in Bλ, ∀λ = {1, 2, 3, . . . , e} as
follows:

Sλ →
Sλ
Sλ
→

Sλ
Sλ
Sλ

→ . . .→

Sλ
Sλ
Sλ
...
Sλ

.

EXAMPLE 4.4.1. Take Λ = FC6; 6 = 3.2, CharF = 3. We have 2 simple mod-

ules S1, S−1 among 6 uniserial indecomposable FC6-modules L1,1 = S1, L1,2 ∼
S1

S1
, L1,3 ∼

S1

S1

S1

, L−1,1 = S−1, L−1,2 ∼
S−1

S−1
, L−1,3 ∼

S−1

S−1

S−1

. It is clear that FC6 has 2 pseudoblocks

L1,1 = S1, L1,2, L1,3 and L−1,1 = S−1, L−1,2, L−1,3.

Therefore, we have the following:
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THEOREM 4.4.2. If Λ = FG,G = Cn; n = pae; p - e in characteristic p, then Λ = FG
has e pseudo-blocks. Hence, the blocks and pseudoblocks, coincide in this case.

4.5 p-GROUP ALGEBRA

Let F be a field, let G be a p-group, and let Λ = FG be a p-group algebra.

If the characteristic of F is not equal to p (i.e. charF - |G|), then FG is completely
reducible (semisimple) according to Maschke’s theorem in ([19], p.21).
Thus, from section (4.1), then for FG the two notions blocks and pseudoblocks coincide.

While if the characteristic of F is equal to p, and G is a p-group, then the only sim-
ple FG-module is the trivial module FG, where dimFG = 1, as stated in the corollary
(0.3.8).
Hence, the group algebra FG contains one projective indecomposable module.
Then, the construction of all indecomposable FG-modules contains the trivial composi-
tion factor FG. Clearly, the p-group algebra FG has a single block B, which contains all
indecomposable FG-modules.
Hence, there exist FG-module homomorphisms between all indecomposable FG-modules
in B as follows:

FG →
FG
FG
→

FG
FG
FG

→ . . .→

FG
FG
FG
...
FG

.

Then, the block B does not split into union of pseudoblocks. We summarize this result
as follows:

THEOREM 4.5.1. The blocks and pseudoblocks coincide for the p-group algebra FG
for any field F .

Combining Theorems (4.4.2), (4.5.1) above we have

THEOREM 4.5.2. Let Λ = FCq; q = pae. Then IndΛ/ ≈
Λ

= IndΛ/ ≈
PSΛ

for any field F .
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Chapter 5

THE PSEUDOBLOCKS OF
FSL(2, p) IN CHARACTERISTIC p

In this chapter, we shall determine the pseudoblocks of the group algebra FSL(2, p),
where CharF = p. We shall follow the paper of D. Craven [4] in which he gave a full
description for the complete set of indecomposable FSL(2, p)-modules. We shall compare
the block and pseudoblock theory of the group algebra FSL(2, p).

5.1 THE SIMPLE FSL(2, p)-MODULES

It is known that if p is odd prime, then G = SL(2, p) has p+ 4 conjugacy classes, where
G has p conjugacy classes which are p-regular while if p = 2, then G has p+ 1 conjugacy
classes, where G has p conjugacy classes which are p-regular as stated in ([8], §38) and
([2], p.14); so the number of simple FSL(2, p)-modules is p. We now describe those simple
modules; G acts on the space of column vectors V2 over F (= F 2); hence V2 is an FG-

module. We write X =

(
1
0

)
, Y =

(
0
1

)
, and so if g =

(
a b
c d

)
∈ G, then gX = aX + cY

and gY = bX + dY . Hence, the action of each g ∈ G = SL(2, p) extends to an auto-
morphism of the polynomial ring F [X, Y ]. Let Vn be the subspace of F [X, Y ] consisting
of homogeneous polynomials in X, Y of degree n − 1. In particular Vn is an FSL(2, p)-
module (V2 is as before). Dim

F
Vn = n, and has an F -basis consist of the polynomials

Xn−1, Xn−2Y, . . . , Y n−1.

We shall now prove that Vn+1 is simple at 1 6 n < p. Let g =

(
1 0
1 1

)
, h =

(
1 1
0 1

)
∈ G.

We shall consider Vn+1 is an F < g >-module and Vn+1 is an F < h >-module. Let Xn be
a generator of the F < g >-module Vn+1, and that the subspace FY n is the socle, where
FY n spanned by Y n.
Also, Y n is a generator of the F < h >-module Vn+1, and FXn is the socle as stated in
([2], p.15).
Suppose that W is a non-zero submodule of Vn+1,

W 6 Vn+1. (5.1)

Hence, W is an F < g >-submodule. So, W contains of a simple F < g >-submodule,
but FY n is only simple F < g >-submodule in Vn+1, so Y n ∈ W .
Therefore, the F < h >-module Vn+1 generated by Yn (i.e. Y n ∈ Vn+1) is also contained
in W

Vn+1 6 W. (5.2)
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From (5.1) & (5.2), then W = Vn+1. Hence, for all 1 6 n < p, Vn+1 are simple FSL(2, p)-
modules.

Therefore, we have the following:

THEOREM 5.1.1. ([2], p.15). The FSL(2, p)-modules V1, V2, . . . , Vp are the complete
set of simple FG-modules, where V1 is the trivial FSL(2, p)-module, and Vp is projective
indecomposable FSL(2, p)-module (the Steinberg representation). Also, dim

F
Vn = n for

all 1 ≤ n ≤ p.

We can classify all simple FSL(2, p)-modules as follows:

LEMMA 5.1.2. The odd-dimensional simple modules are modules for projective lin-
ear group PSL(2, p), and the even-dimensional simple modules are faithful modules for
SL(2, p).

Proof. The normal subgroup of G = SL(2, p) is the center of SL(2, p);

Z(SL(2, p)) = {A ∈ SL(2, p) : AT = TA ∀T ∈ SL(2, p)}.

Then, Z(SL(2, p)) = {±I2} C SL(2, p). Hence, the projective linear group PSL(2, p) =
SL(2, p)/Z(SL(2, p)).

We use Lifting Process theorem (0.1.15), hence

let

(
1 0
0 1

)
V2 =

(
1 0
0 1

)
aX + cY =

(
aX + cY 0

0 aX + cY

)
. Then

det

(
aX + cY 0

0 aX + cY

)
= (aX + cY )(aX + cY )

= a2X2 + 2acXY + c2Y 2;

so {X2, XY, Y 2} is the basis of V3.

Also, det

(
−1 0
0 −1

)
V2 ∈ V3, (i.e. V3 contains det(ZV2), where Z = Z(SL(2, p))).

Let

det

(
1 0
0 1

)
V3 = (X2 +XY + Y 2)(X2 +XY + Y 2)

= X4 + 2X3Y + 3X2Y 2 + 2XY 3 + Y 4;

so {X4, X3Y,X2Y 2, XY 3, Y 4} is the basis of V5.

Also, det

(
−1 0
0 −1

)
V3 ∈ V5, (i.e. V5 contains det(ZV3)).

Let

det

(
1 0
0 1

)
Vi = (X i−1 +X i−2Y + . . .+ Y i−1)(X i−1 +X i−2Y + . . .+ Y i−1)

= X2i−2 +X2i−3Y + . . .+X i−1Y i−1 + . . .+X i−1Y i−1 +X i−2Y i+

. . .+ Y 2i−2;
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so {Xn−1, Xn−2Y, . . . , Y n−1} is the basis of Vj.

Then, Vj contains detZVi for all i = 1, 2, . . . , p, where j is odd number. Then PSL(2, p)
contains the odd-dimensional simple modules, but the even-dimensional simple modules
are faithful modules for SL(2, p).

More details on PSL(2, p) are given in ([8], §35).

5.2 THE PROJECTIVE INDECOMPOSABLE

FSL(2, p)-MODULES

From theorem (5.1.1), the group algebra FSL(2, p) has p simple FG-modules, and they
are V1, V2, . . . , Vp, where V1 is the trivial FG-module and Vp is the Steinberg module, in
which dimVn = n, for all 1 ≤ n ≤ p. It follows that, FSL(2, p) has p projective inde-
composable modules, because all projective indecomposable FG-modules corresponding
to simple FG-modules. The indecomposable FSL(2, p)-modules P1, P2, . . . , Pp are the
complete set of projective indecomposable FG-modules, where Pp ∼= Vp.

Now, we determine the projective indecomposable FG-modules from ([2], p.48,
p.51 and p.78).

P1 is uniserial from theorem (0.5.4), then
rad(P1)

soc(P1)
∼= Vp−2 if and only if dim P1 >

1 + (p− 2) + 1 = p, hence the structure of P1 is

V1

Vp−2

V1 ,

If p = 2, then P1 has two factors V1 and V1.

Pp−1 is also uniserial. If p > 2, then from theorem (0.5.5), hence
rad(Pp−1)

soc(Pp−1)
∼= V2 if

and only if dim Pp−1 = (p− 1) + 2 + (p− 1) = 2p.

Then, the structure of Pp−1 if p > 2 is

Vp−1

V2

Vp−1 .
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V2 ⊗ Vp is projective by theorem (0.5.6) and from theorem (0.5.7); V2 ⊗ Vp has a sub-
module isomorphic with Vp−1, also the quotient of this submodule is isomorphic with Vp+1.

We know that, every projective submodule of a module M is a direct summand of M , then
V2 ⊗ Vp has direct summand which is indecomposable, and it has submodule isomorphic
with Vp−1, where Vp−1 is socle of Pp−1, then V2⊗Vp has a summand isomorphic with Pp−1.
Pp−1 has dimension at least 2(p− 1), but Pp−1 has dimension 2p at p > 2, and V2 ⊗ Vp is
2p-dimension, then

V2 ⊗ Vp ∼= Pp−1.

Let V = soc(V2 ⊗ Vp) ∼= Vp−1, N = rad(V2 ⊗ Vp), and
V2 ⊗ Vp
N

∼= Vp−1, from theorem

(0.4.10) and corollary (0.4.11).
If N is the unique maximal submodule of V2⊗Vp and V is the unique minimal submodule,

then we have
V2 ⊗ Vp
V

∼= Vp+1.

We need to prove that
N

V
∼= V2: Let f : V2 −→ Vp+1, also X & Y are sent to

Xp & Y p, respectively, where F [X, Y ] −→ F [X, Y ] is an FG-module homomorphism,
one-to-one and onto, then f is an FG-module isomorphism. Then, Vp+1 has a submodule
isomorphic with V2. Hence,

V2 ⊗ Vp
V

∼= V2 &
V2 ⊗ Vp
N

∼= V2;

so,
N

V
∼= V2.

Then, the structure of V2 ⊗ Vp is

Vp−1

V2

Vp−1 .

Finally, if 1 < n < p−1, Pn is uniserial, then from theorem (0.5.5),
rad(Pn)

soc(Pn)
∼= Vp+1−n

and from theorem (0.5.4), then
rad(Pn)

soc(Pn)
∼= Vp−1−n. Now, at 1 < n < p− 1, thus

rad(Pn)

soc(Pn)
∼= Vp+1−n ⊕ Vp−1−n

if and only if dimPn = n+ n+ (p+ 1− n) + (p− 1− n) = 2p.
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Then, the structure of Pn if 1 < n < p− 1 is

Vn

Vp−1−n

Vn

Vp+1−n

Now, if Pp−2 is projective. We study Pp−2 by examining V2 ⊗ Pp−1.

V2⊗Pp−1 is projective, because Pp−1 is projective, and by theorem (0.5.6) then V2⊗Pp−1

is projective.

Then, V2 ⊗ Pp−1 has composition series V2 ⊗ Vp−1, V2 ⊗ V2, and V2 ⊗ Vp−1 by theorem
(0.5.5); that is isomorphic with Vp−2 ⊕ Vp, V1 ⊕ V3, and Vp−2 ⊕ Vp by theorem (0.5.7).
Since Vp is projective and Vp−2 is homomorphic image, then V2 ⊗ Pp−1 has a direct sum-
mand isomorphic with Pp−2 ⊕ Vp ⊕ Vp, but at p = 3 then P1 ⊕ V3 ⊕ V3 ⊕ V3.
Then, Pp−2 has two composition factors, where the radical and socle are Vp−2. From theo-

rem (0.5.4) and theorem (0.5.5), we deduce that
rad(Pp−2)

soc(Pp−2)
has V1 and V3 are composition

factor, but if p = 3, then just V1; so Pp−2 = P1.

We need just see that
rad(Pp−2)

soc(Pp−2)
is isomorphic with V1 ⊕ V3.

We need to prove
rad(Pp−2)

soc(Pp−2)
is semisimple; we prove it by contradiction. If it is not

semisimple, then it must be uniserial (i.e. it has unique composition series), where it has
just two composition factors.

Let
rad(Pp−2)

soc(Pp−2)
be not isomorphic with its dual (more details on dual are given in [2], §6,

p.38). When taking dual the composition factor, we will exchange their order, but Pp−2

is isomorphic its dual, because P ∗p−2 is the indecomposable projective corresponding with
soc(Pp−2)∗ ∼= V ∗p−2

∼= Vp−2 also, Rad(P ∗p−2) ∼= V ∗p−2
∼= Vp−2.

From the relations between radicals, socles, and duality imply that
rad(Pp−2)

soc(Pp−2)
is isomor-

phic with
rad(P ∗p−2)

soc(Pp−2)∗
. This is contradiction; hence

rad(Pp−2)

soc(Pp−2)
is semisimple.

Next, we have established the structure of Pp−2.
Let Pn ∀2 < n < p − 1, be projective the composition series is V2 ⊗ Vn, V2 ⊗ (Vp+1−n ⊕
Vp−1−n), and V2 ⊗ Vn. Therefore, from theorem (0.5.4), theorem (0.5.5), and theorem
(0.5.7), hence that is isomorphic with Vn−1 ⊕ Vn+1, Vp−n ⊕ Vp−n+2 ⊕ Vp−2−n ⊕ Vp−n and
Vn−1 ⊕ Vn+1. But, if n = p− 2, then the term Vp−n−2 should be deleted, so

rad(Pp−2)

soc(Pp−2)
∼= V1 ⊕ V3.

Then, the composition series of Pp−2 is V2 ⊗ Vp−2, V2 ⊗ (V3 ⊕ V1), and V2 ⊗ Vp−2; that is
isomorphic with Vp−3 ⊕ Vp−1, V2 ⊕ V2 ⊕ V4 and Vp−3 ⊕ Vp−1.
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Thus, the structure of Pp−2 is

Vp−2

V1

Vp−2

V3

.

The following theorem summarizes the structure of the projective indecomposable
FSL(2, p)-modules.

THEOREM 5.2.1. ([2], p.48). The projective indecomposable FSL(2, p)-modules have
the following structures:

P1 Pn; 1 < n < p− 1 Pp−1; p > 2

V1

Vp−2

V1 ,

Vn

Vp−1−n

Vn

Vp+1−n

,

Vp−1

V2

Vp−1 , and Pp.

P1 and Pp−1 are uniserial, while Pp = StG is simple projective.

5.3 THE INDECOMPOSABLE FSL(2, p)-MODULES

It is known (by counting elements) that the group G = SL(2, p) is of order p(p2 − 1),

and so has a (cyclic) Sylow p-subgroup of order p, namely U =

{(
1 λ
0 1

)
: ∀λ ∈ Fp

}
. It

follows, by Higman’s criterion theorem(0.3.7), that FSL(2, p) is of finite representation
type. In fact, SL(2, p) is the only finite group of Lie type with this property [11]. Then in
this section, we describe the complete set of indecomposable FSL(2, p)-modules as stated
in the paper of D. Craven [4], p.54.

First, we introduce some important concepts for the indecomposable FG-module.

DEFINITION 5.3.1. ([18], p.104). Let M be an indecomposable FG-module, and let
set vx(M) = {V ≤ G : M is a V -projective }; i.e. vx(M) = {V ≤ G : MV is a projective
indecomposable FV -module}. Then the minimal elements (by order) in vx(M) are called
the vertices of M .

DEFINITION 5.3.2. ([9], p.339). Let M be an indecomposable FG-module with vertex
V , and let W be an indecomposable FV -module. Then W is a source of M if M |WG.
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REMARK. ([11], p.72). Let Λ = FG be a group algebra, let V be a p-subgroup of G, let
W be an indecomposable FV -module, and let M be an indecomposable Λ-module, which
is a direct summand of a module induced from V to G; i.e. M |indGVW . If V is minimal
subgroup, then V is vertex of M , while W is a source of M .

THEOREM 5.3.3. Let M be an indecomposable FG-module, and let U be a Sylow
p-subgroup of G. Then |U : vx(M)| divides dimM .

THEOREM 5.3.4. Let Λ = FSL(2, p) be a group algebra in characteristic p, where
p is all prime numbers. Then any non-projective indecomposable Λ-module and simple
Λ-module have vertex Sylow p-subgroup U , and all projective indecomposable Λ-modules
P1, P2, . . . , Pp have vertex trivial subgroup I.

Proof. First, let U =

{(
1 λ
0 1

)
: ∀λ ∈ Fp

}
be the Sylow p-subgroup, where |U | = p,

let Vn be a simple Λ-module, where n = {1, 2, . . . , p − 1} and let M be a non-projective
indecomposable Λ-module. Since dimVn = n for all n = {1, 2, . . . , p− 1}, and p does not

divide dimM = x. Then from theorem(5.3.3), |U : vx(Vn)| divides dimVn; i.e.
p

|vx(Vn)|
divides n, so vx(Vn) must be U .

Thus, the vertex of all simple Λ-modules is the Sylow p-subgroup U .

Similarly, from theorem (5.3.3), |U : vx(M)| divides dimM ; i.e.
p

|vx(M)|
divides x,

so vx(M) must be U .
Thus, The vertex of all non-projective indecomposable Λ-modules is the Sylow p-subgroup
U .

Second, let Pi be projective indecomposable Λ-modules, where i = {1, 2, . . . , p}.
Pi are a direct summand of Λ; i.e. Pi|indGI F , where I is the trivial subgroup, then the
vertex of Pi for all i, are the trivial subgroup I.

Of the most important concepts in an indecomposable A-module is almost split se-
quence. So, we introduce the definition as follows:

DEFINITION 5.3.5. (Auslander-Reiten) ([18], p.151). Let A be a finite dimension
algebra over a field F of characteristic p. An almost split sequence is a short exact non-
split sequence of A-modules.

0→ X
i−→ Y

f−→ Z → 0.

Also, it is called terminates in Z, in which X and Z are both indecomposable such that
there exists A-module homomorphism ρ : W → Z is not a split epimorphism.

The following theorem shows that, in group algebra FG, if the characteristic p divides
the order of group G, then there is almost split sequence terminating.

THEOREM 5.3.6. (Auslander-Reiten) ([18], p.151). Let F be a field of characteristic
p, and let G be a finite group, where p divides the order of G. If M is an indecomposable
FG-module, then there exists an almost split sequence terminating in M .

The following theorem shows that, there is a one-to-one correspondence between the
isomorphism classes of all non-projective indecomposable FG-module and the isomor-
phism classes of all non-projective indecomposable FNG(U)-module.
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THEOREM 5.3.7. (The Green Correspondence) ([2], Section 11). There is a one-
to-one correspondence between isomorphism classes of indecomposable FG-modules with
vertex in ε and isomorphism classes of indecomposable FN-modules with vertex in ε;
where N is normalizer of Sylow p-subgroup. If M and V are such modules for G and N ,
respectively, which correspond then M and V have the same vertex and

MN
∼= V ⊕ Y,

V G ∼= M ⊕X.

Where Y is a projective FN-module and X is a projective FG-module, then there exists
a bijection

M ←→ V.

We fix some notation;
Let U be a p-subgroup of G, and let N be a subgroup containing normalizer of Sylow
p-subgroup N = NG(U) = {x ∈ G : xUx−1 = U} ≤ G. If L and B are subgroups of G,
where (L ⊆ B).
We fix some collections of p-subgroups of G.

ℵ = {sUs−1 ∩ U : s ∈ G, s /∈ N},

= = {sUs−1 ∩N : s ∈ G, s /∈ N},

ε = {B : B ⊂ U,B /∈ ℵ}.

We know that the group algebra FG has p simple FG-modules V1, V2, . . . , Vp, where
Vn has dimension n; ∀n = 1, 2, . . . , p. Also, we have the structure of the projective inde-
composable FSL(2, p)-modules as stated in theorem (5.2.1):

P1 Pn; 1 < n < p− 1 Pp−1; p > 2

V1

Vp−2

V1 ,

Vn

Vp−1−n

Vn

Vp+1−n

,

Vp−1

V2

Vp−1 , Vp ∼= Pp.

Now, we construct all non-simple, non-projective indecomposable modules
for group algebra FSL(2, p) in characteristic p ≥ 5 by using the projective in-
decomposable modules:

We cannot use the following theorem: Any indecomposable FG-module is a homomor-
phic image of projective indecomposable FG-module (theorem 0.3.11), because: U ={(

1 λ
0 1

)
: ∀λ ∈ Fp

}
is not normal in G = SL(2, p), where the Sylow p-subgroup must
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be cyclic and normal in G as stated in ([2], p.42).

So, we use Green correspondence theorem (5.3.7) in which there is a one-to-one
correspondence between the isomorphism classes of all non-projective indecomposable
FG-module and the isomorphism classes of all non-projective indecomposable FNG(U)-
module, where

NG(U) =

{(
x−1 λ
0 x

)
: ∀λ, x ∈ Fp

}
is normalizer of the Sylow p-subgroup U of G. Then U is normal and cyclic Sylow p-
subgroup in NG(U).

Hence, the Green Correspondence in theorem (5.3.7) shows that the number of in-
decomposable FG-modules is equal to the number of indecomposable FNG(U)-modules.
It turns out that there are p2 − p+ 1 isomorphism classes of indecomposable FSL(2, p)-
modules: p− 1 of them is simple non-projective, one is simple projective, p− 1 projective
non-simple, and (p− 1)(p− 2) are non-simple non-projective indecomposable FSL(2, p)-
modules.

We want to completely describe the indecomposable FG-module, since U is normal
and cyclic Sylow p-subgroup in NG(U), then this is very much like the case for cyclic
group as stated in ([2], p.35).

Thus, the non-simple, non-projective indecomposable FG-modules are

Vi

Vp−1−i Vp+1−i and

Vp−1−i

Vi

Vp+1−i

.

We can remove the socles of the two projectives, where they are different from each
other, and we take their direct sum and then quotient out by a diagonal.
This process certainly produces indecomposable module. But, if we take the direct sum of
two copies of projective is not indecomposable module, because it becomes split extension.

One can continue this process until one constructs an indecomposable module M
with all (non-projective) simple module, where this constructs all non-projective inde-
composable modules for FSL(2, p), and the non-simple indecomposable subquotients of
the module M are one-to-one correspondence with connected subdiagrams of the diagram
with at least one edge.

We know that
ExtFG(Vi, Vj) ∼= HomFG(rad(Pi), Vj),

where Pi is the projective cover of Vi as stated in ([11], p.116). Then, from projective
indecomposable FG-module P1; this gives dim ExtFG(V1, Vp−2) = 1.
The projective indecomposable FG-module Pp−1; p > 2, this gives dim ExtFG(Vp−1, V2) =
1.
Also, the projective indecomposable FG-module Pn; 1 < n < p − 1, this gives dim
ExtFG(Vn, Vp+1−n) = 1 & dim ExtFG(Vn, Vp−1−n) = 1.
So, we get the following proposition:
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PROPOSITION 5.3.8. ([11], p.117). Let FSL(2, p) be a group algebra in characteristic
p, where p is all prime numbers. Then ExtFG(Vi, Vj) 6= 0 (i.e. the short exact sequence is
non-split extension of Vi by Vj from definition (0.5.3)) for all simple FG-modules Vi, Vj
are given as follows:

1. If p = 2, then dim ExtFG(V1, V1) = 1;

2. If p is odd, then dim ExtFG(Vn, Vp+1−n) = 1 and dim ExtFG(Vn, Vp−1−n) = 1 for
1 < n < p− 1, while ExtFG(V1, Vp−2) and ExtFG(Vp−1, V2) are 1-dimension.

Then, we have:

PROPOSITION 5.3.9. ([4], p.56). Let FSL(2, p) be a group algebra in characteristic
p, where G = SL(2, p), and let M be an indecomposable FG-module.

1. If M has one socle layer, then M is simple. There are p simple FG-modules.

2. If M has three socle layers, then M = Pi; 1 ≤ i ≤ p−1 are projective indecomposable
FG-module.

3. If M has two socle layers, then the socle of M consists of simple module of dimension
n, n + 2, . . . , j(n 6 j), and the top consists of modules of dimension p − j + ε, p −
j + ε + 2, . . . , p− n + δ, where ε, δ = ±1. There are (p− 1)(p− 2) indecomposable
module.

EXAMPLE 5.3.10. Let F be a field of characteristic 5, and let SL(2, 5) be a special lin-
ear group. Hence, the number of all indecomposable FSL(2, 5)-modules are p2−p+1 = 21;
p = 5.

The simple FSL(2, 5)-modules are V1, V2, V3, V4, and V5
∼= P5 is Steinberg module;

The projective indecomposable FSL(2, 5)-modules have the following struc-
tures:

P1 P2 P3 P4

V1

V3

V1 ,

V2

V2

V2

V4

,

V3

V1

V3

V3

,

V4

V2

V4 , and V5
∼= P5.

The non-simple, non-projective indecomposable FSL(2, 5)-modules are

V3

V1 V3 ,

V3

V3

V1

,

V1

V3 ,

V3

V1 ,

V3

V3 ,
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V3

V1 V3

V1

,

V2

V2 V4 ,

V4

V2

V2

,

V2

V2 ,

V4

V2 ,

V2

V4 ,

and V2

V4 V2

V4 .
From lemma (5.1.2), then the odd-dimensional simple modules V1, V3, and V5

∼= P5 are
modules for PSL(2, 5). Also, it contains indecomposable FPSL(2, 5)-modules P1, P3,

V3

V1 V3 ,

V3

V3

V1

,

V1

V3 ,

V3

V1 ,

V3

V3 ,

and

V3

V1 V3

V1

.

The even-dimensional simple modules V2 and V4 are faithful modules for SL(2, 5).
Also, it contains indecomposable FSL(2, 5)-modules P2, P4,

V2

V2 V4 ,

V4

V2

V2

,

V2

V2 ,

V4

V2 ,

V2

V4 ,

and V2

V4 V2

V4 .
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Now, we find the vertices of indecomposable FSL(2, 5)-modules; the Sylow 5-subgroup

is U =

{(
1 λ
0 1

)
: ∀λ ∈ F5

}
, where |U | = 5.

The vertex of V1, V2, V3 and V4 is Sylow 5-subgroup U , also the vertex of non-simple, non-
projective indecomposable FSL(2, 5)-modules is U from theorem (5.3.4).
The vertex of each projective indecomposable FSL(2, 5)-modules P1, P2, P3, P4, and P5 is
the trivial subgroup I from theorem (5.3.4).

5.4 BLOCK THEORY OF FSL(2, p)-MODULES

In this section, in [2, 9], we find that the group algebra Λ = FSL(2, p) in characteristic
odd prime number p has three blocks by using Brauer Correspondent.

DEFINITION 5.4.1. ([2], p.102). Let U be a p-subgroup of G, and let NG(U) be
normalizer of G. Then there is a one-to-one correspondence between the blocks of NG(U)
with defect group U and the blocks of G with defect group U given by letting the block b of
NG(U) correspond with the block bG of G. Thus, the one-to-one correspondence is called
Brauer correspondent.

The following theorem shows that, The group algebra FSL(2, p) in characteristic odd
prime number p has blocks B1, B2, and B3.

THEOREM 5.4.2. ([9], p.469). Let F be a field of characteristic odd prime number
p, and let G = SL(2, p) be a special linear group. Then the group algebra FG has three
blocks B1, B2, and B3, where B1 contains all odd-dimensional simple FG-modules except
the Steinberg module Vp; B2 contains all even-dimensional simple FG-modules, and the
block of defect zero B3 contains the Steinberg module Vp, where B1 and B2 are defect 1.

Proof. We know that

NG(U) =

{(
x−1 λ
0 x

)
: ∀λ ∈ Fp ∧ x ∈ Fp

}
.

The group algebra FNG(U) has no blocks of defect zero; then from Brauer correspondent,
the blocks of FNG(U) with defect group U are one-to-one correspondent with the blocks
of FG with defect group U ; where U is defect 1.

Since all odd-dimensional simple modules are modules for projective linear group PSL(2, p),
and the even-dimensional simple modules are faithful module for SL(2, p) from lemma
(5.1.2), then FNG(U) has two blocks of defect 1, hence FG has two blocks of defect 1.
Let B1, B2 be blocks of defect 1.

From theorem (1.2.4), Let X, Y be two simple Λ-modules. Then X, Y lie in the
same block (i.e. X ≈

Λ
Y ) if and only if there is a sequence from projective indecomposable

modules Pj = P1, P2, . . . , Pt = Pk corresponding the simple Λ-modules such that

(Pi, Pi+1)Λ 6= 0 or (Pi+1, Pi)Λ 6= 0.
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Claim that Vi, Vi8 ∈ B1, ∀i, i8 are odd numbers.
For example at p = 5; let V3, V1 be corresponding the projective indecomposable Λ-
modules P3, P1 respectively. Then there is Λ-module homomorphism between P3 & P1;
i.e. (P3, P1)Λ 6= 0 as follows:

P3 →

V3

V1 V3 →

V3

V3 → V3 →

V1

V3 → V1 →

V3

V1 → P1.

Thus, V3 ≈
Λ
V1.

Now, let Vi, Vi8 , Vi88 be odd-dimensional simple Λ-modules, where i, i8, i88 are odd num-
bers, and let

P1 Pi; 1 < i < p− 1

V1

Vp−2

V1 ,

Vi

Vp−1−i

Vi

Vp+1−i

be two projective indecomposable Λ-modules. Then Vi ≈
Λ
V1, because the projective covers

P1, Pi of V1, Vi respectively are connected by a series of Λ-module homomorphisms as
follows:

Pi →

Vi

Vp−1−i Vp+1−i → Vi →

V1

Vp−2 → V1 →

Vp−2

V1 → P1.

Also, Vi ≈
Λ
Vi8 , because the projective covers Pi, Pi8 of Vi, Vi8 respectively are connected

by a series of Λ-module homomorphisms as follows:

Pi →

Vi

Vp−1−i Vp+1−i → Vi →

Vi8

Vi →

Vi8

Vi Vi88 →

Vi8 →

Vi

Vi8

Vi88

→ Pi8 .

Hence, (Pi, Pi8)Λ 6= 0 or (Pi8 , Pi)Λ 6= 0 for all i, i8 are odd numbers; so Vi ≈
Λ
Vi8 .

57



Since the prime number p is odd number, then we must exclude the Steinberg mod-
ule Vp ∼= Pp; i.e. Vp does not belong to B1, because there is no Λ-module homomorphism
between Pp and Pi for all odd numbers i; i.e. (Pp, Pi)Λ = 0 and (Pi, Pp)Λ = 0.

Thus, B1 contains all odd-dimensional simple modules, and projective mod-
ules, also non-simple, non-projective, indecomposable FPSL(2, p)-modules ex-
cept the Steinberg module Vp.

Claim that Vj, Vj8 ∈ B2, ∀j, j 8 are even numbers.
For example at p = 5; let V2, V4 be two simple Λ-modules corresponding the projective
indecomposable Λ-modules P2, P4 respectively. Then there is Λ-module homomorphism
between P2, P4; i.e. (P2, P4)Λ 6= 0 as follows:

P2 →

V2

V2 V4 →

V2

V2 → V2 →

V4

V2 → V4 →

V2

V4 → P4.

Thus, V2 ≈
Λ
V4.

Now, let Vj, Vj8 , Vj88 be even-dimensional simple Λ-modules, where j, j 8, j 88 are even
numbers, and let

Pp−1; p > 2 Pj; 1 < j < p− 1

Vp−1

V2

Vp−1 ,

Vj

Vp−1−j

Vj

Vp+1−j

be two projective indecomposable Λ-modules. Then Vj ≈
Λ
Vp−1, because the projective

covers Pj, Pp−1 of Vj, Vp−1 respectively are connected by a series of Λ-module homomor-
phisms as follows:

Pj →

Vj

Vp−1−j Vp+1−j → Vj →

Vp−1

V2 → Vp−1 →

V2

Vp−1 → Pp−1.

Also, Vj ≈
Λ
Vj8 , because the projective covers Pj, Pj8 of Vj, Vj8 respectively are connected

by a series of Λ-module homomorphisms as follows:
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Pj →

Vj

Vp−1−j Vp+1−j → Vj →

Vj8

Vj →

Vj8

Vj Vj88 →

Vj8 →

Vj

Vj8

Vj88

→ Pj8 .

Hence, (Pj, Pj8)Λ 6= 0 or (Pj8 , Pj)Λ 6= 0 for all j, j 8 are even numbers; so Vj ≈
Λ
Vj8 .

Thus, B2 contains all simple modules that they have even-dimensional, and
projective modules, also non-simple, non-projective, indecomposable FSL(2, p)-
modules, where the even-dimensional are faithful simple module for FSL(2, p)-
module.

Also, Λ has the block of defect zero contains the Steinberg module; i.e.
B3 = {Vp ∼= Pp}.

EXAMPLE 5.4.3. From example(5.3.10); there are three blocks of FSL(2, 5) as
follows:

The block B1 contains

V1, V3,

V1

V3

V1 ,

V3

V1

V3

V3

,

V3

V1 V3 ,

V3

V3

V1

,

V1

V3 ,

V3

V1 ,

V3

V3 , and

V3

V1 V3

V1

.

The block B2 contains

V2, V4,

V2

V2

V2

V4

,

V4

V2

V4 ,

V2

V2 V4 ,

V4

V2

V2

,
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V2

V2 ,

V4

V2 ,

V2

V4 , and V2

V4 V2

V4 .

The block B3 contains the Steinberg module B3 = {V5
∼= P5}.

5.5 THE PSEUDOBLOCKS OF FSL(2, p)

Here, we determine the pseudoblocks of the group algebra Λ = FSL(2, p) in characteristic
prime p, and then compare the two notions “blocks” and “pseudoblocks” in group algebra
Λ.

THEOREM 5.5.1. [1]. Let F be a field of characteristic p, and let G = SL(2, p) be a
special linear group, where p is odd prime number. Then the group algebra Λ = FG has
three pseudoblocks. Moreover, for the group algebra Λ in characteristic prime p, the block
and pseudoblock notions coincide.

Proof. From theorem (5.4.2), there exist three blocks of Λ in characteristic odd prime
number p, which are B1, B2, and B3.

First: The block B3 (which contains the Steinberg module Vp ∼= Pp) is clearly pseu-
doblock.

Second: Since B1 contains all simple modules, projective modules, and indecompos-
able F (PSL(2, p))-modules except the Steinberg module Vp; i.e. B1 contains all odd-
dimensional simple Λ-modules except Vp.

Let Pm, Pi be projective indecomposable Λ-modules, let Vm, Vi be simple Λ-modules;
for all m, i ∈ {1, 3, . . . , p− 2}, and let Mi8 be non-simple, non-projective, indecomposable
Λ-modules, where Mi8 has two socle layers; i8 = {1, 2, . . . , r}; in which Pm, Vm, Pi, Vi and
Mi8 in B1 for all m, i, i8. Let

Pi =

Vi

Vp−1−i

Vi

Vp+1−i

, Pm =

Vm

Vp−1−m

Vm

Vp+1−m

,

M1 =

Vi

Vp−1−i Vp+1−i , M2 =

Vp+1−i

Vi ,
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M3 =

Vp+1−m

Vm

Vp−1−m

, M4 =

Vp+1−m

Vi Vm

Vp−1−m

,

M5 =

Vm

Vp−1−m Vp+1−m , M6 =

Vp+1−i

Vi

Vp−1−i

.

Then, we have six cases as follows:

1. Let Vi, Vm be any two simple Λ-modules. Hence,

Vi →M2 → Vm.

Then, all odd-dimensional simple Λ-modules are connected either ways by a sequence
of Λ-module homomorphisms.

2. Let Vi, Vm be simple Λ-modules, and let Pi, Pm be projective indecomposable Λ-
modules. Hence,

Pi →M1 → Vi, and Vm →M3 → Pm.

Then, all odd-dimensional simple Λ-modules and all projective indecomposable Λ-
modules are connected either ways by a sequence of Λ-module homomorphisms.

3. Let Mi8 ; i
8 = {1, 2, 3, 5} be any non-simple, non-projective, indecomposable Λ-

modules, and let Vi, Vm be any two simple Λ-modules. Hence,

M1 → Vi, M2 → Vm, M3 → Pm →M5 → Vm.

Then, all odd-dimensional simple Λ-modules and all non-simple, non-projective,
indecomposable Λ-modules Mi8 ; i

8 = {1, 2, . . . , r} are connected either ways by a
sequence of Λ-module homomorphisms.

4. Let Pi, Pm be any two projective indecomposable Λ-modules. Hence,

Pi →M1 → Vi →M2 → Vp+1−i →M3 → Pm.

Then, all projective indecomposable Λ-modules Pm,∀m = {1, 3, . . . , p− 2} are con-
nected either ways by a sequence of Λ-module homomorphisms.

5. Let Pi, Pm be any two projective indecomposable Λ-modules, and letM1,M3,M5,M6

be non-simple, non-projective,indecomposable Λ-modules. Hence,

Pi →M1 & Pm →M5.

Also,
M6 → Pi & M3 → Pm.

Then, all projective indecomposable Λ-modules Pm,∀m = {1, 3, . . . , p − 2} and all
non-simple, non-projective, indecomposable Λ-modules Mi8 ; i

8 = {1, 2, . . . , r} are
connected either ways by a sequence of Λ-module homomorphisms.
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6. Let M1,M2,M3,M4,M5,M6 be any non-simple, non-projective, indecomposable Λ-
modules. Hence,

M6 → Pi →M1,

M1 → Vi →M2,

M3 → Pm →M5,

and
M4 →M3.

Then, all non-simple, non-projective, indecomposable Λ-modules are connected ei-
ther ways by a sequence of Λ-module homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable Λ-
modules in B1 are connected either ways by a sequence of Λ-module homomorphisms as
follows:

Pi →Mi8 → Vi → . . .←M 8
i8 ← Vm ←M 88

i8 ← Pm;

for all i,m ∈ {1, 3, 5, . . . , p− 2} and i8 = {1, 2, . . . , r}.
i.e. from definition (1.1.1), ∀X, Y ∈ B1; there is a sequence of indecomposable modules
X = X1, X2, . . . , Xt = Y in B1 such that for all n ∈ {1, 2, . . . , t} either

(Xn, Xn+1)Λ 6= 0 or (Xn+1, Xn)Λ 6= 0.

Thus, The block B1 does not split into union of pseudoblocks. So, B1 is one
pseudoblock.

Third: Similarly, since the block B2 contains all even-dimensional simple Λ-modules.
Let Pe, Pj be projective indecomposable Λ-modules, let Ve, Vj be simple Λ-modules; for
all j, e ∈ {2, 4, . . . , p − 1}, and let Nj8 be non-simple, non-projective, indecomposable
Λ-modules, where Nj8 has two socle layers; j 8 = {1, 2, . . . , r}; in which Pe, Pj, Ve, Vj, and
Nj8 in B2 for all e, j, j 8. Let

Pj =

Vj

Vp−1−j

Vj

Vp+1−j

, Pe =

Ve

Vp−1−e

Ve

Vp+1−e

,

N1 =

Vj

Vp−1−j Vp+1−j , N2 =

Vp+1−j

Vj ,

N3 =

Vp+1−e

Ve

Vp−1−e

, N4 =

Vp+1−e

Vj Ve

Vp−1−e

,
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N5 =

Ve

Vp−1−e Vp+1−e , N6 =

Vp+1−j

Vj

Vp−1−j

.

Then, we have six cases as follows:

1. Let Vj, Ve be any two simple Λ-modules. Hence,

Vj → N2 → Ve.

Then, all even-dimensional simple Λ-modules are connected either ways by a se-
quence of Λ-module homomorphisms.

2. Let Vj, Ve be simple Λ-modules, and let Pj, Pe be projective indecomposable Λ-
modules. Hence,

Pj → N1 → Vj and Ve → N3 → Pe.

Then, all even-dimensional simple Λ-modules and all projective indecomposable Λ-
modules are connected either ways by a sequence of Λ-module homomorphisms.

3. Let Nj8 ; j
8 = {1, 2, 3, 5} be any non-simple, non-projective, indecomposable Λ-

modules, and let Vj, Ve be any two simple Λ-modules. Hence,

N1 → Vj, N2 → Ve, N3 → Pe → N5 → Ve.

Then, all even-dimensional simple Λ-modules and all non-simple, non-projective,
indecomposable Λ-modules Nj8 ; j

8 = {1, 2, . . . , r} are connected either ways by a
sequence of Λ-module homomorphisms.

4. Let Pj, Pe be any two projective indecomposable Λ-modules. Hence,

Pj → N1 → Vj → N2 → Vp+1−j → N3 → Pe.

Then, all projective indecomposable Λ-modules Pe,∀e = {2, 4, . . . , p − 1} are con-
nected either ways by a sequence of Λ-module homomorphisms.

5. Let Pj, Pe be any two projective indecomposable Λ-modules, and let N1, N3, N5, N6

be non-simple, non-projective,indecomposable Λ-modules. Hence,

Pj → N1 & Pe → N5.

Also,
N6 → Pj & N3 → Pe.

Then, all projective indecomposable Λ-modules Pe;∀e = {2, 4, . . . , p − 1} and all
non-simple, non-projective, indecomposable Λ-modules Nj8 ; j

8 = {1, 2, . . . , r} are
connected either ways by a sequence of Λ-module homomorphisms.

6. Let N1, N2, N3, N4, N5, N6 be any non-simple, non-projective, indecomposable Λ-
modules. Hence,

N6 → Pj → N1,

N1 → Vj → N2,
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N3 → Pe → N5,

and
N4 → N3.

Then, all non-simple, non-projective, indecomposable Λ-modules are connected ei-
ther ways by a sequence of Λ-module homomorphisms.

The previous six cases are enough without loss of generality. So, all indecomposable Λ-
modules in B2 are connected either ways by a sequence of Λ-module homomorphisms as
follows:

Pj → Nj8 → Vj → . . .← N 8
j8 ← Ve ← N 88

j8 ← Pe;

for all j, e ∈ {2, 4, . . . , p− 1} and j 8 = {1, 2, . . . , r}.
i.e. from definition (1.1.1), ∀X 8, Y 8 ∈ B2; there is a sequence of indecomposable modules
X 8 = X 8

1, X
8
2, . . . , X

8
t = Y 8 in B2 such that for all n ∈ {1, 2, . . . , t} either

(X 8
n, X

8
n+1)Λ 6= 0 or (X 8

n+1, X
8
n)Λ 6= 0.

Thus, The block B2 does not split into union of pseudoblocks. So, B2 is one
pseudoblock.

Then, there are three blocks of Λ and three pseudoblocks of Λ in characteristic odd
prime p.

Thus, For group algebra FG in characteristic odd prime number p the two notions blocks
and pseudoblocks coincide.

EXAMPLE 5.5.2.
In group algebra FSL(2, p) at p = 2; the representations of SL(2, 2) ∼= S3 in charac-
teristic 2; there exist two blocks and two pseudoblocks.
Thus, for FSL(2, 2) in characteristic 2 the two notions blocks and pseudoblocks coincide;
as stated in section (4.3).

In group algebra FSL(2, p) at p = 3; let F be a field of characteristic 3, and let
SL(2, 3) be a special linear group. Hence, the number of all indecomposable FSL(2, 3)-
modules are p2 − p+ 1 = 7.

The simple FSL(2, 3)-modules are V1, V2, and V3
∼= P3 (Steinberg module). The projective

indecomposable FSL(2, 3)-modules have the following structures:

P1 P2

V1

V1

V1 ,

V2

V2

V2 , and V3
∼= P3.
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The non-simple, non-projective indecomposable FSL(2, 3)-modules are

V1

V1 &

V2

V2 .

Hence, there are three blocks of FSL(2, 3) as follows:

B1 =

{
V1, P1,

V1

V1

}
, B2 =

{
V2, P2,

V2

V2

}
, and B3 = {V3

∼= P3}.

Then, there are three pseudoblocks as follows:

The first pseudoblock is:

V1 →

V1

V1 →

V1

V1

V1 .

The second pseudoblock is:

V2 →

V2

V2 →

V2

V2

V2 .

And the third pseudoblock contains the Steinberg module (V3
∼= P3). Hence, the blocks

and pseudoblocks coincide for the group algebra FSL(2, 3) in characteristic 3.

Now; we find the vertices of indecomposable FSL(2, 3)-modules; the Sylow 3-subgroup

is U =

{(
1 λ
0 1

)
: ∀λ ∈ F3

}
, where |U | = 3.

Then, the vertex of V1, V2 is Sylow 3-subgroup U , and the vertex of non-simple, non-
projective indecomposable FSL(2, 3)-modules is U from theorem (5.3.4).
Also, the vertex of each projective indecomposable FSL(2, 3)-modules P1, P2, and P3 is
the trivial subgroup I from theorem (5.3.4).
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In group algebra FSL(2, p) at p = 5. From example (5.4.3), there are three pseu-
doblocks as follows: The first pseudoblock is:

V3

V1 V3

V1

→

V3

V3

V1

→

V3

V1

V3

V3

→

V3

V1 V3 →

V3

V3 → V3 →

V1

V3 → V1 →

V3

V1 →

V1

V3

V1 .

The second pseudoblock is:

V2

V4 V2

V4 →

V4

V2

V2

→

V2

V2

V2

V4

→

V2

V2 V4 →

V2

V2 → V2 →

V4

V2 → V4 →

V2

V4 →

V4

V2

V4 .

The third pseudoblock contains the Steinberg module (V5
∼= P5).

Thus, there are three blocks of FSL(2, 5), and there are three pseudoblocks of FSL(2, 5).
Hence, the blocks and pseudoblocks coincide for the group algebra FSL(2, 5) in character-
istic 5.

PROPOSITION 5.5.3. For the group algebra Λ = FSL(2, p) in characteristic prime
p, the block and pseudoblock notions coincide; i.e.

IndΛ/ ≈
PSΛ

= IndΛ/ ≈
Λ
.
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